用于液化天然气再气化和动力设备的热集成的构造和方法

文档序号:5247601阅读:248来源:国知局
专利名称:用于液化天然气再气化和动力设备的热集成的构造和方法
用于液化天然气再气化和动力设备的热集成的构造和方法5 本申请要求我们共同未决的且序列号是60/667,182的美国临时专利申请的优先权,该临时专利申请的申请日期是2005年3月30 曰。发明领域是使用进入空气冷却在联合循环动力设备(power plant)中再气化的热集成。发明背景15 用于燃气涡轮的空气进入冷却在本领域中是^^知的并且应用了多种冷源。例如,在美国专利6,457,315号中描述的许多种具有或不 具有中间传热流体的蒸发冷却器。然而,这种构造常常消耗相当数 量的能量用于制冷剂的压缩和冷凝,并且典型地不是以热的方式结 合到另外可获得的冷源上。20 在其它公知的构造中,液化天然气(LNG)的制冷含量(content)^皮使用来冷却进入空气,其中,空气冷却和/或某些其它的过程归功于 液化天然气在蒸发器中的蒸发。例如,在一个公知的构造中,如在 美国专利申请2003/0182941号中描述的,液化天然气^L用做制冷剂, 该制冷剂然后被至少部分地送回分层储器,而另外的部分被蒸发。25 还有在另外一个公知的构造中,如在美国专利5,626,019号或EP 0651145中讲明的,液化天然气^皮用做冷源以冷却用于进入空气冷却 的中间制冷剂,其中,这样蒸发的天然气然后被用做燃料。相似地, 如在EP 0605159中描述的,进入空气可与液化天然气交叉交换以提 供蒸发的燃料和冷却的进入空气。尽管这种设备的构造典型地只是 在至少某种程度上满意地操作,但是还遗留有多种缺点。在其它的 情况之中,再气化的液化天然气的量与例如典型地要求用于管道传 送的相对大的容积相比相对要少。为了克服这种缺点,较大量的液化天然气可使用热交换流体被5 再气化,该热交换流体通过与美国专利6,367,258号描述的涡轮进入 空气和海水进行热交换被加热(再加热)。还有在进一步7>知的构造 中,液化天然气冷量在如美国专利申请2005/0223712号中讲明的蒸 汽循环中被用做冷源(heat sink)。备选地,联合循环动力设备构造也 是公知的,其中来自传热流体的热量被应用来再气化液化天然气,10 并且其中,冷却的传热流体使用进入空气冷却和来自发热锅炉的热 量被再加热,这在美国专利申请2003/0005698号、美国专利6,374,591 号、EP 0683847或EP 0828915中描述了。还有进一步公知的设备将 液化天然气再气化和电力生产与特定的脱曱烷和/或脱乙烷操作相集 成,这在WO 2004/109206中描述了 。15 尽管这种构造经常有利地将液化天然气的再气化和另一个典型 的发电过程相集成,但还遗留有多种缺点。例如,绝大多数这些过 程被典型地限制在将燃气涡轮进入空气冷却到50。F(或者甚至更高)以 避免进入空气的水结水,这将产生不安全的条件或者甚至使得动力 设备不起作用。所以,在公知的设备中使用液化天然气的制冷含量20 来改进发电效率典型地被限制在对进入空气温度的冷却界限上。而 且,当所有的或几乎所有的目前公知的燃气涡轮空气预冷方法意在 改进高温气候的地区(比如,在热带或亚热带)中的发电效率时,它们 经常不适合用在较冷气候的地区(比如,北美洲的东北部)中。甚至在 相对高温的气候中,这种构造仅仅在夏季的月份中提供十分边际效25 率的好处,在冬季的季节中好处下降。更糟糕的是,在某些情形下, 当周围的温度下降到45°F以下时这些公知过程的操作必须被停止以 避免在空气进入处的水结冰和冰堵塞带来的机器损坏。所以,尽管在本领域中公知了许多用于具有液化天然气利用和/
或再气化的动力设备的过程和构造,但是它们中所有的几乎所有的 都存在一个或多个缺点。因此,还有需要以提供用于具有液化天然 气利用和再气化的动力设备的改进的构造和方法。5 发明内容和方法,其中,燃气涡轮进入空气使用液化天然气冷量和水点抑制 剂溶液:f皮过冷却,该冰点抑制剂溶液通过使用来自发电的废热净皮再 生。液化天然气通过与来自冰点抑制剂的再生器的蒸汽塔顶产物10(overhead product)交换被进一 步地力口热。在发明主体内容的一个方面, 一种联合循环动力设备包括再生 器,该再生器配置成用以接收富水的(rich)冰点抑制剂溶液(富含水或 者甚至充满水)并且被进一步配置以从富水的溶液形成蒸汽和贫水的 (lean)冰点抑制剂溶液(相对于富水的溶液水含量减少,并且最典型地15 水耗尽到少于10%,并且最典型地少于5%)。最优选地,再生器^皮 以热的方式结合到传热流体回路(比如,被液化天然气冷却),以致来 自再生器塔顶蒸汽的热量被传送到传热流体,并且再生器被进一 步 地以热的方式结合到蒸汽循环,以致来自蒸汽循环的热量被传送给 再生器中的富水的水点抑制剂溶液。20 预期的设备典型地进一 步包括;故以热的方式结合到液化天然气-冷却的传热流体回路的空气进入冷却器,并且该冷却器一皮进一步地 流体结合到混合装置上,其中,该混合装置配置成用以接收贫水的 冰点抑制剂溶液,并且允许贫水的水点抑制剂溶液和空气混合。优 选地,空气-贫水的冰点抑制剂溶液混合物被冷却到小于32°F的温度,25 并且最优选地到在20°F至-40。F之间的温度。分离器典型地-波结合到 空气进入冷却器上并且配置成用以允许,人冷却的混合物处除去富水 的水点抑制剂溶液。在需要时,笫二空气进入冷却器可^L以热的方 式结合到液化天然气-冷却的传热流体回路,并且纟皮进一步地在上游 流体结合到第一空气进入冷却器上。在特别优选的方面,热交换器配置成用以允许使用富水的冰点 抑制剂溶液的制冷含量来冷却贫水的水点抑制剂溶液。还优选的是再生器的以热的方式结合到蒸汽循环包括回路,该回路配置成用以(a)5 从蒸汽循环的蒸汽涡轮处接收至少部分膨胀的蒸汽,(b)给再生器的 再沸器提供至少部分膨胀的蒸汽,和(c)将从再生器处的至少部分膨胀的蒸汽和/或冷凝物返回到蒸汽循环,和/或再生器的以热的方式结 合到液化天然气-冷却的传热流体回路包括配置成用以从蒸汽处给液 化天然气-冷却的传热流体提供热量的热交换器。对于液化天然气-冷10却的传热流体, 一般优选的是这种流体包括乙二醇和/或包括多种成分的制冷剂。相似地,典型地优选的是贫水的水点抑制剂溶液包括在32。F或以下处的乙二醇,或具有吸水能力的任何其它溶液。所以,在本发明主题内容的另一个方面,冷却用于燃气涡轮的 进入空气的方法包括将冷却的空气流与贫水的冰点抑制剂溶液相联 15 合以由此形成混合物,并且将该混合物过冷却到32°F以下的温度处 的步骤。在另一个步骤中,从过冷却的混合物处除去这样形成的富 水的冰点抑制剂溶液,并且使用从动力循环处的热量在再生器中再 生冰点抑制剂溶液,由此形成蒸汽。在又一个步骤中,使用液化天 然气-冷却的传热流体冷凝蒸汽。20 最优选地,冷却的空气流是由上游的空气冷却器将周围的空气冷却到35°F至55°F之间的温度下形成的,并且贫水的冰点抑制剂溶 液作为微滴或喷雾被喷射到冷却的空气流中。然后过冷却将导致具 有在20°F至-40。F之间的温度的过冷却混合物。典型地,除去富水的 冰点抑制剂溶液的步骤在提供冷却的富水的冰点抑制剂溶液的分离25器中执行,和/或冷却的富水的冰点抑制剂溶液与从再生器处加热的 贫水的水点抑制剂溶液热交换。还进一步优选的是,再生的步骤包括从蒸汽循环处给再生器提 供至少部分膨胀的蒸汽以由此形成蒸汽并且加热贫水的冰点抑制剂 溶液的步骤,并且至少部分膨胀的蒸汽或冷凝物从再生器处被返回 到蒸汽循环。最优选地,至少冷却的空气流和过冷却的混合物中的 一个使用从液化天然气-冷却的传热流体处的制冷含量被冷却,并且 液化天然气-冷却的传热流体使用从再生器处的蒸汽的热含量被加 5 热。本发明的各种目的、特征、方面和优点从下面对发明的优选实 施例的详细说明将变得更显而易见。附图简要说明10

图1是集成的联合循环设备的示范性构造,其中以热的方式集成了液化天然气再气化、发电和进入空气过冷却。图2是图解燃气涡轮发电机的功率输出的增加与进入空气温度 的函数关系图表。15 详细说明发明人发现了在发动力设备中燃气涡轮进入空气的过冷却可有 利地与液化天然气再气化的操作以热的方式结合。在其它期望的特 征之中,这种构造的特征在于改进的以及季节性独立的功率输出和 排除了用于液化天然气再气化的外部能量的需求。 20 在设备中处理液化天然气的一个特别优选的方面,液化天然气冷量被使用以在联合循环动力设备中增加燃气轮机的发电输出和效 率。最典型地,这种构造包含被应用以使用燃气涡轮进入空气的热 含量来再气化液化天然气的传热流体回路和防止过冷却(也就是,在32°F以下)进入空气形成水的冰点抑制剂溶液回路,其中,水点抑制25 剂溶液在使用燃气涡轮的燃烧热量的回路中再生。在图1中图示了一个示范性联合循环动力设备的构造,在其中,来自存储容器的典型地以1000MMscfd(百万标准立方英尺/日)的输送 率的液化天然气流1 ;波液化天然气泵51压缩到大约1250psig(磅/平
方英寸)以形成流2。然后液化天然气在热交换器52中从大约-255。F 被加热到大约40°F,或其它如流3所要求以满足管道规格的温度。 加热的负荷由传热流体流29来提供,该传热流体流包括乙二醇水冷 却剂混合物,其从大约60°F被冷却到大约-40。F。冷的乙二醇冷却剂 5 流5由循环泵53抽吸并以大约120psig排出形成流6,该流6#皮4吏用 来在二级冷却器54和56下冷却燃气涡轮进入空气。来自第一级冷 却器的加热乙二醇水混合物流4在乙二醇再生器冷凝器63的冷凝负 荷下被进一步地加热以补充液化天然气再气化交换器52所需要的热 量。如在此所使用的,与数字相连接的用词"大约"是指该数字的+/-1010 %(包含界限的)的范围。例如,用词"大约200psia"是指包含界限的 180psia至220psia的范围。相似地,用词大约-40。F是指在-44。F至-36。F 之间的温度范围。在二级冷却系统下,燃气涡轮进入空气流8不论周围的温度和 湿度可从周围的温度(比如,40。F至90。F)被冷却到低温(比如,0°F-15 20°F,或更低)。因此,应该特别被认明的是可维持非限制性的和连 续的冷空气供给。从而,在所有的气候条件下使用二级空气冷却器 构造可最大化发电效率和输出。最优选地,并且如下面更进一步描 述的,冷却器构造具有使用冰点抑制剂溶液的级间防冻保护。二级空气冷却器系统典型地配置有使用供给在大约34。F至38。F20 的温度下的乙二醇冷却剂流7将周围的空气流8从典型地大约90°F 及80%的相对湿度下冷却到大约40°F至45。F以形成流10的第一空 气冷却器54。然而没有限制发明的主题内容,更进一步优选的是第 一级空气冷却器54的热交换管配置成用以允许水冷凝物流9从交换 器处自由排出。应该被理解的是乙二醇冷却剂流7优选地被维持在25 水的水点32°F以上,因此避免在交换器管上形成冰。该第一空气冷 却器将进入空气中的水含量从大约4.7%减少到0.8%,导致大约80 %的水含量被除去。水冷凝物流9作为对联合循环动力设备中的蒸 汽系统或动力设备中需要的任何其它部分的补充水而被恢复。
来自第一级冷却器54的冷却空气(流IO)使用喷雾嘴55被完全地 与由流11供给的水点抑制剂溶液相混合以由此形成流12。尽管喷雾 嘴一般是优选的,但是其它类型的混合装置,包括混合丁字管、静 止混合器或其它可产生足够的湍流以均匀冰点抑制剂溶液和空气混 5 合物的装置,也可被认为是适当的。水点抑制剂溶液优选的是乙二 醇水混合物、曱醇或其它适当的具有良好的传热特性和水点抑制特 性的制剂。冰点抑制剂溶液对空气流的质量流量比将主要地取决于 所应用的特定的冰点抑制剂溶液。例如,在水点抑制剂溶液包括乙 二醇时,水点抑制剂溶液对空气的质量流量比(也就是流11对流1010的比)优选地在0.005至0.01之间,但也可高到0.01至0.02或更高, 这取决于按要求使用的乙二醇的类型和/或冰点抑制水准的程度。典 型地,为了避免在-20。F下水合物的形成或水结冰,冰点抑制剂溶液 对空气的大约是0.01的质量比一般是足够的。但是,从第一冷却器 排出的较高的空气温度(45。F及以上)将典型地需要额外的冰点抑制剂15 溶液流,并且然后冰点抑制剂溶液对空气的质量比必须被增力口(比如, 0.015的比率或可能是更高)。还应该被注意的是使用过多的冰点抑制 剂溶液在大多数情形下是不期望的,因为这将增加防冻系统和再生 单元的费用。所以, 一般优选地是第一冷却器将周围的空气冷却到 大约55°F或更低的温度下,但是在大约32°F以上(比如,在35°F到20 45。F之间)。通过使用水点抑制剂溶液,第二空气冷却器56可进一步地将来 自第一级冷却器的空气流12冷却到水结水的温度以下,典型地大约 0°F至大约-20。F,或甚至更低。而且,优选的冰点抑制剂溶液(比如, 乙二醇溶剂)将冷凝和吸收残余的水含量,并且冰点抑制剂溶液以两 25 相混合物流13排出第二冷却器。然后,两相混合物流在分离器64 中被分离,从而产生高含水的富水的乙二醇流23和冷的干燥空气流 33。分离器优选地被装备有除雾器以除去乙二醇夹带并且最小化乙 二醇损失。除雾器可是网状物类型的装置或叶片分离器,典型地由
而不会产生将另外干扰燃气涡轮性能的额外的压力下降。冷却的气 体流33的中水含量典型地:f皮减少至大约0.05%。在该水:帔除去时,应该被理解的是燃气涡轮的压缩机部件57所需要的马力也减少了, 5这又改进了发电效率。燃料如流32(其可是或可不是蒸发的液化天然气)被供给到燃烧室。当空气被冷却到该低温时,应该被注意的是空气的质量密度增 力口,这导致空气流的增加(当燃气涡轮在恒定的体积流下操作时),并 且随后这增加了燃气涡轮功率输出。较冷的空气温度还减少了燃气10 涡轮的压缩机部件的功率消耗,增加了燃气涡轮(布雷顿循环)的发电 效率。该期望的效果在图2中图解,该图所示为根据发明的主题内容具有燃气涡轮进入冷却的联合循环动力设备的示范性性能图表。典型地,在空气温度中每减少3。F至5°F,动力设备处的输出就增加 大约1%。例如,当周围的空气进入温度在夏季操作中/人100°F减少15到-20。F时,联合循环动力设备的功率输出就能增加33%以上。如图 2中所示,动力设备输出随着这些空气的冷却步骤可从900MW增加 到1200MW。在功率输出中增加该300MW代表着电力收入上效果显 著的增加,特别是在夏季月份当消费者的需求达到峰值时的期间, 并且电力可溢价出售。在冬季月份当周围的温度较低时的期间,电20 力收益依然效果显著。例如,当周围的空气进入温度从50°F减少到-20°F时,功率输出可获得15%以上的增加。在该情形下,如图2中 所示,动力设备输出随着该空气的冷却步骤可从1050MW增加到 1200MW。该150MW的增加代表着电力生产和电能收入上的可观收 益。25 —般预期的是空气-贫水的水点抑制剂溶液混和物^f皮冷却到32°F以下的温度,更典型地到大约30°F至大约10。F,甚至更典型地10。F 至大约-10。F,以及最典型地-10。F至大约-20。F。尽管冷却温度优选地 是-20。F,但是当液化天然气在-250。F被供给时进入空气温度可进一 步减少到-40。F以下以用于额外的功率输出。因此,应该;故理解的是 下限主要地是由在较低空气温度下操作的液化天然气再气化输送率 (也就是可获得的制冷)、实际的机器设计、空气动力学以及材料结构 来决定的。5 在进入乙二醇再生器62之前,富水的乙二醇流23在交换器66中与贫水的乙二醇流30热交换到大约220°F以形成流24。优选地, 蒸汽加热再沸器67被使用以从富水的乙二醇中除去水含量。在联合 循环动力设备中低压蒸汽如流16从蒸汽涡轮59的中间级处被供给。 冷凝的蒸汽如流21通过与冷凝泵61排出的流20相联合以形成联合10流22被返回到蒸汽锅炉系统58。典型地,高含水的流23的乙二醇 富水度含量按重量计算在40%至55%之间。较低的冷却空气温度将 需要较高的乙二醇富水度含量以避免水结水和水合物的形成。相反 地,较高的空气温度需要较少的乙二醇注入,因为冰冻抑制緩和了。 当塔顶流(overhead stream) 26在大约240°F的温度和大约10psig15的压力下时,经汽提的水(stripped water)从乙二醇再生器处被除掉。 在该流中可获得的相当数量的废热被使用来预热交换器63中的传热来自交换器63的水冷凝物28可被恢复为给蒸汽系统的锅炉给水补充。乙二醇再生器62产生底部的贫水的乙二醇流25,该流25被乙 20二醇泵65抽吸以形成流30,在^皮再次利用于注射之前,该流30随后与交换器66中的富水的乙二醇热交换。蒸汽锅炉系统58从燃烧排气装置14处接收热量,其被冷却以形成流31。加热的或过热的蒸汽15然后在蒸汽涡轮59中^L膨胀以产生功率。然后,从蒸汽涡轮处提供部分地膨胀的蒸汽的部分到再 25沸器67,并且进一步膨胀蒸汽17在冷凝器60中使用冷却剂流18被冷凝以形成冷凝物19。冷凝泵61抽吸冷凝物19以压縮形成流20,该流与再沸器冷凝物流21相联合以形成流22。所以,预期的是根据发明的主题内容优选的联合循环动力设备
将包含再生器,该再生器配置成用以接收富水的冰点抑制剂溶液, 以及被进一步配置以从富水的溶液处形成蒸汽和贫水的水点抑制剂 溶液。最优选地,再生器被以热的方式结合到液化天然气-冷却的传 热流体回路,以致来自蒸汽的热量可被传送到传热流体,并且再生 5 器被进一步地以热的方式结合到蒸汽循环,以致来自蒸汽循环的热 量可被传送到再生器中的富水的水点抑制剂溶液。应该特别理解的是,先前公知的构造和方法一般被限制在了将进入空气冷却到40°F及以上的温度,并且因此不能产生任何效果显 著的功率增加。相反地,在此提出的构造允许将进入空气冷却到-40。F 10 的温度,这对目前公知的方法和构造技术是效果显著的增加。而且, 应该被注意的是根据发明的主题内容构造和方法使用废热以再生水 点抑制剂溶液,并且为液化天然气再气化提供额外的热量。预期的动力设备将优选地具有使用传热流体来冷却燃气涡轮进 入空气的二级冷却器,并且进一步地包括在两个冷却器的级之间的15 注入装置用于混合冰点抑制剂溶液和冷却的空气。在特别优选的构造中,液化天然气冷量被使用以间接冷却燃气涡轮进入空气,以及 间接冷凝和从进入空气处除去湿量,和/或间接深度地将燃气涡轮进 入空气冷却到水的冰冻温度以下的温度。最优选地,通过将冰点抑 制剂溶液注入到将被过冷却的空气流(比如,在第 一级冷却器和第二20 级冷却器之间)中以抑制冰的形成和水合物,由此提供非限制的和连 续的冷却空气供给到燃气涡轮。因此, 一般优选的是用于空气进入 冷却器和/或液化天然气再气化交换器的传热流体包括在液化天然气 低温的温度下不冻结的溶液,并且在冷却进入空气中具有良好的传 热特性。典型地,这种流体包括乙二醇型溶剂,并且最典型地为乙25 二醇-水混合物(比如,具有乙二醇富水度含量在大约80wt。/。的乙二醇 水混合物)。其它的溶剂也可被认为是适当的并且包含多种成分的传 热流体、卣代烃、曱醇等等。最典型地,预期的构造将应用冰点抑制剂溶液以从第一级冷却
器处除去残余的水,而在笫二冷却器中抑制水结冰。这样形成的高 含水冰点抑制剂溶液从进入空气流中分离,并且防冻制剂优选地使 用从联合循环动力设备的蒸汽循环处排出的残余蒸汽或从燃气涡轮 排气装置处排出的废气再生。备选地,水也可以其它多种的其它方5式从进入空气处除去,并且预期的方式尤其包括分子筛和TEG接触 器。在该情形下,吸附剂的再生也以热的方式与蒸汽循环结合。还应该进一步认明的是,在此预期的构造适合于多种的液化天 然气输送能力和不同的燃气涡轮尺寸。而且,预期的构造也适合于 常常在偏远的水供应缺乏的地点遇到的没有蒸汽动力循环的简单燃 10 气涡轮循环。在该情形下,用于冰点抑制剂溶液的再生的热量优选 地从燃气涡轮排气装置处恢复。然而没有限制发明的主题内容,应 该被理解的是预期的动力设备在将水补充到蒸汽动力设备中的锅炉 给水系统时可从进入空气处恢复水冷凝物。因此,使用恢复的冷凝 物减少或甚至排除了水进入到蒸汽动力设备,并且废物从锅炉给水15 处理设备排出。所以,用于燃气涡轮的冷却进入空气的优选方法包括将冷却的 空气流与贫水的冰点抑制剂溶液相联合的步骤以由此形成混合物,其被过冷却到32°F以下的温度。在进一步的步骤中,富水的水点抑 制剂溶液从过冷却混合物处除去,并且贫水的水点抑制剂溶液在再 20 生器中使用来自动力循环的热量再生以由此形成蒸汽。优选地,蒸 汽然后使用液化天然气-冷却的传热流体被冷凝。还预期的是在此预期的以热的方式集成的构造导致来自动力设 备的功率输出和发电效率的效果显著的增加,该发电效率远远超过 目前公知的发电技术,同时减少了发电设备的资本费用(比如,动力25 费用可净皮减少40%)。额外地,应该-故认明的是在此提出的构造可在从最开始建造的动力设备中或作为对现有动力设备和/或液化天然气 再气化设备的改型翻新中实现。因此,公开了集成电力生产的特定的实施例和应用。然而,对本领域的那些技术人员应该显而易见的是除了那些已经被描述的以 外在不偏离此处的发明思想的前提下还可以有更多的修改。所以, 除了在附加的权利要求的精神下发明的主题内容不受限制。而且, 在对说明书和权利要求二者的解释中,所有的用词应该是以与上下 5 文一致的最广泛的可能方式^L解释。特别地,用词"包括"应该纟皮解释 为以不排它方式指代元件、部件或步骤,指明参考的元件、部件或 步骤可被提出或被使用或与其它的没有被特意参考的元件、部件或 步骤相结合。而且,当在参考中的通过参考结合于此的定义或用词 的使用与提供在此的那个用词的定义不一致或相反时,要应用提供 10 在此的那个用词的定义,而不应用在参考中的那个用词的定义。
权利要求
1.一种联合循环动力设备,包括再生器,所述再生器配置成用以接收富水的冰点抑制剂溶液,并且被进一步配置成用以自所述富水的溶液形成蒸汽和贫水的冰点抑制剂溶液;其中,所述再生器以热的方式结合到液化天然气冷却的传热流体回路上,以致来自所述蒸汽的热量能被传送给所述传热流体;以及其中,所述再生器进一步以热的方式与蒸汽循环结合,以致来自所述蒸汽循环的热量能被传送给所述再生器中的所述富水的冰点抑制剂溶液。
2. 根据权利要求1所述的设备,其特征在于,所述设备进一步 包括以热的方式结合到所述液化天然气冷却的传热流体回路上的空15 气进入冷却器,并且所述空气进入冷却器进一步流体结合到混合装置上,其中,所述混合装置配置成用以接收所述贫水的水点抑制剂 溶液并且允许所述贫水的冰点抑制剂溶液与空气混合。
3. 根据权利要求2所述的设备,其特征在于,所述空气进入冷 却器配置成用以将所述空气-贫水的冰点抑制剂溶液混合物冷却到小 于32°F的温度。
4. 根据权利要求3所述的设备,其特征在于,所述设备进一步 包括流体结合到所述空气进入冷却器上的分离器,并且所述分离器 配置成用以允许从所述冷却的混合物中除去所述富水的冰点抑制剂 溶液。
5.根据权利要求2所述的设备,其特征在于,所述设备进一步包括以热的方式结合到所述液化天然气冷却的传热流体回路上的第 二空气进入冷却器,并且所述第二空气进入冷却器进一步在上游流 体结合所述空气进入冷却器。
6. 根据权利要求1所述的设备,其特征在于,所述设备进一步 包括配置成用以允许使用所述富水的冰点抑制剂溶液的制冷含量来 冷却所述贫水的水点抑制剂溶液的热交换器。
7. 根据权利要求1所述的设备,其特征在于,所述再生器与所 述蒸汽循环的热结合包括回路,所述回路配置成用以接收来自所述 蒸汽循环的蒸汽涡轮的至少部分膨胀的蒸汽、将所述至少部分膨胀 的蒸汽提供给所述再生器的再沸器以及将所述至少部分膨胀的蒸汽 从所述再生器返回到所述蒸汽循环。
8. 根据权利要求1所述的设备,其特征在于,所述再生器与所 10 述液化天然气冷却的传热流体回路的热结合包括配置成用以从所述蒸汽中给所述液化天然气冷却的传热流体提供热量的热交换器。
9. 根据权利要求1所述的设备,其特征在于,所述液化天然气 冷却的传热流体包括在32°F或以下的温度下具有吸水能力的乙二醇 或溶液。
10.根据权利要求1所述的设备,其特征在于,所述贫水的水点抑制剂溶液包括乙二醇。
11. 一种冷却用于燃气涡轮的进入空气的方法,所述方法包括 将冷却的空气流与贫水的冰点抑制剂溶液相结合,以便由此形成混合物,并且将所述混合物过冷却到32°F以下的温度; 20 从所述过冷却的混合物中除去富水的水点抑制剂溶液,并且4吏用来自动力循环的热量在再生器中再生所述贫水的冰点抑制剂溶 液,由此形成蒸汽;和使用液化天然气冷却的传热流体冷凝所述蒸汽。
12. 根据权利要求11所述的方法,其特征在于,所述冷却的空 25气流是由将周围的空气冷却到35°F至45°F之间的温度的上游的空气冷却器形成的。
13. 根据权利要求11所述的方法,其特征在于,使用将所述贫 水的冰点抑制剂溶液喷射到所述冷却的空气流中来执行所述联合的步骤。
14. 根据权利要求11所述的方法,其特征在于,所述过冷却的混合物具有在20。F至-40。F之间的温度。
15. 根据权利要求11所述的方法,其特征在于,除去所述富水 5的冰点抑制剂溶液的步骤在提供了冷却的富水的水点抑制剂溶液的分离器中执行。
16. 根据权利要求15所述的方法,其特征在于,所述冷却的富 水的水点抑制剂溶液与来自所述再生器的加热的贫水的水点抑制剂 溶液热交换。
17.根据权利要求11所述的方法,其特征在于,所述再生的步骤包括提供来自蒸汽循环的至少部分膨胀的蒸汽给所述再生器以由 此形成所述蒸汽和加热的贫水的水点抑制剂溶液的步骤。
18.根据权利要求17所述的方法,其特征在于,所述至少部分 膨胀的蒸汽从所述再生器处被返回到所述蒸汽循环。
19.根据权利要求11所述的方法,其特征在于,所述冷却的空气流和所述过冷却的混合物中的至少一个使用来自所述液化天然气 冷却的传热流体的制冷含量进行冷却。
20.根据权利要求11所述的方法,其特征在于,所述液化天然 气冷却的传热流体使用来自所述再生器的所述蒸汽的热含量进行加20 热。
全文摘要
预期的设备将液化天然气再气化和动力循环与冰点抑制剂的再生集成。最优选地,该设备是联合循环设备,其中用于使再生器再沸的热量由蒸汽循环提供,并且其中液化天然气的制冷含量被用来冷凝来自再生器的蒸汽,以及用来进一步地为燃气涡轮过冷却进入空气。
文档编号F02G3/00GK101151454SQ200680009850
公开日2008年3月26日 申请日期2006年3月21日 优先权日2005年3月30日
发明者J·马克 申请人:弗劳尔科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1