风力涡轮机部件中的长纤维光学传感器系统的制作方法与工艺

文档序号:12041596阅读:181来源:国知局
风力涡轮机部件中的长纤维光学传感器系统的制作方法与工艺
本发明涉及一种用于风力涡轮机部件的纤维光学传感器系统,尤其涉及一种用于检测部件的操作参数沿延伸路径的变化的系统。

背景技术:
已知使用光纤传感器测量风力涡轮机部件的操作特性。通常,这样的传感器测量风力涡轮机部件的应变或变形,或例如工作温度、压力和磁通量。尽管这样的传感器能够使用基于干涉测量的检测技术工作,但很多光纤传感器依赖于光纤布拉格光栅(FBG)。FBG是光纤折射率的周期性变化,根据周期,其反射特定波长的光并允许其他波长的光通过。传统上,通过向激光暴露光纤区形成FBG,激光将光栅直接写入光纤材料中。通过两条这样的光束的干涉或利用单光束和光掩模制作光栅。因此,典型的制造技术将光栅长度限制在蚀刻激光束的直径内或限制在对应的光掩模的长度内。在许多情况下,所得的FBG长度被限制在15cm左右。在传感器系统中,定位FBG以使得正被监测的系统中的温度、应变或压力的变化引起光栅周期的变化和通过FBG反射的光的波长中的可检测变化。通过检测反射光或透射光,然后传感器系统可以推导出所检测参数的变化幅度。单根光纤可以包含均定位于系统中不同位置的多个FBG。然后可以使用时分复用的TDM光信号或通过构造FBG以具有不同的光栅周期并使用不同波长的光各自寻址FBG。这被称为波分复用(WDM)。不过,TDM系统,例如可能在FBG之间需要2米或更大的间距以与提供可接受的信号分辨率,与单根光纤中实际可用的相比,减少了FBG的数量。对于WDM而言,通常,由于光谱分析的局限性,可被安装到单根光纤的具有不同周期的FBG数量往往也被限于10至20个。基于如上所述的FBG的传感器系统是有用的,但可能难以在更复杂的系统中实现。首先,由于FBG是离散的,所以必须将FBG定位于每一感兴趣的位置。这意味着传感器安装工程师通常必须提前猜测感兴趣的位置,例如发电机中的温度热点并确保适当安装传感器FBG。由于将FBG定位于各处往往不切实际,因此这会导致缺少居于FBG传感器位置之间的位置的数据,并可能意味着不能简单地获得重要数据。此外,由于每一个FBG都有默认光栅周期,因此基于光栅周期和期望光栅周期在本地测量参数变化的影响下变化的量,FBG具有最佳检测范围。因此,可能难以利用FBG准确地检测例如温度的大变化。例如风力涡轮机的机舱包含仔细校正过的发电和感测设备。这种设备在其运行期间产生热量且必须被仔细监测并控制以保持在定义的操作参数内运行。由于诸如有限空间的物理约束,并且在许多情况下由于部件的结构复杂性和整个部件结构内工作温度的可能的大变化,目前难以充分监测这种设备。例如,希望监测机舱内发电机的工作温度,但由于转子和定子设计和相关绕组的复杂性,其并不容易实现。已认识到需要提供更灵活的传感器系统,其可以在温度或其他操作参数的宽范围之上提供信息并在更大的区域上工作,而无需过度复杂的安装。已认识到长光纤布拉格光栅可以用于解决此问题。

技术实现要素:
在现在要参考的独立权利要求中定义了本发明。在从属权利要求中阐述了有利的特征。根据本发明的范例实施例,提供了一种具有用于测量风力涡轮机部件操作参数的纤维光学传感器系统的风力涡轮机,所述纤维光学传感器系统包括:用于输出预定范围波长内的光的光源;包括长纤维布拉格光栅的光纤,所述长纤维布拉格光栅具有在光纤的长度上连续延伸的预定光栅周期的光栅,以在所述光纤中提供连续测量区域,其中所述光纤耦合到风力涡轮机部件,使得连续测量区域位于要感测的风力涡轮机部件的区域,并使得所述连续测量区域中每个位置的光栅周期取决于那个位置处的操作参数 值;光探测器,用于从所述光纤接收光并向控制器提供输出信号,所述输出信号表示所接收光的强度和波长;耦合到所述光探测器的控制器,基于探测的光确定所述操作参数的值。具有长FBG的光纤提供了延长的连续测量区域。此外,可以感测整个区域上的操作参数而不必在每个感兴趣位置提供多个离散的短FBG。具体而言,这意味着例如在温度感测系统中,不必事先预测部件的热点将在哪里,因为可以探测沿FBG整个长度的温度。对于其他被测量的操作参数,适用同样的优点。相反,就需要额外的信号分离而言,基于多个短FBG的系统实施起来会更复杂,无论使用时分复用或波分复用,并且并不是那么有用,因为需要事先预测短FBG传感器应该位于哪里。长的FBG还使得能够以最低限度的信息来提取关于最大和最小参数值的信息作为FBG自身的特征。在一个实施例中,长光纤布拉格光栅的光栅被构造成在所述光栅的长度的小部分上反射最大量的光。这允许由关联的强度值代表每个参数值,提供沿测量区的参数值分布的更多信息。有利地,反射所述第一波长的输入光最大的点等于所述连续测量区域的长度。这意味着,可以潜在将输入光纤的光反射回测量区之内,提高信号强度。因此所述控制器可以用于确定操作参数的值范围以及表示该值在所述连续测量区域中所述值发生频率的值。于是,单根光纤能够提供至少最大和最小值,以及最常见的值。在替代实施例中,所述长光纤布拉格光栅的光栅被构造成反射具有第一波长的光,使得反射的光的量与光在光栅中行进的距离无关。通过这种方式,输入到光纤中的基本所有光都被具有适当周期的光栅任意部分反射,从传感器接收的信号更强。因此,所述控制器可以用于确定所述连续测量区域中出现的操作参数的范围的最大值和最小值。所述光纤可以包括第二长光纤布拉格光栅,在所述光纤中提供第二连续测量区域。所述第二长光纤布拉格光栅与所述第一长光纤布拉格光栅可以位于所述光纤的不同部分中。这允许利用单根光纤在不同位置进行多次 测量。所述第二长光纤布拉格光栅也可以与所述第一长光纤布拉格光栅具有不同的预定光栅周期。这允许使用第二长光纤布拉格光栅检测与第一布拉格光栅不同的参数或相同参数的不同范围。在另一范例实施例中,在所述连续测量区域的长度上,所述长光纤布拉格光栅的光栅周期在两个值之间周期性交替变化。这允许在光纤的相同区域之内使用两个布拉格光栅,并允许在相同的光纤位置处进行两次独立的测量。在具体范例中,所述光纤的连续测量区域设置于发电机的定子槽或线圈绕组中,以至少测量所述槽或所述绕组的整个区域内的温度。可以将其用于发电机监视系统的一部分中,能够改善发电机的设计并延长其寿命。所述光纤还可以包括位于所述连续测量区域的光学外侧的点处的一个或多个短光纤布拉格光栅。所述光纤的连续测量区域可以设置于发电机的定子槽或线圈绕组中,以至少测量所述槽或所述绕组的整个区域内的温度,所述短光纤布拉格光栅位于所述线圈绕组或定子槽的外侧。还提供了一种对应的方法。附图说明现在将通过举例,并参考附图描述本发明的优选实施例,在附图中:图1是诸如在风力涡轮机机舱中使用的发电机的示意性截面图;图2是图1发电机的示意性正视图;图3示出了根据本发明的传感器系统的范例实施例;图4是已安装了图3所示传感器系统的光纤部件的发电机的示意图;以及图5是对于处于均匀温度的长FBG而言,从图3所示传感器系统接收的输出的示意图;图6是对于仅指示两个温度值的长FBG而言,从图3所示传感器系统接收的输出的示意图;图7是对于指示温度范围的长FBG而言,从图3所示传感器系统接收的输出的示意图;图8是对于仅指示两个温度值的长FBG而言,从图3所示传感器系统接收的输出的示意图,其中对应的光信号具有可变强度;图9是对于指示温度范围的长FBG而言,从图3所示传感器系统接收的输出的示意图,其中对应的光信号具有可变强度;以及图10是多个不同的FBG传感器用于单根光纤中的替代实施例的示意图。具体实施方式从FBG尺寸由蚀刻激光的直径限制并且因此仅占光纤长度的短段的意义上来说,以上引言中中所述种类的传统FBG可以被视为短光栅。现在已知用于增加光纤长度的技术,其中,通过将离散的光栅连接在一起形成FBG。本质上,第一光栅被蚀刻成光纤,然后将光纤平移光栅周期并写入与第一光栅部分交叠的另一光栅。通过这种方式,制成长度达到3m的光栅。不过,光纤的操作长度受制造技术精度的限制,并且直到最近不可能利用这种技术构造更长的光栅。不过,最近的发展已使制造沿光纤长度延伸长达10m的FBG成为可能。不足为奇的是,这种FBG被称为“长”或甚至“极长”光纤布拉格光栅。Krister在美国光学学会于2010年发表的题为“ManufactureofVeryLongFiberBraggforDispersionCompensationApplications”的论文中讨论了构造极长FBG的方法,其中,350mm左右的光栅的更短段被缝合在一起,成为更大的整体。在其他制造方法中,可以平移光纤通过蚀刻激光束的干涉图案。假定光纤折射率中的诱发摄动与激光的辐射强度成正比,那么写入的光栅周期将取决于平移光纤的速度和干涉图案的波长。这意味着可以通过改变光振幅调制的频率或光纤速度制造几乎任何长度的光纤布拉格光栅。现在将参照图1和2描述本发明的第一实施例。图1以截面图示意性地示出了风力涡轮机机舱的发电机。发电机10包括具有多个定子槽12的定子11,具有线圈绕组13。位于定子内的是承载在轴15上的转子14。在转子上,设置了用于生成磁通量的多个磁体组件16(图2所示)。轴15连接到风力涡轮机转子轮毂和叶片上,以便随着风 力涡轮机叶片旋转,由磁体组件16生成的磁通量在定子内旋转并在线圈绕组13中感应电流。图2中的示意性正视图示出了发电机10。在该视图中省略了轴15以避免使转子和定子的细节模糊。图1或2未示出发电机外壳和与诸如变压器、转换器和输电线路的电调节设备的连接。现在将参照图3描述根据本发明的传感器系统的范例实施例。传感器包括宽带发光装置31,例如LED或SLED(超发光LED)、可调谐激光器、卤素或金属卤化物源、分光器32和耦合到分光器32的光纤33以接收来自发光装置31的光。光纤33长度的部分包括形成测量区34的长光纤布拉格光栅34。正如在上文描述中所指出的那样,长光纤布拉格光栅的长度,并且因此测量区34的长度可以在一米和几米长之间的任意位置。将诸如光电二极管、光电晶体管的光收集装置35或诸如查询机的装置也连接到分光器32以接收从长FBG测量区34反射的光。通过诸如导线和电缆的连接37和38将控制器36连接到发光装置31和光收集装置35二者。例如,为了在风力涡轮机机舱内部容易安装,可以将部件31、32、35、36以及连接37和38中的一个或全部容纳在安装盒39中。如果必要,安装盒39可以为部件提供电绝缘。在替代实施例中,可以省略分光器32,并可以将光纤33环回到长FBG测量区34后以连接到光收集装置35。通过这种方式,也可以检测通过长FBG测量区34透射的非反射光。在图3中,示出了两种可能性以使光收集装置35将接收通过长FBG测量区34反射和透射的光。在实践中,本发明的范例实施例可以基于反射和透射的光信号中的一种或两种操作。控制器36控制发光装置31以任选地根据需要光信号的时分复用或波分复用方案向光纤33内输入光信号。如下文所述,控制器36也用于分析从光收集装置35接收的数据。在使用中,将光纤33安装在将检测其操作参数的风力涡轮机部件中。特别布置光纤33以便将光纤33的长FBG测量区34定位于感兴趣的风力涡轮机部件区域。例如,参照图1和2所示的风力涡轮机发电机,已认识到如果能够可靠地检测发电机电绕组13的温度,它将是有用的。在操作中,定子11的 电绕组13将变热,由于它们传导由转子14的变化磁场诱发的电流。不过,为了证明发电机对于操作来说安全,有必要确保绕组13的温度不超过预定的安全参数。到目前为止,由于还没有实时监测绕组工作温度的切实可行的方法,已有必要使安全裕度成为发电机设计的组成部分,例如绕组13和其他部件之间更大的间隔和间距,以及在电流变高时,用于发电机电路的更低截止或断开阀值。因此,在本发明的一个范例实施例中,将光纤的长FBG测量区34插入发电机的定子槽12内以在槽12内将其沿线圈绕组的长度安装。可以通过在定子外壳11周围简单地反复弯曲单根光纤将其安装在多个槽内,如图4中针对发电机和外壳的截面图所示。通过这种方式,不必提前猜测绕组的哪一部分可能变热,因为事实上,可以测量沿绕组的整个或沿主要部分的温度。而且,被封闭的定子槽外部的长FBG测量区的部分也可以用于检测定子和使用单根光纤的发电机结构的其他部分的温度。在替代实施例中,如果需要,可以使用超过单根光纤,例如每定子槽12单根光纤33和单一长FBG测量区34。现在将相对于图5更详细地描述检测温度的传感器系统的工作,图5通过举例示出了传感器系统的可能输出。在图5中,假定沿延长的测量路径安装光纤33的长FBG测量区34,例如在发电机的定子绕组周围或在线圈绕组自身之内,并且沿该测量路径的长度遇到一定范围的温度。在图4中示出了这种情况。例如对配置成检测发电机温度的传感器实施例来说,使用波长处在1520nm至1580nm范围内的光是有利的。例如1550nm的光对应于约500nm的光栅。对其他实施方式而言,不同光的波长和光栅周期可以是适当的,因此对于技术人员来说是显而易见的。我们假定:长FBG测量区34是具有默认光栅周期ddef的FBG,并且发光装置31向光纤33内输入多种波长的光。如果在长FBG测量区中的每一位置x上的光纤温度相同,那么在每一点的长FBG的光栅周期dx将会是均匀的。换言之,dx将实质上依赖于温度但将是单值的。在此温度状况下,如果将光插入光纤,那么将通过FBG反射单个波长λdx的光并在光收集装置35处对其检测,或作为反射光中的峰,或作为由光纤透射的光波长 谱中的暗带。现在,我们考虑长FBG测量区34的温度沿其长度x变化的情况,在将光纤用于测量沿其将遇到一定范围温度的延长路径测量温度时就是这种情况。在此情况下,在长FBG测量区上将必然有一个或多个位置遇到该范围中的最低温度Tmin和一个或多个遇到最高温度Tmax的其他位置。目前,我们假定没有中间温度并假定温度仅仅是Tmin或Tmax中的一个或另一个。在这种情况下,只有那些我们称之为λmin和λmax的对应于Tmin或Tmax的波长的光将被长FBG反射并在光收集装置35处被检测,或作为反射光中的峰值,或作为由光纤透射的光波光谱中的暗带。在用于反射光强度的图6的示意图中示出了这种情况。在此范例中,由于假定很难将光栅写入光纤,并且对于给定的布拉格波长的光具有完美反射,图中所示的峰值本质上具有相同的高度。应该理解,术语“硬”和“软”写入光栅是指将光纤暴露于写入激光不同时间的结果,以由此调节制造的光栅的折射率和反射率。当然,在实践中,光纤的长FBG测量区34遇到Tmin和Tmax之间的温度的连续范围是可能的。在这种情况下,对于测量区34中的至少一个位置,FBG光栅周期将采用对应于λmin和λmax之间光波长的光栅周期。因此,反射光的对应强度曲线图将与图7所示的相像,即一种平顶分布,其中在Tmin和Tmax之间的温度下,光的所有中间波长被FBG光栅区拦截。当然,如果在光纤33的长FBG测量区34中未遇到在Tmin和Tmax范围内的任何温度,那么这些将作为槽或谷(与图6以相同的方式)出现在图7中。在替代实施例中,光纤可以被软写入,因此不会发生完美的布拉格反射。在这种情况下,可以假定,对于具有均匀温度的长FBG测量区34来说,处在对应于FBG光纤周期的波长的输入光中的全部将在长度l后被反射回来。如果使长度l约等于测量区34的长度,那么在均匀温度下光纤的强度曲线图将看起来像图5所示的曲线图。在温度在测量区34的长度l上变化的情况下,那么如前所述,由于不同局部温度而采用不同光栅周期的长FBG不同区域将反射不同光的波长。不过,在这种情况下,反射将不是完美的,并且反射的特定波长光的量将取决于该波长的该光必须穿过具有对应布拉格波长的光栅行进的距离。图8 中示出了这种情况,现在将参考图8。图8所示的情况与图6所示的情况相像,其中,假定将长FBG测量区仅暴露于标记为Tmin和Tmax的两个温度。不过,在此范例中,我们还知道长FBG34仅在沿长度l的距离m上经历温度Tmin,并且仅在沿长度l的距离n上经历温度Tmax,其中,l=m+n并且m>n。在这种情况下,在区域m中被长FBG光纤光栅反射的光比区域n中更多,因此波长λmax的反射光强度曲线图的对应峰小于波长λmin处的峰值。如果我们现在假定由长FBG测量区经历的温度落入一定范围内,那么光收集装置35将接收根据与图9所示的强度曲线图类似的强度曲线图的光。在此曲线图中,峰的高度取决于从在对应温度下的光栅反射的光的量,其又取决于暴露于所述温度的长FBG的长度。因此,在曲线图λmode中的中心峰对应于在长FBG测量区的长度中最频繁出现的温度,即在分布中的模式。不过,在这种情况下,可能更难从数据结果确定最高和最低温度Tmin和Tmax的值,由于比模式发生的可能性更小,并且它们因此在强度曲线图中表现为更小的值。因此,传感器系统的本实施方式比参照图7所述的传感器系统实施方式提供了更多温度值分布的信息。不过,在图7的布置中,由于提供了更强的信号,更容易检测Tmin和Tmax。基于从光纤33接收的光信号,控制器36因此可以推断正被测量的参数的值。通过用诸如基准温度或应变的已知参数校正FBG的默认光栅周期并推断工作中的光栅周期变化的量简单实现这一点。FBG传感器工作的这一方面在本领域中众所周知并在此不再详细描述。如上所述,可以使用单根光纤检测发电机的工作温度。在这种情况下,光纤33来回穿过所有的感兴趣区,例如定子中的定子槽13。具体而言,这允许传感器系统沿整个传感器路径长度34检测有问题的操作参数,而不仅在如先前技术一样安装了短FBG的特定位置。或者,在需要更精确的监测处,也可能使用多根光纤33并将具有长FBG测量周期的光纤光缆安装在每一感兴趣区中。在这种情况下,可以将一根光纤用于例如一个定子槽12中或一个线圈绕组13中。在替代实施例中,还能够改变并入单根FBG光纤的测量FBG区的类型, 以容纳不同种类的测量方法。例如图10示出了为光纤提供多种不同FBG实施方式的替代实施例。在第一段光纤中,提供独立的第一101和第二102长FBG测量区。可以为区域101和102中的每个提供不同初始光栅周期(F1和F2)的长FBG,允许该组合测量相同变量的不同范围,或甚至完全不同的物理参数。在光纤33的第二段中,以光栅周期F1和F2的交替模式在区域103中提供长FBGF1和F2。这种布置提供了与第一段光纤相同的测量灵活性,但意味着在不同长FBGF1和F2之间没有物理分隔。这允许两个长FBG都能在光纤上的相同位置进行测量。在光纤的第三区域104中,提供长FBGF1,与一个或多个短FBGF3、F4、F5和F6相邻。如上所述,在本语境中,长FBG意在表示在光纤上占用局部位置的常规FBG。换言之,即其长度不是其工作的实质特征的FBG。可以安装长和短FBG以监测不同的参数,条件是选择光纤周期,以便可以将一个光栅区别于另一个,或者条件是输入光信号是时分复用到光纤内的,并可以通过收集器处收到的他们的时间将其彼此区分。此外,光纤33可以包含一个或多个停顿(pauses),即没有安装长或短FBG的区域。在上文所讨论的发电机范例中,图10所示的光纤33将允许在发电机的选定部分中使用长FBG测量区,例如在槽12或绕组13中使用,停顿和任选的短FBG位于别处,例如在定子端线路和线路环中。很多其他安装方案是可能的。在每一情况下,仅有必要将适当的FBG布置在感兴趣的位置并酌情使用时分复用或波分复用来区分信号。虽然已给出了在发电机中安装传感器系统以检测工作温度的范例实施例,但要认识到能够将其用于其他设备中以检测其他参数。可以有效地将该系统安装到机舱内,尤其是电气设备柜以检测例如温度、电流、湿度、或电弧放电事件。也能够将其安装到诸如风力涡轮机叶片的风力涡轮机结构部件中以检测应变或变形。采用上述系统,可以实时测量设备的操作参数。此外,该系统提供值的分布。在设备发生故障时,这种更详细的信息可能是特别有用的。由于其能够沿测量路径的整个长度检测参数的变化,该传感器也可以提供更好 的监测。在用于设备的控制系统中采用该传感器系统,其中,将其与存储器和诊断或预后工具组合,可以提供故障的早期预测并因此实现更长的设备工作寿命。对于例如状态监测系统(CMS)或温度测量系统而言,传感器系统将允许响应于风力涡轮机部件或装置之一的实测最高温度来操作风力涡轮机,而不会要求考虑操作安全裕度来应对操作未知事件。于是,甚至可以在测量的参数超过了当前安全裕度处操作风力涡轮机,条件是在所检测的最高温度超过了表示现在必须关机的阀值时实施安全流程。例如,不均匀温度或超出期望值的温度可能表示故障。也能够将该系统有利地与冷却系统一起使用以改善性能。具体而言,由于传感器系统提供关于工作温度的实时信息,所以可以根据需要而非更一般地基于欠精确的安全裕度来调节冷却流体的流量和温度。已经参考范例实施方式,纯粹为了例示描述了本发明。本发明不限于这些实施方式,因为技术人员会想到很多修改和变化。要从后附的权利要求理解本发明。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1