一种聚氨酯-聚丙烯腈超级空气滤片及其制备方法与流程

文档序号:21183309发布日期:2020-06-20 17:56阅读:257来源:国知局
一种聚氨酯-聚丙烯腈超级空气滤片及其制备方法与流程

本发明涉及高分子材料技术领域,具体涉及到一种聚氨酯-聚丙烯腈超级空气滤片及其制备方法。



背景技术:

随着经济的发展和人民生活水平的不断提高,人们对能源的需求也随之增加,尤其在大、中城市,各类车辆大幅增加。由于对这些因素形成的空气污染缺乏足够的认识和重视,近年来,在人口密度大的地区,尤其是大、中城市产生雾霾天气,严重威胁人民的身体健康和生命。

空气污染不仅能通过物理、化学、生物的侵蚀作用对周围物体产生破坏性的影响,而且污染气体经人的呼吸系统、皮肤表皮等部位对我们的呼吸道系统、神经系统、免疫能力、皮肤等产生严重的毒害作用。长期在空气质量较差的环境中生活或工作,不仅会引起呼吸功能下降,呼吸道症状加重,还会导致慢性支气管炎、支气管哮喘、肺气肿等疾病,严重的还会导致肺癌、鼻咽癌的患病率的增加。为此,人们常选用防护口罩对吸入的空气进行过滤和净化。目前,防护口罩的滤片主要分为两大类,即防尘类和防毒类。它们的作用都是将有害气溶胶,包括粉尘、熏烟、雾滴和毒气经过滤片吸附、阻挡而不被人吸入。对于好的防护口罩的滤片来说,应该具有以下三个条件:一是在面具与使用者面部密合良好的情况下过滤效率高;二是呼吸阻力小;三是使用者感觉舒适。

然而,常规的防护口罩一般采用聚丙烯、聚乙烯等材料,通过sm熔喷工艺制备得到的单层或多层对称结构,主要通过无纺布形成的孔隙来达到过滤空气中的微小颗粒和微生物的作用。然而由于聚乙烯、聚丙烯等材料在熔喷过程中的熔体强度小,虽然可以通过调节静电力大小来调节非织造布纤维的直径,但是当制备超细纤维或纳米级的纤维时,其连续性、稳定性和均匀性都会受到一定阻碍,导致其过滤性能受到影响,不能同时满足高的过滤效率和低的呼吸阻力的要求。



技术实现要素:

针对上述技术问题,本发明的第一方面提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为10~50μm,纤维直径为1~5μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为5~10μm,纤维直径为0.5~1.0μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在0.5~3.0μm,纤维直径在0.05~0.5μm。

作为一种优选的技术方案,所述超细聚氨酯和聚丙烯腈复合纤维功能支撑层的平均孔径不高于0.3微米。

作为一种优选的技术方案,所述第一层和第二层的制备原料包括聚氨酯和聚丙烯腈,其重量比例为(1:2)~(2:1);优选的,其重量比例为1:1。

作为一种优选的技术方案,所述聚氨酯的硬度shored为42~60。

本发明的第二个方面提供了如上所述的聚氨酯-聚丙烯腈超级空气滤片的制备方法,包括如下步骤:

(1)纺丝液的制备:按照重量比例分别取聚氨酯和聚丙烯腈原料,并分别将其溶解在有机溶剂中,或将两种原料混合后溶解在有机溶剂中,脱泡得到聚氨酯纺丝液和聚丙烯腈纺丝液,或者脱泡得到混合纺丝液;

(2)三层非织造布的制备:三组静电纺丝头按顺序排在一条线上,挤出电纺,电纺所形成的纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布;

(3)后处理:将上一步骤中所得的三层非织造布经传送带导入干燥炉中在100~150℃下去除纤维中残留溶剂即得。

作为一种优选的技术方案,所述三组静电纺丝中第一组静电纺丝的聚氨酯和聚丙烯腈纺丝混合液的质量浓度为19~25wt%,绝对粘度为3.0~7.0pa.s。

作为一种优选的技术方案,所述三组静电纺丝中第二组静电纺丝的聚氨酯和聚丙烯腈纺丝混合液的质量浓度为12~18wt%。

作为一种优选的技术方案,所述第二组静电纺丝的聚氨酯和聚丙烯腈纺丝混合液的绝对粘度为1.5~2.5pa.s。

作为一种优选的技术方案,所述三组静电纺丝中第三组静电纺丝的聚氨酯纺丝液的质量浓度为5~12wt%。

作为一种优选的技术方案,所述三组静电纺丝中第三组静电纺丝的聚氨酯纺丝液的绝对粘度为0.5~1.4pa.s。

本发明的第三个方面提供了如上的聚氨酯-聚丙烯腈超级空气滤片在防雾霾口罩中的应用。

本发明中所述的聚氨酯-聚丙烯腈超级空气滤片具有优异的热稳定性和机械性能,具体的热分解温度大于400℃;软化温度高于160℃;耐水洗摩擦;孔隙率约95%;功能层平均孔径0.25微米,85l/min空气流速下的压差约186pa;对0.3微米以上粒径的颗粒的拦截率大于99.9%,远优于n95口罩对0.3微米颗粒95%拦截率的过滤效果;水煮2h前后尺寸结构不发生变化,对0.3微米以上粒径的颗粒的拦截率依然大于99.9%,使用后可以水煮或水蒸的方式进行除菌杀毒后可以重复使用,不影响过滤效果和使用舒适度。

附图说明

图1为本发明中聚氨酯-聚丙烯腈超级空气滤片制备工艺流程示意图。

具体实施方式

参选以下本发明的优选实施方法的详述以及包括的实施例可更容易地理解本发明的内容。除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。

本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。

当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。

此外,本发明要素或组分前的不定冠词“一种”和“一个”对要素或组分的数量要求(即出现次数)无限制性。因此“一个”或“一种”应被解读为包括一个或至少一个,并且单数形式的要素或组分也包括复数形式,除非所述数量明显旨指单数形式。

本发明的第一方面提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为10~50μm,纤维直径为1~5μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为5~10μm,纤维直径为0.5~1.0μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在0.5~3.0μm,纤维直径在0.05~0.5μm。

在一些实施方式中,所述聚氨酯和聚丙烯腈复合纤维强力支撑层的厚度为25~35μm,纤维直径为2.5~3.5μm。

进一步地,所述超细聚氨酯和聚丙烯腈复合纤维功能支撑层的厚度为6~8μm,纤维直径为0.6~0.8μm。

进一步地,所述超细聚氨酯和聚丙烯腈复合纤维功能支撑层的平均孔径不高于0.3微米。

进一步地,所述聚氨酯纳米纤维过滤功能层的厚度为1~1.5μm,纤维直径为80~200nm。

本发明中各层纤维的直径可以通过显微镜观察,量取至少5组去平均值;功能支撑层的平均孔径可以通过扫描电镜或透射电镜测量。具体操作步骤不特殊限定,可以根据本领域技术人员所熟知的方式进行即可。

在一些实施方式中,所述第一层和第二层的制备原料包括聚氨酯和聚丙烯腈,其重量比例为(1:2)~(2:1)。

进一步地,所述聚氨酯和聚丙烯腈的重量比例为1:1。

本发明中的所述聚氨酯为异氰酸酯与聚酯多元醇、聚醚多元醇等反应得到的,分子链中含有氨酯键的聚合物,本发明中所述的聚氨酯选用纺丝级聚氨酯材料.

在一些实施方式中,所述聚氨酯的硬度shored为42~60。

在一些实施方式中,90~100shorea。本发明中所述硬度根据astmd2240标准进行测试得到。

可以从市面购买获得,例如,购买自德国巴斯夫的pu98a和/或pu95a。

本发明中所述聚丙烯腈为由单体丙烯腈经自由基聚合反应而得到,大分子链中的丙烯腈单元是接头-尾方式相连的一种聚合物。本发明中所述的聚丙烯腈从市面购买得到,例如聚丙烯腈购自吉林化纤厂等。

本发明聚丙烯腈纤维由于其保暖性好、抗菌、防霉、防蛀、抗光照老化,原料易得,并有非常优越的耐辐射性和耐腐蚀性而被广泛地应用于服饰、装饰和工业领域,目前其产量在合成纤维中位于第四位。但由于聚丙烯腈纤维固有的疏水性和绝缘性,其手感、吸湿性、染色性较差,易产生静电,限制了聚丙烯腈在很多领域的应用。而本发明中的聚氨酯由于其结构中的亲水性氨酯键、聚醚等结构,其亲水性好,不耐水洗,尤其是在水煮或水蒸时材料的尺寸稳定性受到破坏。本发明中通过创造性的设计超级空气滤片的结构,在超细聚氨酯和聚丙烯腈复合纤维功能支撑层的表面设计聚氨酯和聚丙烯腈符合纤维制备得到的复合纤维强力支撑层,使空气滤片具备好的弹性的同时,具备好的耐摩擦、耐水洗、水煮水蒸等特性。同时,设置强力支撑层、复合纤维功能支撑层,以及纳米纤维过滤功能层,保证空气滤片好的过滤效果的同时,还保证较低的空气流速压差,使其防护口罩等产品具有好的舒适性。在不同厚度、纤维直径和组分的三层非织造布结构的相互作用之下,所得的空气滤片结构稳定,超细纤维孔隙和纳米层中纳米纤维结构并不会因为水煮等操作而破坏,经过水煮之后依然保持低的空气流速压差和好的微粒过滤效果,能够多次重复使用。

本发明的第二个方面提供了如上所述的聚氨酯-聚丙烯腈超级空气滤片的制备方法,包括如下步骤:

(1)纺丝液的制备:按照重量比例分别取聚氨酯和聚丙烯腈原料,并分别将其溶解在有机溶剂中,或将两种原料混合后溶解在有机溶剂中,脱泡得到聚氨酯纺丝液和聚丙烯腈纺丝液,或者脱泡得到混合纺丝液;

(2)三层非织造布的制备:三组静电纺丝头按顺序排在一条线上,挤出电纺,电纺所形成的纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布;

(3)后处理:将上一步骤中所得的三层非织造布经传送带导入干燥炉中在100~150℃下去除纤维中残留溶剂即得。

本发明中的纺丝液可以将聚氨酯和聚丙烯腈单独溶解在有机溶剂中,然后将溶液混合,静置脱泡,制备得到纺丝液。也可以将聚氨酯和聚丙烯腈原料混合之后加入溶剂一起溶解、静置脱泡得到纺丝液。其中,对有机溶剂的种类不做特殊限定,可以选用任何可以共同溶解聚丙烯腈和聚氨酯的溶剂,包括但不限于二甲基甲酰胺、二甲基乙酰胺、1-甲基-2吡咯烷酮等。

在一些实施方式中,所述三组静电纺丝中第一组静电纺丝的聚氨酯和聚丙烯腈纺丝混合液的质量浓度为19~25wt%,绝对粘度为3.0~7.0pa.s。

进一步地,所述三组静电纺丝中第一组静电纺丝采用三头喷丝板,其聚氨酯和聚丙烯腈纺丝混合液的质量浓度为21~23wt%,绝对粘度为4.8~5.2pa.s。

在一些实施方式中,所述三组静电纺丝中第二组静电纺丝采用两头喷丝板,其聚氨酯和聚丙烯腈纺丝混合液的质量浓度为12~18wt%。

进一步地,所述三组静电纺丝中第二组静电纺丝采用两头喷丝板,其聚氨酯和聚丙烯腈纺丝混合液的质量浓度为14~16wt%。

进一步地,所述第二组静电纺丝的聚氨酯和聚丙烯腈纺丝混合液的绝对粘度为1.8~2.2pa.s。

在一些实施方式中,所述三组静电纺丝中第三组静电纺丝的聚氨酯纺丝液的质量浓度为5~12wt%。

在一些实施方式中,所述三组静电纺丝中第三组静电纺丝采用一头喷丝板,其聚氨酯纺丝液的质量浓度为7~9wt%。

进一步地,所述三组静电纺丝中第三组静电纺丝的聚氨酯纺丝液的绝对粘度为0.5~1.4pa.s。

进一步地,所述三组静电纺丝中第三组静电纺丝的聚氨酯纺丝液的绝对粘度为0.8~1.1pa.s。

本发明的第三个方面提供了如上的聚氨酯-聚丙烯腈超级空气滤片在防雾霾口罩中的应用。

本发明中将不同纤维尺寸的静电纺薄膜层按照特定直径尺寸的纤维,层叠设置,将较粗纤维层作为强力支撑层作为第一层,将功能超细纤维作为功能支撑层,然后在功能超细纤维上设置纳米纤维层,得到超级空气滤片,使得其对0.3微米以上粒径的颗粒的拦截率大于99.9%,远优于n95口罩对0.3微米颗粒95%拦截率的过滤效果,适用于各类微粒的过滤和防护。

实施例

实施例1:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为30μm,纤维直径为3.0μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为7μm,纤维直径为0.6μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在1.2μm,纤维直径在0.15μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到不同质量浓度的混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将三组静电纺丝头按顺序排在一条线上,第一组三头,聚氨酯和聚丙烯腈纺丝液的质量浓度为22wt%,绝对粘度为4.5pa.s;第二组两头,聚氨酯和聚丙烯腈纺丝液的质量浓度为15wt%,绝对粘度1.8pa.s;第三组一头,聚氨酯纺丝液的质量浓度为8wt%,绝对粘度1.0pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片热分解温度约为420℃;软化温度约165℃;耐水洗摩擦;孔隙率约95%;功能层平均孔径0.25微米,85l/min空气流速下的压差约186pa;对0.3微米以上粒径的颗粒的拦截率大于99.9%;水煮2h前后尺寸结构不发生变化,对0.3微米以上粒径的颗粒的拦截率依然大于99.9%。

实施例2:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为15μm,纤维直径为1.5μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为8μm,纤维直径为0.5μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在3.0μm,纤维直径在0.35μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到不同质量浓度的混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将三组静电纺丝头按顺序排在一条线上,第一组三头,聚氨酯和聚丙烯腈纺丝液的质量浓度为20wt%,绝对粘度为3.5pa.s;第二组两头,聚氨酯和聚丙烯腈纺丝液的质量浓度为13wt%,绝对粘度1.8pa.s;第三组一头,聚氨酯纺丝液的质量浓度为12wt%,绝对粘度1.1pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片热分解温度约为418℃;软化温度约162℃;耐水洗摩擦;孔隙率约92%;功能层平均孔径0.25微米,85l/min空气流速下的压差约190pa;对0.3微米以上粒径的颗粒的拦截率大于99.9%;水煮2h前后尺寸结构不发生变化,对0.3微米以上粒径的颗粒的拦截率依然大于99.9%。

实施例3:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为30μm,纤维直径为3.0μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为7μm,纤维直径为2.5μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在1.2μm,纤维直径在0.15μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到不同质量浓度的混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将三组静电纺丝头按顺序排在一条线上,第一组三头,聚氨酯和聚丙烯腈纺丝液的质量浓度为22wt%,绝对粘度为4.5pa.s;第二组两头,聚氨酯和聚丙烯腈纺丝液的质量浓度为45wt%,绝对粘度4.3pa.s;第三组一头,聚氨酯纺丝液的质量浓度为8wt%,绝对粘度1.0pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片耐水洗摩擦,在85l/min空气流速下的压差约125pa;对0.3微米以上粒径的颗粒的拦截率约为92.5%,水煮2h后对0.3微米以上粒径的颗粒的拦截率约为89.0%。

实施例4:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括三层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为30μm,纤维直径为3.0μm;第二层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为7μm,纤维直径为0.6μm;第三层为电纺聚氨酯纳米纤维过滤功能层,其厚度在1.2μm,纤维直径在1.0μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到不同质量浓度的混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将三组静电纺丝头按顺序排在一条线上,第一组三头,聚氨酯和聚丙烯腈纺丝液的质量浓度为22wt%,绝对粘度为4.5pa.s;第二组两头,聚氨酯和聚丙烯腈纺丝液的质量浓度为15wt%,绝对粘度1.8pa.s;第三组一头,聚氨酯纺丝液的质量浓度为18wt%,绝对粘度2.2pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的三层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片耐水洗摩擦,在85l/min空气流速下的压差约163pa;对0.3微米以上粒径的颗粒的拦截率约为92.0%,水煮2h后对0.3微米以上粒径的颗粒的拦截率约为87.5%。

实施例5:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括两层纤维复合结构,其中第一层为电纺聚氨酯和聚丙烯腈复合纤维强力支撑层,其厚度为30μm,纤维直径为3.0μm;第二层为电纺聚氨酯纳米纤维过滤功能层,其厚度在1.2μm,纤维直径在0.15μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将两组静电纺丝头按顺序排在一条线上,第一组三头,聚氨酯和聚丙烯腈纺丝液的质量浓度为22wt%,绝对粘度为4.5pa.s;第二组一头,聚氨酯纺丝液的质量浓度为8wt%,绝对粘度1.0pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的两层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片耐水洗摩擦,在85l/min空气流速下的压差约112pa;对0.3微米以上粒径的颗粒的拦截率约89%,水煮2h后对0.3微米以上粒径的颗粒的拦截率约为83.5%。

实施例6:提供了一种聚氨酯-聚丙烯腈超级空气滤片,其包括两层纤维复合结构,其中第一层为电纺超细聚氨酯和聚丙烯腈复合纤维功能支撑层,其厚度为7μm,纤维直径为0.6μm;第二层为电纺聚氨酯纳米纤维过滤功能层,其厚度在1.2μm,纤维直径在0.15μm。所述聚丙烯腈的重均分子量为85000,购自吉林化纤厂,所述聚氨酯为巴斯夫pu95a。

上述聚氨酯-聚丙烯腈超级空气滤片的制备方法包括如下步骤:

纺丝液的制备:按照1:1的重量比例分别取聚氨酯和聚丙烯腈原料,并将其溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到混合纺丝液;并将聚氨酯溶解在n,n-二甲基甲酰胺有机溶剂中,静置脱泡,得到聚氨酯纺丝溶液;然后将两组静电纺丝头按顺序排在一条线上,第一组两头,聚氨酯和聚丙烯腈纺丝液的质量浓度为15wt%,绝对粘度1.8pa.s;第二组一头,聚氨酯纺丝液的质量浓度为8wt%,绝对粘度1.0pa.s。电纺形成的聚氨酯和聚丙烯腈复合纤维及聚氨酯纤维依次分层落在钢质传送带上形成纤维直径不同的两层复合结构的非织造布,经传送带导入干燥炉中在130℃下去除纤维中残留溶剂,形成聚氨酯-聚丙烯腈超级空气滤片,滤片面积尺寸:160*200cm2

本实施例中聚氨酯-聚丙烯腈超级空气滤片水洗摩擦性能受到较大影响,在功能层平均孔径0.25微米,85l/min空气流速下的压差约322pa;对0.3微米以上粒径的颗粒的拦截率大于99.9%;水煮2h后对0.3微米以上粒径的颗粒的拦截率约为86.5%。

以上所述,仅是本发明的较佳实施例而已,并非是对发明作其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或更改为等同变化的等效实施例,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改,等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1