废气净化系统以及废气净化方法

文档序号:5152513阅读:102来源:国知局
废气净化系统以及废气净化方法
【专利摘要】本发明涉及废气净化系统以及废气净化方法。对内燃机(10)的废气(G)中的微粒物、氮氧化物进行净化的废气净化系统(1、1A)构成为,在内燃机(10)的排气系统中,从排气口侧起依次配置有前级氧化催化剂装置(21)、氨系溶液供给装置(24)、DPF装置(22)、涡轮式增压器的涡轮机(14)以及选择还原型NOx催化剂装置(SCR装置)(23)。由此,通过废气净化单元的适当配置,使NH3的生成率提高而提高NOx净化率,并且将DPF装置的温度保持为高温而增加连续再生的时间、频度,减少DPF装置的强制再生以及在强制再生时产生的CO2排出量,而且抑制由SOx引起的涡轮式增压器的涡轮机的腐蚀。
【专利说明】废气净化系统以及废气净化方法

【技术领域】
[0001]本发明涉及对柴油车等的内燃机的废气中的微粒物(PM)、氮氧化物(NOx)等进行净化的废气净化系统以及废气净化方法。

【背景技术】
[0002]从地球环境保全的观点出发,汽车的废气限制正在不断加强。尤其是,在车辆搭载的柴油机中要求微粒物(PM)、氮氧化物(NOx)的减少,为了减少PM而使用柴油颗粒过滤器装置(DPF装置),为了减少氮氧化物而使用尿素选择还原型催化剂装置(尿素SCR装置)、碳氢化合物选择还原型催化剂装置(HC-SCR装置)、稀NOx减少催化剂装置(LNT装置)等,通过搭载该多个废气净化装置来除去有害物质的情况正在发展。
[0003]作为其中之一,例如日本申请的特开2010-242515号公报所记载的那样,提出一种废气净化系统,从排气通路的上游侧起依次配置氧化催化剂、尿素喷射装置、柴油颗粒过滤器装置、选择还原型NOx催化转换器、以及氧化催化剂,并且使柴油颗粒过滤器装置不载持具有氧化功能的催化剂而载持尿素分解催化剂。
[0004]此外,还存在如图15所示那样的具备废气净化装置20X的废气净化系统IX,该废气净化装置20X为,在内燃机10的排气通路13上所设置的涡轮式增压器的涡轮机14的下游侧,从上游侧起依次配置氧化催化剂装置21、柴油颗粒过滤器装置(DPF) 22、以及选择还原型NOx催化剂装置(SCR) 23,并将尿素喷射装置24设置在柴油颗粒过滤器装置22与选择还原型NOx催化剂装置23之间。
[0005]随着发动机的燃烧改良发展、燃料消耗率提高,微粒物、氮氧化物的总排出量也减少,但另一方面,朝废气净化装置流入的废气温度变低。即,发动机的燃烧状态改良的结果,废气温度与以往相比降低30°C?50°C或者其以上、并且废气净化装置复数化而变得大型,因此热容量增大而难以确保催化剂的活性温度。
[0006]此外,在尿素SCR系统中,为了使尿素水均匀地扩散,并且为了促进尿素被分解成氨,而难以缩短从尿素水喷射喷嘴等尿素供给装置到尿素选择还原型催化剂装置为止的距离,该情况也成为排气净化装置大型化的较大的主要原因。
[0007]作为应对这些情况的对策之一,例如日本申请的特开2011-149400号公报所记载的那样,本发明人提出了一种柴油机的排气净化装置,通过从排气通路的上游侧起依次配置前级的氧化催化剂(DOC)、尿素喷射喷嘴、涡轮增压器的涡轮机(低压级涡轮机)、柴油颗粒过滤器(DPF)、选择还原型催化剂(尿素SCR)、后级氧化催化剂(R-DOC)的构成,使各后处理单元接近排气口,而有效地利用废气的热,容易将各后处理单元的温度确保为催化剂活性温度。
[0008]但是,由于计测废气的模式要从现有的JE05行驶模式(模拟了都市内行驶的日本的行驶模式)、NEDC (European driving cycle:欧洲驾驶循环)行驶模式等切换成世界统一标准的WHDC(重型车的排出气体试验用车辆循环)行驶模式等,因此成为还需要低温模式、高温高流量下的废气减少的状况。
[0009]另一方面,关于尿素SCR系统,关于低温下的氮氧化物(NOx)净化率的提高,对尿素及其中间生成物和氨(NH3)的吸附控制进行了研究,但存在在高温且高流量区域中难以进行它们的吸附控制这种问题。此外,关于DPF系统,存在如下问题:由于在DPF装置中通过的废气温度的降低,因此能够进行连续再生的范围变少,为了使DPF装置所捕集的微粒物(PM)强制地燃烧而进行排气升温控制的频度增加,DPF装置的强制再生时的二氧化碳(CO2)排出量增加。并且,还存在如下问题:由于在废气中包含由燃料中所含有的硫成分产生的硫氧化物(SOx),因此排气管、涡轮增压器的涡轮机产生SOx腐蚀。
[0010]现有技术文献
[0011]专利文献
[0012]专利文献1:日本申请的特开2010-242515号公报
[0013]专利文献2:日本申请的特开2011-149400号公报


【发明内容】

[0014]发明要解决的课题
[0015]本发明是鉴于上述状况而完成的,其目的在于提供废气净化系统以及废气净化方法,能够使氨(NH3)的生成率提高而提高NOx净化率,并且能够将DPF装置的温度保持为高温而增加连续再生的时间和频度,减少DPF装置的强制再生以及在强制再生时产生的CO2排出量,而且,能够抑制由硫氧化物(SOx)引起的涡轮式增压器的涡轮机的腐蚀。
[0016]用于解决课题的手段
[0017]用于实现上述目的的本发明的排气净化系统为,对内燃机的废气中的微粒物、氮氧化物进行净化,该排气净化系统构成为,在上述内燃机的排气系统中,从排气口侧起依次配置前级氧化催化剂装置、氨系溶液供给装置、柴油颗粒过滤器装置、涡轮式增压器的涡轮机以及选择还原型NOx催化剂装置。
[0018]根据该构成,由于在DPF装置的上游侧配置有供给尿素等氨系溶液的尿素喷射喷嘴等氨系溶液供给装置,因此能够使该氨系溶液供给装置的位置接近内燃机,与现有技术的配置相比,能够将被供给氨系溶液的废气的温度保持为高100°C以上。因而,能够提高从氨系溶液生成的NH3 (氨)的生成率。
[0019]此外,由于将柴油颗粒过滤器装置(DPF装置)配置于比涡轮机更靠上游侧,因此DPF装置的位置变得接近排气口,与现有技术的配置相比能够将DPF装置的入口的废气温度保持为高100°C以上的温度,能够增加DPF装置的连续再生的时间和频度。结果,能够使DPF装置小型化,能够缩短再生时的升温时间,能够减少DPF装置再生时的CO2排出量。与此同时,能够增加布局的自由度。
[0020]并且,由于按照氨系溶液供给装置、DPF装置、涡轮机的顺序配置,因此通过缸内(气缸内)燃烧而产生的SOx (硫氧化物),与从由尿素喷射喷嘴等氨系溶液供给装置供给的尿素等氨系溶液生成的NH3 (氨)、以及在DPF装置中使PM燃烧之后产生的灰分成分进行化学反应,由此成为腐蚀性较小的CaSO4 (硫酸钙),由此能够抑制由通过高EGR燃烧而产生的SOx导致的涡轮机的腐蚀。并且,DPF装置成为不会受到源自涡轮机的油的灰分的影响的配置,因此能够避免该灰分对DPF装置的堵塞的影响。
[0021]并且,由于能够在涡轮机的上游侧在氧化催化剂装置紧后或者DPF装置紧后设置EGR通路而取出EGR气体,因此能够缩短EGR路径,并且EGR气体成为被除去了 HC、PM之后的废气,因此作为EGR路径中的防污对策也是有效的。
[0022]在上述废气净化系统中构成为,具备碳氢化合物供给控制机构,在上述柴油颗粒过滤器装置的前后差压为连续再生判定用差压以上、自动强制再生判定用差压以下的情况下,且在上述柴油颗粒过滤器装置的入口废气温度为连续再生控制开始温度以下的情况下,上述碳氢化合物供给控制机构进行通过缸内喷射的后喷射或者排气管内燃料喷射来向上述前级氧化催化剂装置上游侧的废气中供给碳氢化合物的控制,此时,通过DPF装置上游侧的氧化催化剂装置中的氧化催化剂的HC吸附以及氧化的效果,在需要DPF装置的连续再生时,能够使向DPF装置流入的废气温度(入口废气温度)上升至能够进行连续再生的温度,因此能够延长DPF装置的自动强制再生控制的间隔,能够进一步减少DPF装置再生时的CO2排出量。
[0023]在上述废气净化系统中,当通过载持有选择还原型NOx催化剂的柴油颗粒过滤器装置来形成上述柴油颗粒过滤器装置时,通过该DPF和下游侧的选择还原型NOx催化剂装置能够以两级构成来净化NOx,因此能够提高NOx净化率。尤其是,当使DPF载持高温用选择还原型NOx催化剂、并使选择还原型NOx催化剂装置载持低温用的选择还原型NOx催化剂时,能够从低温至高温在高流量的大范围内提高NOx净化率。
[0024]在上述废气净化系统中构成为,具备氨系溶液供给控制机构,该氨系溶液供给控制机构为,根据化学反应式的当量比来求出能够对从上述内燃机排出的NOx排出量进行还原的量,并计算出比该能够还原的量多的第一氨系溶液量,并且根据上述内燃机的NOx目标排出量与在上述选择还原型NOx催化剂装置的下游侧计测到的NOx量之差来计算第二氨系溶液量,基于上述第一氨系溶液量与上述第二氨系溶液量之和来设定向上述排气系统供给的氨系溶液的供给量,而从上述氨系溶液供给装置供给氨系溶液,此时,成为更适当的氨系溶液的供给量,能够有效地净化NOx。
[0025]即,在现有技术的配置中,在选择还原型NOx催化剂装置(SCR装置)的上游喷射尿素,而使选择还原型NOx催化剂的催化剂表面吸附尿素、尿素中间生成物、NH3等(源自尿素的物质)、以及NOx。该尿素的喷射量被与发动机排出的NOx量相对应(ΝΗ3/Ν0当量比为I以上)地进行控制。这些控制在选择还原型NOx催化剂装置的入口温度为低温(300°C以下)时有效地发挥作用,但是当成为高温(超过300°C)时,源自尿素的物质和NOx在吸附后立即脱离,因此存在通过这些与低温时相同的吸附控制无法获得NOx的高净化率这种问题。
[0026]与此相对,在本发明中,通过配置在涡轮机上游侧的DPF装置的选择还原型NOx催化剂来实现高温侧的NOx净化,并且通过配置在涡轮机下游侧的选择还原型NOx催化剂来实现低温侧的NOx净化。为了进行基于该两级构成的选择还原型NOx催化剂的NOx净化,对于上游侧的DPF装置的选择还原型NOx催化剂,设定尿素相对于发动机排出的NOx量的ΝΗ3/Ν0的当量比为I以上1.3以下的第一氨系溶液量,对于下游侧的选择还原型NOx催化剂装置的选择还原型NOx催化剂,根据选择还原型NOx催化剂装置下游侧的NOx排出量来计算不足的第二氨系溶液量,并以将该第二氨系溶液量与第一氨系溶液量相加而得的量来供给氨系溶液。
[0027]并且,用于实现上述目的的本发明的排气净化方法为,通过在内燃机的排气系统中,从排气口侧起依次配置了前级氧化催化剂装置、氨系溶液供给装置、柴油颗粒过滤器装置、涡轮式增压器的涡轮机以及选择还原型NOx催化剂装置的废气净化系统,对上述内燃机的废气中的微粒物、氮氧化物进行净化,其特征在于,在上述柴油颗粒过滤器装置的前后差压为连续再生判定用差压以上、自动强制再生判定用差压以下的情况下,且在上述柴油颗粒过滤器装置的入口废气温度为连续再生控制开始温度以下的情况下,通过缸内喷射的后喷射或者排气管内燃料喷射来向上述前级氧化催化剂装置上游侧的废气中供给碳氢化合物。
[0028]根据该方法,通过DPF装置上游侧的氧化催化剂装置中的氧化催化剂的HC吸附以及氧化的效果,在需要进行DPF装置的连续再生时,能够使向DPF装置流入的废气温度(入口废气温度)上升至能够进行连续再生的温度,因此能够延长DPF装置的自动强制再生控制的间隔,能够进一步减少DPF装置再生时的CO2排出量。
[0029]在上述排气净化方法中,通过载持有选择还原型NOx催化剂的柴油颗粒过滤器装置来形成上述柴油颗粒过滤器装置,并且根据化学反应式的当量比来求出能够对从上述内燃机排出的NOx排出量进行还原的量,并计算出比该能够还原的量多的第一氨系溶液量,根据上述内燃机的NOx目标排出量与在上述选择还原型NOx催化剂装置的下游侧计测到的NOx量之差来计算第二氨系溶液量,基于上述第一氨系溶液量与上述第二氨系溶液量之和来设定向上述排气系统供给的氨系溶液的供给量,而从上述氨系溶液供给装置供给氨系溶液,此时,通过该DPF和下游侧的选择还原型NOx催化剂装置能够以两级构成来净化NOx,因此能够提高NOx净化率。尤其是,当使DPF载持高温用选择还原型NOx催化剂、并使选择还原型NOx催化剂装置载持低温用的选择还原型NOx催化剂时,能够从低温至高温在高流量的大范围内提高NOx净化率。结果,成为更适当的氨系溶液的供给量,能够有效地净化NOx。
[0030]发明的效果
[0031]根据本发明的废气净化系统以及废气净化方法,由于在DPF装置的上游侧配置氨系溶液供给装置,因此能够使该氨系溶液供给装置的位置接近内燃机,能够较高地保持被供给氨系溶液的废气的温度,能够提高从氨系溶液生成的氨(NH3)的生成率。
[0032]并且,由于将DPF装置配置于比涡轮机更靠上游侧,因此DPF装置的位置接近排气口,而将DPF装置的温度保持为高温,因此能够增加连续再生的时间和频度,能够实现小型化。通过该DPF的小型化,能够缩短再生时的升温时间,能够减少DPF装置再生时的CO2排出量,并且能够增加布局的自由度。
[0033]此外,由于按照氨系溶液供给装置、DPF装置、涡轮机的顺序配置,因此能够使通过缸内燃烧而产生的硫氧化物(SOx)与通过由DPF装置捕集的微粒物(PM)的燃烧而产生的碳酸钙(CaCO3)进行反应而变化为腐蚀性较小的硫酸钙(CaSO4),因此能够抑制硫成分腐蚀配置在DPF装置下游侧的涡轮式增压器的涡轮机。
[0034]并且,由于DPF装置配置在涡轮机的上游侧,而不会受到源自涡轮机的油的灰分的影响,因此能够避免该灰分对DPF装置的堵塞的影响。
[0035]并且,通过碳氢化合物供给控制,在需要进行DPF装置的连续再生时,进行碳氢化合物供给,由此能够使向DPF装置流入的废气温度上升至能够进行连续再生的温度,因此能够增加DPF装置的连续再生的时间、频度,能够延长自动强制再生控制的间隔,能够进一步减少DPF装置的强制再生时的CO2排出量。

【专利附图】

【附图说明】
[0036]图1是表示在本发明的实施方式的废气净化系统中使前级氧化催化剂装置成为单级构成的情况下的构成的图。
[0037]图2是表示在本发明的实施方式的废气净化系统中使前级氧化催化剂装置成为两级构成的情况下的构成的图。
[0038]图3是表示本发明的碳氢化合物供给控制的控制流程的一例的图。
[0039]图4是表示本发明的尿素供给控制的控制流程的一例的图。
[0040]图5是表示实施例和现有例的DPF装置的直径的减少率与DPF压力损失之间的关系的图。
[0041]图6是表示实施例和现有例的DPF装置的直径的减少率与排气歧管压力之间的关系的图。
[0042]图7是表示实施例和现有例的DPF装置的直径的减少率与发动机扭矩之间的关系的图。
[0043]图8是表示实施例和现有例的DPF装置的升温时间的图。
[0044]图9是表示实施例和现有例的JE05模式下的DPF入口温度的图。
[0045]图10是表示实施例和现有例的SCR装置入口温度与从尿素的NH3生成率之间的关系的图。
[0046]图11是表示实施例和现有例的涡轮机出口温度与NOx净化率之间的关系的图。
[0047]图12是表示实施例和现有例的DPF的平均再生间隔的图。
[0048]图13是表示实施例和现有例的CO2排出量比的图。
[0049]图14是表不实施例和现有例的平均NOx净化率的图。
[0050]图15是表不现有技术的废气净化系统的一例的构成的图。

【具体实施方式】
[0051]以下,参照附图对本发明的实施方式的废气净化系统以及废气净化方法进行说明。此处,表示使选择还原型NOx催化剂为尿素选择还原型NOx催化剂、使氨系溶液为尿素的例子,但并不限定于此,也可以是HC-选择还原型催化剂等。
[0052]如图1所示,本发明的实施方式的废气净化系统I是对柴油机等内燃机(以下称作发动机)10的废气G中的PM (微粒物)、Ν0χ (氮氧化物)进行净化的废气净化系统,构成为,在发动机10的排气系统中,从与发动机主体11连接的排气口侧起依次配置有前级氧化催化剂装置(D0C)21、作为氨系溶液供给装置的尿素喷射喷嘴24、载持有尿素选择还原型NOx催化剂(SCR催化剂)的柴油颗粒过滤器装置(以下称作DPF装置)22、涡轮式增压器的涡轮机14以及选择还原型NOx催化剂装置(以下称作SCR装置)23。
[0053]该前级氧化催化剂装置21为了尽量与高温的废气G接触而使所载持的氧化催化剂为活性化温度以上的时间变长,而如图1所示那样,在排气歧管12内与各排气口对应地配置。此外,根据需要,为了用于对从SCR装置23流出来的NH3(氨)进行分解的NH3滑移用,而将后级的氧化催化剂装置(R-D0C:未图示)配置在SCR装置23的下游侧。
[0054]前级氧化催化剂装置21通过配置催化剂层而形成,该催化剂层包括良好地净化CO(—氧化碳)的金属催化剂、以及具有氧吸藏能力(OSC:Oxygen Storage capacity)的氧化物与氧化物半导体混合存在的催化剂。作为具有该氧吸藏能力的氧化物,存在含有Ce (铈)的氧化物,作为该氧化物半导体,存在T12 (二氧化钛)、ZnO(氧化锌)、Y2O3 (氧化钇)等。此外,使具有该氧吸藏能力的氧化物载持贵金属。
[0055]此外,该前级氧化催化剂装置21为,根据排气温度、HC(碳氢化合物)浓度以及CO浓度,也能够成为图1所示那样的废气净化系统I的仅为单级的构成,但在废气中的HC浓度、CO浓度较高的情况下,为了获得低温活性良好的催化剂构成,该前级氧化催化剂装置21优选分开为第一氧化催化剂装置(DOC-1) 21a和第二氧化催化剂装置(D0C_2)21b来配置。在该情况下,如图2所示的废气净化系统IA那样,在排气歧管12内与排气口对应地按照每个气缸来配置第一氧化催化剂装置21a,并在排气歧管12的出口的下游配置第二氧化催化剂装置21b。
[0056]在该第一氧化催化剂装置21a中配置催化剂层,该催化剂层包括良好地进行CO净化的金属催化剂、以及含有铈(Ce)的氧化物等具有OSC的氧化物与Ti02、ZnO、Y2O3等氧化物半导体混合存在的催化剂。此外,使具有OSC的氧化物载持贵金属。另一方面,在第二氧化催化剂装置21b中配置催化剂层,该催化剂层包括良好地进行HC净化的钼(Pt)等贵金属催化剂或者HC吸附材料与贵金属催化剂混合存在的催化剂。由此,能够获得低温活性良好的催化剂构成。
[0057]DPF装置22是捕集除去PM的连续再生类型的DPF,该DPF装置22优选设置由高温下的NOx净化性能较高的催化剂、例如含有稀土类复合氧化物(Ce-Zr-Ο系复合氧化物等)的催化剂构成的SCR催化剂的涂层来形成。此外,在该DPF装置22中需要SCR催化剂涂层后的压力损失难以增加的规格,因此使气孔率、气孔径、壁厚适当化,而成为净化特性相同且压力损失较少的构造。
[0058]SCR装置23为,相对于配置在涡轮机14的上游的DPF装置22所载持的SCR催化齐U,配置在涡轮机14的下游,因此例如图9所示那样,能够预计到100°C左右的温度降低,因此优选构成为载持在低温下具有对源自尿素的物质、NOx进行吸附的功能的沸石催化剂。并且,优选使用小型SCR,该小型SCR利用特性催化剂载体(整体式催化剂)等使每单位比容的催化剂量增加而与以往相比减小50%以上。
[0059]当尿素喷射喷嘴24设置在比前级氧化催化剂装置21靠下游侧且比DPF装置22靠上游侧时,由于DPF装置22处于涡轮机14的上游侧,因此尿素L被向涡轮机14的上游侧喷射,喷射到废气G中的尿素L在涡轮机14内被搅拌而扩散,因此促进了尿素L的水解、热解。并且,通过涡轮机14之后的排气通路13中的喷雾扩散均匀化。因此,能够缩短从尿素喷射喷嘴24到SCR装置23的距离,能够使配置接近化。
[0060]此外,为了减少NOx而设置进行EGR的HP-EGR通路15和LP-EGR通路16。该HP-EGR通路15使向HP (高压)-EGR回流的EGR气体Ge从通过了前级氧化催化剂装置21 (或者图2的第一氧化催化剂装置21a)之后、且比尿素喷射喷嘴24的位置靠前方的排气通路13分支。由此,通过使通过了前级氧化催化剂装置21之后的EGR气体Ge向HP-EGR通路15回流,由此能够减少HP-EGR通路15中的EGR气体Ge中的SOF (有机性可溶成分),因此能够抑制HP-EGR通路15的EGR冷却器(未图示)、EGR阀(未图示)的堵塞等、SOF所导致的影响。
[0061]并且,向LP (低压)-EGR回流的EGR气体Ge从SCR催化剂23的下游侧分支。由此,通过使通过了前级氧化催化剂装置21 (或者图2的第一氧化催化剂装置21a和第二氧化催化剂装置21b)、DPF装置22、SCR装置23之后的EGR气体Ge向LP-EGR通路16回流,由此能够减少LP-EGR通路16中的EGR气体Ge中的S0F、PM、NH3,因此能够抑制LP-EGR通路16的EGR冷却器(未图示)、EGR阀(未图示)的堵塞、腐蚀等。
[0062]并且,该废气净化系统1、IA具备对DPF装置22的入口的废气温度即DPF入口温度T进行测定的温度传感器31、对DPF装置22的前后差压Λ P进行测定的差压传感器32、以及对SCR装置23下游侧的NOx浓度进行测定的NOx浓度传感器33。并且,具备控制装置(未图示),该控制装置具有:HC供给控制机构,被输入该温度传感器31和差压传感器32的测定值,通过缸内(气缸内)的后喷射向前级氧化催化剂装置21供给作为燃料的HC(碳氢化合物);以及尿素供给控制机构(氨系溶液供给控制机构),从尿素喷射喷嘴24向废气G中供给尿素L,该尿素L生成用于在DPF装置22和SCR装置23中对NOx进行还原的NH3。该控制装置通常由对发动机10的运转整体进行控制的被称作E⑶(发动机控制单元)的控制装置(未图示)来兼顾。即,HC供给控制机构和尿素供给控制机构组入于控制装置(ECU)。
[0063]在图5?图7中表示在涡轮机14的上游侧配置DPF装置22的实施例A和在涡轮机的下游侧配置DPF装置22的现有例B。实施例A与现有例B相比,DPF压力损失降低,排气歧管(exhaust manifold) 12内的压力降低,扭矩增加。即,不存在涡轮机膨胀比的影响,相应地实施例A与现有例B相比较,DPF压力损失的增加对排气歧管内压以及扭矩造成的影响相对地变小。
[0064]如根据该图5?图7可知的那样,在使对扭矩、排气歧管内压等发动机性能造成的影响为大致相同的情况下,在实施例A中,与现有例B相比,在使DPF装置22的长度相同的情况下,能够将DPF装置22的直径缩小40%程度。结果,如图8所示,实施例A与现有例B相比,能够在短时间内使DPF装置22升温,能够缩短到规定温度为止的升温时间。
[0065]并且,在本发明中,将DPF装置22设置于涡轮机14的上游,由此与现有技术相比,能够将DPF装置22与发动机主体11更接近地配置。结果,如图9所示,能够将DPF入口温度T保持为高出100°C以上。
[0066]并且,与现有技术的情况相比,由于还能够将尿素喷射喷嘴24与发动机主体11更接近地配置,因此与图9所示的DPF入口温度T同样,还能够将尿素喷射位置的温度保持为比现有例B高100°C以上。结果,如图10所示,在实施例A中,与现有例B相比,相对于SCR装置23的入口温度的从尿素向NH3的生成率显著提高,且如图11所示,相对于涡轮机出口温度的NOx净化率也提高。尤其是,在相对于尿素喷射喷嘴24近距离地配置的载持有SCR催化剂的DPF装置22中,通过提高向该DPF装置22流入的废气温度,由此能够尽量提高NH3生成率,而能够增大在DPF装置22的SCR催化剂表面上NOx与NH3在该处进行反应的效果,能够提高净化率。
[0067]下面,对上述废气净化系统1、1A中的HC(碳氢化合物)供给控制进行说明。在本发明中,基于由上述构成带来的优越性,对前级氧化催化剂装置21进行HC供给控制,通过该前级氧化催化剂装置21对HC的吸附以及氧化,使向DPF装置22流入的废气G的温度上升,而使DPF装置22的入口的废气温度即DPF入口温度T成为能够进行连续再生的温度(250°C?500°C ),使能够进行连续再生的频度以及期间增加。
[0068]该HC供给控制能够按照图3中例示的控制流程来进行。该图3的控制流程表示为如下的控制流程:被从在发动机10开始运转的同时起动的上位的控制流程反复调出而执行,在发动机10停止运转的同时,中断控制流程而返回到上位的控制流程,并在上位的控制流程停止的同时停止。
[0069]当该图3的控制流程被从上位的控制流程调出而开始时,在步骤Sll中,从温度传感器31输入DPF入口温度T,并且从差压传感器32输入DPF装置22的前后差压即DPF前后差压Λ P。在下一步骤S12中,判定DPF前后差压Λ P是否为连续再生判定用差压APL以上,在为以上的情况(是)下,在下一步骤S13中,判定DPF前后差压ΛΡ是否为自动强制再生判定用差压ΛPH以下,在为以下的情况(是)下,向步骤S14前进。
[0070]另外,在步骤S12的判定中,在DPF前后差压Λ P不足连续再生判定用差压APL的情况(否)下,返回到步骤S11。此外,在步骤S13的判定中,在DPF前后差压ΛΡ大于自动强制再生判定用差压ΛΡΗ的情况(否)下,向步骤S20前进,在进行自动强制再生控制而对DPF装置22进行强制再生之后,返回到上位的控制流程,并被从该上位的控制流程再次调出而反复进行图3的控制流程。
[0071]在步骤S14中,判定DPF入口温度T是否为连续再生控制开始温度TL以下,在为以下的情况(是)下,在步骤S15中进行HC供给,通过后喷射在规定时间Atl (与DPF前后差压Λ P的判定和DPF入口温度T的判定的间隔相关联而预先设定的时间)的期间向前级氧化催化剂装置21供给HC。之后,返回到步骤S14。此外,在步骤S14中,在DPF入口温度T高于连续再生控制开始温度TL的情况(否)下,向步骤S16前进。
[0072]在步骤S16中,由于DPF入口温度T大于连续再生控制开始温度TL,因此等待经过规定时间Λ t2,在该时间等待的期间进行DPF装置22的连续再生。然后,向步骤S17前进,如果正在进行HC供给,则停止该HC供给,如果未进行HC供给,则在保持HC供给停止的状态下向步骤S18前进。
[0073]在步骤S18中,判定DPF前后差压Λ P是否为连续再生判定用差压APL以下,在不为以下的情况(否)下,为了继续进行连续再生而返回到步骤14。此外,在为以下的情况(是)下,连续再生完成而变得不需要,因此进行返回而返回到上位的控制流程,并再次从该上位的控制流程调出图3的控制流程而再次开始并反复进行。
[0074]通过在从该步骤Sll到步骤S13中判定是否进行用于连续再生的废气升温用的HC供给,并反复进行从步骤S14到步骤S15,由此能够将DPF入口温度T升温至超过连续再生控制开始温度TL。然后,在步骤S16中进行连续再生,在步骤S17中停止HC供给来防止HC的浪费消耗,在步骤S18中判定连续再生是否结束。
[0075]通过实施该图3的控制流程,由此在DPF装置22的前后差压Λ P为连续再生判定用差压APL以上、自动强制再生判定用差压ΛΡΗ以下的情况下,且在DPF装置22的入口废气温度T为连续再生控制开始温度TL以下的情况下,能够进行通过缸内喷射的后喷射来向前级氧化催化剂装置21上游侧的废气G中供给HC的控制。另外,也可以代替后喷射,而采用向前级氧化催化剂装置21上游侧的排气管内直接进行燃料喷射的排气管内燃料喷射。
[0076]通过该HC供给控制,如图12所示那样,本发明的实施例A与现有技术的现有例B相比,能够大幅度地延长DPF装置22的自动强制再生的间隔,并且,如图13所示那样,实施例A与现有例B相比,能够显著减少DPF再生时的CO2排出量。另外,通过对前级氧化催化剂装置21的氧化催化剂使用CeO2 (氧化铈)、ZrO2 ( 二氧化锆)等能够较多地吸附CO的材料,由此能够进一步增加前级氧化催化剂装置21的发热量。
[0077]通过该HC供给控制,能够更有效地发挥DPF装置22上游侧的前级氧化催化剂装置21中的氧化催化剂的HC吸附以及氧化的效果,在需要进行DPF装置22的连续再生时,能够使向DPF装置22流入的废气温度(入口废气温度)T上升为变得比能够进行连续再生的温度TL高,因此能够延长DPF装置22的自动强制再生控制的间隔,能够进一步减少DPF装置22再生时的CO2排出量。
[0078]下面,对上述废气净化系统1、1A中的尿素供给控制进行说明。在本发明中,基于由上述构成带来的优越性,能够进行从尿素喷射喷嘴24对于载持有SCR催化剂的DPF装置22和SCR装置23的尿素供给控制,通过从尿素L产生的NH3,在该载持有SCR催化剂的DPF装置22和SCR装置23中对废气中的NOx进行还原。
[0079]该尿素供给控制能够按照图4中例示那样的控制流程来进行。该图4的控制流程表示为如下的控制流程:被从在发动机10开始运转的同时起动的上位的控制流程调出而执行,在发动机10停止运转的同时,通过步骤S40的中断来中断控制流程而返回到上位的控制流程,并在上位的控制流程停止的同时停止。
[0080]当该图4的控制流程被从上位的控制流程调出而开始时,在步骤S31中,测定或者计算第一 NOx排出量Win。该第一 NOx排出量Win是将从发动机主体11排出的Ν0χ(Ν0、NO2)换算成NO之后的NOx排出量(发动机排出的NOx排出量),根据废气G中的所测定到的NOx浓度和所计算出的废气量来求出,或者通过参照根据发动机10的运转状态而预先设定的映射数据的计算等来计算出。
[0081]在步骤S31中,还计算出与该第一 NOx排出量Win相对的第一尿素供给量Wumol。该第一尿素供给量Wumol为,相对于第一 NOx排出量Win,计算出为了以NH3相对于NO的当量比为I以上1.3以下的值(通过实验等求出、并预先设定的值)来还原NO而需要的NH3量,并将产生该NH3量的NH3的尿素量设为第一尿素供给量Wumol。然后,开始尿素供给经过时间t的计数。此外,将在之后使用的第二尿素供给量Wuplas设定为零。
[0082]接着,在步骤32中判定所计数的尿素供给经过时间t是否经过了预先设定的判定用时间tl。该判定用时间tl被设定为如下时间:包含从尿素喷射喷嘴24向DPF装置22上游侧的废气G中供给的尿素L的废气G,能够充分到达SCR装置23下游侧的NOx浓度传感器33的时间。能够基于实验值、根据废气流量等计算的计算值来设定该时间。
[0083]在该步骤S32中,在尿素供给经过时间t经过判定用时间tl的情况(是)下,向步骤S33前进。此外,在尿素供给经过时间t未经过判定用时间tl的情况(否)下,向步骤S34前进,从尿素喷射喷嘴24向DPF装置22上游侧的废气G中在预先设定的时间(与步骤S32的判定的间隔时间相关的时间)Λ tl的期间供给第一尿素供给量Wumol的尿素L。然后,返回到步骤S31。
[0084]在步骤S33中,输入SCR装置23下游侧的NOx浓度传感器33的计测值,并根据该输入的NOx浓度和废气量来计算测定排出量Wout。另外,能够根据发动机10的运转状态、由进气量传感器(MAF传感器:未图示)计测的进气量和燃料喷射量,来计算出废气量。
[0085]将该测定排出量Wout与减少NOx排出的目标值即目标排出量WT进行比较,在测定排出量Wout为目标排出量WT以下的情况(是)下,判定为尿素量为第一尿素供给量Wumol就足够,而向步骤S34前进,以第一尿素供给量Wumol的量在预先设定的时间Atl的期间供给尿素L,然后返回到步骤S31。
[0086]另一方面,在该步骤S33的判定中,在测定排出量Wout大于目标排出量WT的情况(否)下,判定为尿素量为第一尿素供给量Wumol是不足够的,而向步骤S35前进。
[0087]在步骤S35中,重新计算测定排出量Wout,并计算目标排出量WT与测定排出量Wout之差即排出量差Wdef (Wdef = WT-Wout)。此外,对于该排出量差Wdef,计算为了对该排出量差Wdef的NOx量进行还原而需要的NH3量,并使用产生该NH3量的NH3的尿素量Wud来计算第二尿素供给量Wuplas。[!卩,Wuplas = Wuplas+Wud。由此,能够计算出考虑了排出量差Wdef的第二尿素供给量Wuplas。并且,还计算出第一尿素供给量Wumol与第二尿素供给量Wuplas之和即总尿素供给量Wut (Wut = Wumo I+Wup I as)。
[0088]在下一步骤S36中,以该总尿素供给量Wut的量在预先设定的时间(与步骤S35的NOx浓度测定值的更新间隔时间相关的时间)△ t2的期间供给尿素L,然后返回到步骤S35。反复进行该步骤S35?S36,以总尿素供给量Wut向DPF装置22上游侧的废气G中供给尿素L。当因发动机10停止而产生步骤S40的中断时,向返回前进而返回到上位的控制流程,与该上位的控制流程一起使图4的控制流程结束。
[0089]通过上述控制,在尿素供给经过时间t经过规定的判定用时间tl之前(否)或者在测定排出量Wout为目标排出量WT以下的情况(是)下,能够通过步骤S31?S34以第一尿素供给量Wumol来供给尿素L,在尿素供给经过时间t经过规定的判定用时间tl之后(是)、且在测定排出量Wout大于目标排出量WT的情况(否)下,能够通过该步骤S35?S36以第一尿素供给量Wumol与第二尿素供给量Wuplas之和的总尿素供给量Wut来供给尿素L。
[0090]S卩,能够成为如下的尿素喷射控制:对于尿素供给量,将应该在涡轮机14上游侧的SCR催化剂涂层的DPF装置22中消耗的尿素量,考虑为尿素相对于发动机排出的NOx量按照氨(NH3)当量比为I以上的第一尿素供给量Wumol,并且,根据测定NOx浓度来推定SCR装置23下游的NOx的测定排出量Wout,计算为了成为NOx的目标排出量WT而推定为不足的排出量差Wdef,计算在涡轮机14下游侧的SCR装置23中消耗的第二尿素供给量Wuplas,以将该第二尿素量Wuplas与第一尿素供给量Wumol相加而得到的总尿素供给量Wut来供给尿素L。
[0091]结果,如图10、图11以及图14所示那样,相对于现有技术的现有例B,本发明的实施例A能够在从低温至高温的大范围内获得较高的NOx净化性能。尤其是,按照JE05模式平均,NOx净化率被改善30%以上。
[0092]接着,对通过将尿素喷射喷嘴24配置在DPF装置22的上游侧所带来的与SOx (硫氧化物)的腐蚀相关的优点进行说明。从尿素喷射喷嘴24向废气G中喷雾的尿素L,主要经过尿素的热解反应“(NH2)2CO — NH3+HNC0”和通过热解而生成的异氰酸的水解反应“HNCCHH2O — NH3+C02”来产生NH3(氨)。从该尿素生成的NH3通过与废气中的SOx产生“2NH3+S04 — (NH4) 2S04” 的反应,而产生(NH4) 2S04 (硫酸铵)。
[0093]并且,该(NH4)2SO4与在下游侧(后级)的DPF装置22中使PM燃烧之后产生的灰分成分即CaCO3 (碳酸钙)产生“(NH4) 2S04+CaC03 — (NH4) 2C03+CaS04”的反应。所生成的(NH4) 2C03 (碳酸铵)在58°C以上通过热解反应“(NH4) 2C03 — 2NH3+H20+C02 ”而分解,通过该反应而产生的NH3由DPF装置22下游侧的SCR装置23捕捉,并使用于NOx净化反应。
[0094]NH3与SO4等反应而生成的(NH4)2SO4为中和物、没有腐蚀性,因此在比DPF装置22靠下游侧的涡轮机14、排气通路13中由SOx引起的腐蚀的问题得以解决。此外,在将NH3与SO4等反应后的废气利用为EGR气体Ge的LP (低压)-EGR中,EGR通路16、EGR阀(未图示)、EGR冷却器(未图示)的腐蚀问题也得以解决。
[0095]因而,根据上述构成的废气净化系统1、1A以及废气净化方法,由于在DPF装置22的上游侧配置尿素喷射喷嘴24,因此能够使该尿素喷射喷嘴24的位置接近发动机主体11,能够较高地保持被供给尿素L的废气G的温度,能够使从尿素L生成的NH3 (氨)的生成率提闻。
[0096]并且,由于将DPF装置22配置在比涡轮机14更靠上游侧,因此DPF装置22的位置变得接近排气口,将DPF装置22的温度保持为高温,因此能够增加连续再生的频度,能够实现小型化。通过该DPF装置22的小型化,能够缩短再生时的升温时间,能够减少DPF装置22再生时的CO2排出量,并且能够增加布局的自由度。
[0097]并且,从上游侧起按照尿素喷射喷嘴24、DPF装置22、涡轮机14的顺序配置,因此能够使通过缸内燃烧而产生的SOx成为腐蚀性较小的CaSO4,而能够抑制由SOx引起的涡轮机的腐蚀。并且,DPF装置22成为不受源自涡轮机14的油的灰分的影响的配置,因此能够避免该灰分对DPF装置22的堵塞的影响。
[0098]并且,当进行碳氢化合物供给控制时,在需要进行DPF装置22的连续再生时,能够使向DPF装置22流入的废气温度上升至能够进行连续再生的温度,因此能够延长DPF装置22的自动强制再生控制的间隔,能够进一步减少DPF装置22再生时的CO2排出量。
[0099]并且,通过尿素供给控制,能够以更适当的氨系溶液的供给量来向DPF装置22和SCR装置23供给尿素L,因此能够在从低温到高温且到高流量为止的大范围内有效地净化NOx。
[0100]因而,将本发明的各废气净化单元的排列、碳氢化合物供给控制以及氨系溶液供给控制组合,能够在从低温.低流量到高温.高流量的大范围内提高NOx净化率。
[0101]产业上的可利用性
[0102]根据本发明的废气净化系统以及废气净化方法,通过将氨系水溶液供给装置的位置与发动机主体的排气口接近地配置,而较高地保持被供给尿素的废气的温度,由此能够使氨(NH3)的生成率提高而提高NOx净化率,与此同时,通过将DPF装置也与发动机主体的排气口接近地配置,而将DPF装置的温度保持为高温,由此能够增加DPF装置的连续再生的时间、频度,减少DPF装置的强制再生以及在强制再生时产生的CO2排出量,而且,按照氨系水溶液供给装置、DPF、涡轮机的排列来配置,使废气中的硫氧化物(SOx)与DFP的灰分反应而变化成腐蚀性较小的硫酸钙之后流入涡轮机,由此能够抑制硫氧化物导致的涡轮式增压器的涡轮机的腐蚀,因此能够利用为搭载于汽车等的内燃机等的废气净化系统以及废气净化方法。
[0103]符号的说明:
[0104]1、IA废气净化系统
[0105]10内燃机(发动机)
[0106]11发动机主体
[0107]12排气歧管
[0108]13排气通路
[0109]14涡轮式增压器的涡轮机
[0110]15 HP-EGR 通路
[0111]16 LP-EGR 通路
[0112]21前级氧化催化剂装置(DOC)
[0113]21a第一氧化催化剂装置(D0C-1)
[0114]21b第二氧化催化剂装置(D0C-2)
[0115]22柴油颗粒过滤器装置(DPF装置)
[0116]23选择还原型NOx催化剂装置(SCR装置)
[0117]24尿素喷射喷嘴(氨系溶液供给装置)
[0118]31温度传感器
[0119]32差压传感器
[0120]33 NOx浓度传感器
[0121]G 废气
[0122]Ge EGR 气体
[0123]L 尿素
[0124]T DPF 入口温度
[0125]ΔΡ DPF装置的前后差压
【权利要求】
1.一种废气净化系统,对内燃机的废气中的微粒物、氮氧化物进行净化,其特征在于, 在上述内燃机的排气系统中,从排气口侧起依次配置有前级氧化催化剂装置、氨系溶液供给装置、柴油颗粒过滤器装置、涡轮式增压器的涡轮机以及选择还原型NOx催化剂装置。
2.如权利要求1所述的废气净化系统,其特征在于, 具备碳氢化合物供给控制机构,在上述柴油颗粒过滤器装置的前后差压为连续再生判定用差压以上、自动强制再生判定用差压以下的情况下,且在上述柴油颗粒过滤器装置的入口废气温度为连续再生控制开始温度以下的情况下,上述碳氢化合物供给控制机构进行通过缸内喷射的后喷射或者排气管内燃料喷射来向上述前级氧化催化剂装置上游侧的废气中供给碳氢化合物的控制。
3.如权利要求1或2所述的废气净化系统,其特征在于,通过载持有选择还原型NOx催化剂的柴油颗粒过滤器装置来形成上述柴油颗粒过滤器装置。
4.如权利要求1至3中任一项所述的废气净化系统,其特征在于, 具备氨系溶液供给控制机构,该氨系溶液供给控制机构为,根据化学反应式的当量比来求出能够对从上述内燃机排出的NOx排出量进行还原的量,并计算出比该能够还原的量多的第一氨系溶液量,并且根据上述内燃机的NOx目标排出量与在上述选择还原型NOx催化剂装置的下游侧计测到的NOx量之差来计算第二氨系溶液量,基于上述第一氨系溶液量与上述第二氨系溶液量之和来设定向上述排气系统供给的氨系溶液的供给量,而从上述氨系溶液供给装置供给氨系溶液。
5.一种废气净化方法,通过在内燃机的排气系统中,从排气口侧起依次配置有前级氧化催化剂装置、氨系溶液供给装置、柴油颗粒过滤器装置、涡轮式增压器的涡轮机以及选择还原型NOx催化剂装置的废气净化系统,对上述内燃机的废气中的微粒物、氮氧化物进行净化,其特征在于, 在上述柴油颗粒过滤器装置的前后差压为连续再生判定用差压以上、自动强制再生判定用差压以下的情况下,且在上述柴油颗粒过滤器装置的入口废气温度为连续再生控制开始温度以下的情况下,通过缸内喷射的后喷射或者排气管内燃料喷射来向上述前级氧化催化剂装置上游侧的废气中供给碳氢化合物。
6.如权利要求5所述的废气净化方法,其特征在于, 通过载持有选择还原型NOx催化剂的柴油颗粒过滤器装置来形成上述柴油颗粒过滤器装置,并且, 根据化学反应式的当量比来求出能够对从上述内燃机排出的NOx排出量进行还原的量,并计算出比该能够还原的量多的第一氨系溶液量, 根据上述内燃机的NOx目标排出量与在上述选择还原型NOx催化剂装置的下游侧计测到的NOx量之差来计算第二氨系溶液量, 基于上述第一氨系溶液量和上述第二氨系溶液量之和来设定向上述排气系统供给的氨系溶液的供给量, 从上述氨系溶液供给装置供给氨系溶液。
【文档编号】F01N3/28GK104285049SQ201380023745
【公开日】2015年1月14日 申请日期:2013年5月2日 优先权日:2012年5月11日
【发明者】大角和生 申请人:五十铃自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1