用于元件的环境隔离涂层及其制造方法

文档序号:5212322阅读:290来源:国知局
专利名称:用于元件的环境隔离涂层及其制造方法
技术领域
本发明一般地涉及环境隔离涂层,更具体地涉及用于由硅基基材制成的元件的环境隔离涂层。
具有RE2Si2O7的一般组成的稀土(RE)二硅酸盐环境隔离涂层(EBCs)保护由含硅的陶瓷基质复合(CMC)基材或氮化硅(Si3N4)基材制成的燃气轮机元件,使其在使用中不会有害地暴露在化学环境中。RE=La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu,并包括类稀土元素Y和Sc。稀土二硅酸盐具有与CMC基材的CTE充分匹配的热膨胀系数(CTEs)。在使用中以及在该元件的热循环期间,此类二硅酸盐具有最小的开裂倾向。但是,由于与涡轮机燃烧气氛中的水蒸汽的化学相互作用,二硅酸盐容易遭受SiO2浸出以及凹陷。这种浸出在EBC中产生微孔性微结构,并且,最初的致密EBC在低于所需设计寿命的时间内转化成多孔层。因此,此类二硅酸盐不具有该用途所需的耐久性。
具有RE2SiO5的一般组成的稀土(RE)单硅酸盐已经代替稀土二硅酸盐用作EBCs。在含有水蒸气的燃烧气氛中,RE单硅酸盐具有低挥发速率,因此具有低凹进速率。但是,单硅酸盐典型地具有与CMC基材的CTE不充分匹配的CTE。结果,单硅酸盐面层在涂覆、热处理和/或使用暴露过程中容易开裂,这会使水蒸汽渗透该面层,并导致表面下的化学反应和/或过早的EBC散裂。这种开裂的程度直接取决于涂层厚度和涂层与基材之间的CTE差异。
用等离子喷涂法在组件上沉积许多传统的EBC材料。等离子喷涂法提供了在宽的涂层厚度范围内(从约0.002英寸至约0.040英寸变化)沉积很多种材料而无需改变主要工艺的灵活性。但是,在喷涂过程中,由于快速骤冷,沉积的涂层材料常常固有地处于热力学亚稳态(例如非晶相、高温相或一种或更多非平衡相)。当暴露在高温下并转化为平衡态时,受约束的涂层可能经受多种尺寸变化,在涂层中产生能够导致多种开裂性状的应力。涂层的开裂倾向趋向于与涂层厚度成正比。
对于通过等离子喷涂处理的RE2SiO5涂层,这被发现是特别成问题的,当暴露在高温下时导致毁灭性的全厚度开裂和涂层层离。在此情况下,对于SiC或SiC/SiC复合材料,涂层材料的全厚度开裂被认为主要是由约6×10-6l/℃至约7×10-6l/℃的涂层材料CTE与约4.5×10-6l/℃至约5.0×10-6l/℃的基材CTE之间的失配引起的。主要在基材的非平面区域和/或几何不连续点及表面微扰附近观察到涂层层离。此外,层离可归因于在达到工作温度的第一热循环过程中的尺寸变化。对于厚度低至大约0.002英寸的涂层,已观察到开裂现象。此外,通过等离子喷涂法处理的涂层倾向于包含敞开孔隙和/或与其它封闭孔和空穴相交的细微裂纹网络。对EBC应用而言,涂层中的敞开孔隙可以是有害的。敞开孔隙为水蒸汽的快速渗透提供通道,并因此加速了容易发生以水蒸汽为媒介的氧化和挥发的下方材料的局部降解和/或劣化。

发明内容
一方面,本发明提供用于含硅并具有第一热膨胀系数的元件的环境隔离涂层。该环境隔离涂层包括粘接到该元件至少一部分外表面上的硅粘合涂层。至少一个中间层粘接到硅粘合涂层上,并具有与第一热膨胀系数匹配的第二热膨胀系数。该至少一个中间层具有RE2Si2O7的一般组成。保护层粘接到中间层上,并具有RE2SiO5的一般组成。表面层粘接到保护层上。该表面层含有RE并具有至少2∶3的RE对氧的比率。
另一方面,本发明提供一种用于燃气轮机的元件。该元件包括含硅并具有第一热膨胀系数的基材。硅粘合涂层粘接到该基材的至少一部分外表面上。至少一个中间层粘接到硅粘合涂层上。该至少一个中间层具有与第一热膨胀系数匹配的第二热膨胀系数,并具有RE2Si2O7的一般组成。保护层粘接到该至少一个中间层上,并具有RE2SiO5的一般组成。表面层粘接到该保护层上并含有RE。该表层具有至少2∶3的RE对氧的比率。
另一方面,本发明提供了用于制造具有环境隔离涂层的元件的方法。该方法包括提供含硅的具有第一热膨胀系数的元件。粘合涂层粘接到该元件的至少一部分外表面上。具有RE2Si2O7的一般组成的中间层粘接到所述粘合涂层上。该中间层具有与第一热膨胀系数匹配的第二热膨胀系数。具有RE2SiO5的一般组成的保护层粘接到该中间层上。表面层粘接到该保护层上。该表面层含有RE并具有至少2∶3的RE对氧的比率。


图1是根据本发明的一个实施方案,涂有环境隔离涂层的元件的局部剖面侧视图。
具体实施例方式
本发明的实施方案提供了用于硅基材料(包括例如陶瓷基质复合基材或氮化硅基材)的环境隔离涂层。此外,本发明提供了用于制造具有环境隔离涂层的元件的方法。在一个实施方案中,该环境隔离涂层包括硅粘合涂层,具有与下方基材的热膨胀系数匹配的热膨胀系数的中间层,以及薄的、均匀的抗凹进表面层,该表面层在使用期间是抗开裂的,并在下方元件的整个设计寿命中是耐用的。
下面,参照其与由陶瓷基质复合基材、氮化硅基材、碳化硅基材和/或金属硅化物基材制成的燃气轮机用元件相关的应用,描述本发明的实施方案。但是,对于受本文提供的教导指引的本领域技术人员显而易见的是,本发明同样适用于由硅基基材制成的任何适宜的元件。此外,此类元件可以结合到包括但不限于其它涡轮发动机的系统中,其中该元件在系统运行过程中经受极端的热和/或化学条件。在运行条件期间,在可能超过2400的材料表面温度下,这些元件经受燃烧环境高达大约32,000小时。
在一个实施方案中,各种燃气轮机的元件由陶瓷材料或陶瓷基质复合(CMC)材料制成。在一个具体实施方案中,CMC材料是SiC/SiC CMC材料。该SiC/SiC CMC材料包括用硅渗透并用涂布的碳化硅纤维补强的碳化硅复合材料。在一个实施方案中,该陶瓷材料是整体的(monolithic)陶瓷材料,如SiC。
参照图1,在一个实施方案中,将环境隔离涂层10涂布到硅基材料,例如由CMC基材20制成的涡轮发动机元件15上。或者,涡轮发动机元件15由氮化硅(Si3N4)基材制成(未显示)。对于受本文提供的教导指引的本领域技术人员显而易见的是,涡轮发动机元件15可以由任何适宜的硅基材料制成。
环境隔离涂层10包括粘接到CMC基材20或沉积在CMC基材20上并粘接其上的至少一个中间层25。本文所用的术语“粘接”应理解为包括直接粘接或通过例如粘合涂层或中间层之类的另一层间接粘接。在一个实施方案中,中间层25具有约3.0密耳至约10.0密耳的总厚度。中间层25具有与基材20的热膨胀系数匹配的热膨胀系数。本文所用的术语“匹配”在描述热膨胀系数时应理解为是指第一层例如中间层25的热膨胀系数在第二层例如基材20的热膨胀系数的大约+/-15%的范围内。在一个实施方案中,中间层25具有类似于CMC基材20的热膨胀系数的热膨胀系数。在一个具体实施方案中,中间层25具有基本等于CMC基材20的热膨胀系数的热膨胀系数。如图1中所示,在一个实施方案中,环境隔离涂层10包括在将中间层25涂布或沉积到CMC基材20上之前涂布或沉积到CMC基材20上的硅粘合涂层30。在一个具体实施方案中,粘合层30具有与基材20和/或中间层25匹配的热膨胀系数。
在一个实施方案中,中间层25包括具有RE2Si2O7的一般组成的至少一个层,其由包含但不限于Y、Dy、Ho、Er、Tm、Tb、Yb和/或Lu的至少一种稀上(RE)硅酸盐形成。例如,第一中间层27包含RE2Si2O7。此外,如图1所示,中间层25包括位于第一中间层27和外隔离层例如抗凹进表面层35之间的第二或外中间层29。尽管在图1中仅显示了两个中间层27、29,但对于受本文提供的教导指引的本领域技术人员显而易见的是,中间层25可以包括任何适宜的层数。在一个实施方案中,所述层的总厚度为大约3.0密耳至大约10.0密耳。或者,除至少一种稀土硅酸盐外,中间层25可以包括至少一个适宜的材料层,和/或每个中间层27、29可以包含至少一种适宜的材料。
将抗凹进表面层35涂布或沉积到中间层25上。在一个实施方案中,采用物理气相沉积法或化学气相沉积法将抗凹进表面层35涂布或沉积到中间层25上。或者,通过用随后在微孔中分解以产生所需氧化物或金属的所需化合物的盐的水溶液渗透,将抗凹进表面层35涂布到中间层25上。可以采用受本文提供的教导指引的本领域技术人员已知的任何合适方法涂布抗凹进表面层35和/或渗透层,所述方法包括但不限于溶胶凝胶技术、等离子喷涂、喷浆和/或喷漆法。
在一个实施方案中,将抗凹进表层35均匀涂布或均匀沉积到外中间层29上。在此实施方案中,抗凹进表层35具有约0.5密耳至约2.0密耳的厚度。抗凹进表层35具有适于预防或抵抗使用时的开裂、水蒸汽渗透和/或剥离的厚度。在备选实施方案中,抗凹进表面层35具有预防或抵抗开裂、水蒸汽渗透和/或剥离的适宜厚度。例如,在一个实施方案中,抗凹进层具有小于大约0.001英寸(25微米)的厚度。
在一个实施方案中,抗凹进保护层36包含具有RE2SiO5的一般组成的至少一种稀土(RE)硅酸盐,其包括但不限于Y、Dy、Ho、Er、Tm、Tb、Yb和/或Lu。抗凹进保护层36与下方的中间层25化学相容并具有高抗凹进性。例如,抗凹进保护层36可以包含涂布或沉积到包括Y2Si2O7外表面的中间层25上的Y2SiO5。表面层38与下方的保护层36化学相容并具有高抗凹进性。表面层38可以包含涂布或沉积到保护层36上的Y2O3。对于受本文提供的教导指引的本领域技术人员显而易见的是,抗凹进保护层36和抗凹进表面层38可以包括含有一种或更多稀土金属的任何适宜的材料。
在一个实施方案中,抗凹进表面层35包括粘接到中间层25上的保护层36。在此实施方案中,保护层36具有RE2SiO5的一般组成。抗凹进表面层35进一步包括粘接到保护层36上的表面层38。表面层38包含至少一种稀土,即,Y、Dy、Ho、Er、Tm、Tb、Yb和/或Lu,并具有至少2∶3的RE对氧的比率。表面层38包含RE2O3、RE金属、含RE的盐和/或含RE的有机金属材料。适宜的有机金属材料包括但不限于包括RE在内的金属类的适宜醇盐,例如,但不限于RE-异丙醇盐(RE-[OCH(CH3)2]3)、RE-三正丁醇盐(RE-(OC4H9)3)或RE-乙醇盐(RE-(OC2H5)3)。在一个具体实施方案中,表面层38具有RE2O3的一般组成,或与气相反应形成RE2O3的一般组成。
在一个实施方案中,通过表面层38与中间层25的化学反应形成保护层36。在一个具体实施方案中,粘合涂层30与中间层25之间的界面,以及保护层36与表面层38之间的界面是基本连续的。或者,在基本没有层间化学反应的情况下,将保护层36直接沉积到中间层25上,并将表面层38直接沉积到保护层36上,形成多层环境隔离涂层10。在此实施方案中,粘合涂层30与中间层25、中间层25与保护层36、以及保护层36与表面层38之间的界面也是基本连续的。
在一个实施方案中,中间层25包括用抗凹进氧化物渗透的微孔表面区域,在形成微孔的表面区域上形成保护层36。可以通过在足够高的温度下令表面层与水蒸汽反应一段选定的持续时间以产生微孔微结构,由此产生微孔表面区域或微结构。或者,可以通过等离子喷涂产生微孔或多孔微结构。例如,通过在流动的富含水蒸汽的气氛中于约2400下暴露大约100小时至大约500小时,在含RE2Si2O7的中间层25上能够产生微孔RE2SiO5层。然后用化学相容的抗水蒸汽氧化物渗透微孔,产生抗凹进表面层35。例如,可以用RE2O3渗透在RE2Si2O7间层25上产生的微孔RE2SiO5,产生保护下方RE2Si2O7中间层25、硅粘合涂层30和CMC基材25免受水蒸汽破坏的抗凹进表面层35(RE2O3+RE2SiO5)。
在一个具体实施方案中,中间层25包含Y2Si2O7,并且保护层36包括用Y2O3渗透的微孔Y2SiO5层,形成抗凹进表面层35。尽管抗凹进氧化物不具有与CMC基材20的CTE和/或中间层25的CTE充分匹配的CTE,但抗凹进表面层35足够薄以预防或抵抗开裂和水蒸汽渗透。建模(modeling)表明,涂布到CET为大约4.5×10-6l/C且弹性模量E=280GPa的带有Y2Si2O7中间层25的CMC基材上的、CTE为大约6.5×10-6l/C且弹性模量E=30-40GPa的0.001英寸厚Y2SiO5抗凹进表面层,应低于以全厚度开裂的应变能量释放速率标准为基础的开裂限度。
在一个备选实施方案中,抗凹进表面层35包括用抗凹进氧化物的金属氧化物前体渗透的微孔表面区域。在一个实施方案中,如上所述,用选定浓度的金属渗透该微孔表面区域,该金属随后被氧化以形成抗凹进表面层35。渗透剂可以是可溶RE盐的水或非水溶液、亚微米含RE粒子的悬浮液或在干燥时产生金属RE的溶液。渗透的RE随后反应或氧化填充微孔,并在孔表面和/或外表面上生成具有RE2SiO5的一般组成的抗凹进保护层35。
在一个具体实施方案中,中间层25包含Y2Si2O7,并且保护层36包括用Y渗透的微孔Y2SiO5层,形成包含Y2SiO5和Y2O3的致密抗凹进表面层35。在此过程中,氧化时的体积增加促进微孔的填充,形成致密的表面微结构。粘接到较厚中间层25,例如Y2Si2O7上的致密抗凹进表面层35产生高度耐水蒸汽渗透且太薄而不会由于与基材20的CTE失配而开裂的表面区域。此外,如果抗凹进表面层35破裂,较厚的中间层25可以为基材20提供进一步保护,以及便于表面修整的基材。
在含有水蒸汽的燃烧气氛中,具有RE2Si2O7的一般组成的中间层25最初可能具有不充分的抗凹进性。在一个实施方案中,在中间层25上涂布一般组成为RE2O3的薄层。该层暴露于高温下发生化学反应,原位形成一般组成为RE2SiO5的薄致密保护层36,RE2SiO5与RE2Si2O7化学相容。保护层36和抗凹进表层35具有高抗凹进性和高抗开裂性。在一个具体实施方案中,采用物理气相沉积、化学气相沉积、溶胶-凝胶涂布、浆体涂布、等离子喷涂或喷漆法中的至少一种,在含有RE2Si2O7的中间层25上涂布抗凹进氧化物,例如RE2O3的薄的均匀的表面层。RE2O3层与下方的RE2Si2O7层反应以形成薄的RE2SiO5层。尽管该RE2SiO5层与下方的RE2Si2O7层的CTE未充分匹配,但由于该RE2SiO5层很薄,例如,小于约0.001英寸(25微米),且反应RE2O3+RE2Si2O7=2RE2SiO5的体积变化仅为约1%,因此防止或限制了开裂。此外,RE2O3/RE2Si2O7反应可以有利于消除或降低表面裂纹和孔隙,并制造微观结构良好的表面层。
在一个实施方案中,在RE2O3层沉积之前或代替RE2O3层沉积,用含有至少一种RE的前体溶液,例如含有无机RE盐的水溶液、含有RE-醇盐的非水溶液或金属RE的载体渗透起始RE2Si2O7层。含RE的前体渗入RE2Si2O7层中的开孔内,当暴露在高温下时在孔壁上形成RE2SiO5。此类原位形成的RE2SiO5为多孔RE2Si2O7基材提供进一步保护以避免暴露在水蒸汽下。
在一个实施方案中,本发明提供用于制造具有环境隔离涂层10的元件,如燃气轮机元件15的方法。燃气轮机元件15包含硅,并具有第一热膨胀系数。中间层25粘接到燃气轮机元件15的外表面上。中间层25具有在燃气轮机元件15的热膨胀系数的大约+/-15%范围内的第二热膨胀系数。在一个具体实施方案中,将第二中间层粘接到第一中间层上。在此实施方案中,第二中间层具有与第一中间层的热膨胀系数类似或相等的热膨胀系数。或者,第二中间层具有与第一中间层的热膨胀系数不同的热膨胀系数。对于受本文提供的教导指引的本领域技术人员显而易见的是,环境隔离涂层10可以包括任何适宜数量的中间层。
将具有RE2SiO5的一般组成的保护层36粘接到外中间层上。在一个实施方案中,保护层36沉积在中间层25上。在一个具体实施方案中,通过金属氧化物前体材料与中间层25的反应,保护层36粘接到中间层25上。例如,通过包含RE2O3的金属氧化物前体材料与包含RE2Si2O7的中间层25的反应,形成包含RE2SiO5的保护层36。在一个实施方案中,将表面层38粘接到保护层36上。表面层38包含至少一种RE,并具有至少2∶3的RE对氧的比率。
或者,在表面层38沉积在中间层25上之后,通过热处理环境隔离涂层10,形成保护层36并将其粘接到中间层25上。在另一实施方案中,通过在环境隔离涂布的CMC元件的使用过程中原位形成保护层36,将保护层36粘接到中间层25上。
由于在基材与中间层之间的CTE相容性,并且致密的高抗凹进表面层太薄而不会表现出有害的开裂,用于硅基元件,如SiC/SiC CMC或氮化硅材料元件的上述环境隔离涂层是抗开裂的。抗凹进表面层防止或限制下方的层暴露在燃烧气氛中。该环境隔离涂层具有足够的耐久性和抗凹进性,满足在大约2400的温度下高达大约32,000运行时数的设计寿命目标。此外,如果抗凹进表面层破裂,中间层可以为下方基材提供进一步保护,以及便于表面修整的基材。
上文详细描述了环境隔离涂层及用于制造包括该环境隔离涂层的元件的方法的示例性实施方案。环境隔离涂层和方法不限于本文所述的具体实施方案,而且环境隔离涂层的元件和/或该方法的步骤可以与本文所述的其它元件和/或步骤独立并分离地使用。此外,所述元件和/或方法步骤也可以与其它涂层和/或方法结合说明或使用,并不限于仅用本文所述的环境隔离涂层和方法实施。
虽然已经根据各种具体实施方案描述了本发明,但本领域技术人员会认识到,可以在权利要求的精神实质和范围内改变实施本发明。
部件一览表

权利要求
1.一种用于包含硅的具有第一热膨胀系数的元件的环境隔离涂层(10),所述环境隔离涂层包括粘接到所述元件的至少一部分外表面上的硅粘合涂层(30);粘接到所述硅粘合涂层上并具有与所述第一热膨胀系数匹配的第二热膨胀系数的至少一个中间层(25,27,29),所述中间层具有RE2Si2O7的一般组成;粘接到所述中间层上并具有RE2SiO5的一般组成的保护层(36);和粘接到所述保护层上,包含RE并具有至少2∶3的RE对氧的比率的表层(38)。
2.根据权利要求1的环境隔离涂层(10),其中通过所述表层(38)与所述至少一个中间层(25,27,29)的化学反应形成所述保护层(36),并且所述粘合层(30)、所述至少一个中间层、所述保护层和所述表层的每一种之间的界面是基本连续的。
3.根据权利要求1的环境隔离涂层(10),其中所述表层(38)具有RE2O3的一般组成,或与气相反应以形成RE2O3的一般组成,其中RE是Y、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种。
4.根据权利要求1的环境隔离涂层(10),其中在基本没有层间化学反应的情况下,将所述保护层(36)直接沉积到所述至少一个中间层(25,27,29)上,并将所述表面层(38)直接沉积到所述保护层上,形成多层环境隔离涂层,而且在所述粘合层(30)、所述至少一个中间层、所述保护层和所述表层之间的界面是基本连续的。
5.根据权利要求1的环境隔离涂层(10),其中所述至少一个中间层(25)进一步包括粘接到所述硅粘合涂层上的内中间层(27);和粘接到所述内中间层上并形成大量微孔的外中间层(29),用所述表面层(38)渗透所述外部中间层,在形成所述大量微孔的每一个微孔的表面上形成所述保护层(36)。
6.根据权利要求1的环境隔离涂层(10),其中所述第二热膨胀系数在所述第一热膨胀系数的+/-15%范围内。
7.根据权利要求1的环境隔离涂层(10),其中所述表面层(38)含有RE2O3、RE金属、包含RE的盐和包含RE的有机金属材料中的至少一种。
8.根据权利要求1的环境隔离涂层(10),其中所述至少一个中间层(25,27,29)具有约3.0密耳至约10.0密耳的厚度。
9.根据权利要求1的环境隔离涂层(10),其中所述表层(38)具有约04密耳至约2.0密耳的厚度。
10.一种用于燃气轮机(15)的元件,所述元件包括含硅的基材(20),所述基材具有第一热膨胀系数;粘接到所述基材的至少一部分外表面上的硅粘合涂层(30);粘接到所述硅粘合涂层上并具有与所述第一热膨胀系数匹配的第二热膨胀系数的至少一个中间层(25,27,29),该中间层具有RE2Si2O7的一般组成;粘接到所述中间层上并具有RE2SiO5的一般组成的保护层(36);和粘接到所述保护层上的表面层(38),其包含RE并具有至少2∶3的RE对氧的比率。
全文摘要
提供一种用于具有第一热膨胀系数的含硅元件的环境隔离涂层(10)。该环境隔离涂层包括粘接到该元件的至少一部分外表面上的硅粘合涂层(30)。中间层(25,27,29)粘接到硅粘合涂层上,并具有与第一热膨胀系数匹配的第二热膨胀系数。该中间层具有RE
文档编号F02C7/00GK101024324SQ20061006399
公开日2007年8月29日 申请日期2006年12月11日 优先权日2005年12月9日
发明者P·J·梅斯特, C·A·约翰逊, K·L·卢斯拉, R·萨拉菲-诺尔 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1