混合动力车辆的控制装置以及混合动力车辆的控制方法

文档序号:5152851阅读:128来源:国知局
混合动力车辆的控制装置以及混合动力车辆的控制方法
【专利摘要】一种混合动力车辆的控制装置,其特征在于,具备:发动机怠速单元,其通过发动机将发动机转速维持为怠速转速;马达怠速单元,其通过电动发电机将发动机转速维持为怠速转速;切换单元,其根据混合动力车辆的运转状态来切换是实施发动机怠速控制还是实施马达怠速控制;以及怠速控制转变单元,其在怠速运转时从马达怠速控制切换为发动机怠速控制时,对发动机的输出扭矩附加电动发电机的载荷扭矩量,来转变为发动机怠速控制,该电动发电机的载荷扭矩量在马达怠速控制中被输入到发动机以使得将发动机转速维持为怠速转速。
【专利说明】混合动力车辆的控制装置以及混合动力车辆的控制方法

【技术领域】
[0001]本发明涉及混合动力车辆的控制装置以及混合动力车辆的控制方法。

【背景技术】
[0002]在日本JP2003-41965A中,作为以往的混合动力车辆的控制装置,公开了如下一种控制装置:在怠速运转时,根据电池的蓄电量等来切换是实施发动机怠速控制还是实施马达怠速控制,其中,在该发动机怠速控制中通过控制发动机扭矩(吸入空气量)将发动机转速维持为怠速转速,在该马达怠速控制中通过控制电动发电机扭矩将发动机转速维持为怠速转速。


【发明内容】

[0003]发明要解决的问题
[0004]在马达怠速控制中,从电动发电机向发动机输入用于将发动机转速维持为怠速转速的载荷扭矩。如果不考虑这种被输入到发动机的载荷扭矩就从马达怠速控制切换为发动机怠速控制,则会产生以下问题:在切换时暂时产生发动机转速的降低、突然上升。
[0005]本发明是着眼于这种问题而完成的,其目的在于抑制从马达怠速控制切换为发动机怠速控制时的发动机转速的暂时性的降低、突然上升。
[0006]用于解决问题的方案
[0007]根据本发明的某个方式,提供一种混合动力车辆的控制装置,该混合动力车辆具备发动机和电动发电机作为动力源。而且,该混合动力车辆的控制装置的特征在于,具备:发动机怠速单元,其在发动机与电动发电机相连接的状态下将发动机转速维持为怠速转速的怠速运转时,实施通过发动机将发动机转速维持为怠速转速的发动机怠速控制;马达怠速单元,其在怠速运转时实施通过电动发电机将发动机转速维持为怠速转速的马达怠速控制;切换单元,其根据混合动力车辆的运转状态来切换是实施发动机怠速控制还是实施马达怠速控制;以及怠速控制转变单元,其在怠速运转时从马达怠速控制切换为发动机怠速控制时,对发动机的输出扭矩附加电动发电机的载荷扭矩量来转变为发动机怠速控制,该电动发电机的载荷扭矩量是为了将发动机转速维持为怠速转速而在马达怠速控制中被输入到发动机的载荷扭矩量。
[0008]下面,参照所附附图来详细地说明本发明的实施方式、本发明的优点。

【专利附图】

【附图说明】
[0009]图1是本发明的第一实施方式的前置发动机-后轮驱动式的混合动力车辆的概要结构图。
[0010]图2是对本发明的第一实施方式的HEV行驶模式下的怠速控制进行说明的流程图。
[0011]图3是对从马达怠速控制向发动机怠速控制切换时的F/B电动发电机扭矩的接替方法进行说明的图。
[0012]图4是对本发明的第一实施方式的HEV行驶模式下的怠速控制的动作进行说明的时序图。
[0013]图5是对本发明的第二实施方式的F/B发动机扭矩的校正方法进行说明的图。
[0014]图6是本发明的其它实施方式的前置发动机-后轮驱动式的混合动力车辆的概要结构图。
[0015]图7是本发明的其它实施方式的前置发动机-后轮驱动式的混合动力车辆的概要结构图。

【具体实施方式】
[0016](第一实施方式)
[0017]图1是本实施方式的前置发动机-后轮驱动式的混合动力车辆(以下称为“FR混合动力车辆”。)的概要结构图。
[0018]FR混合动力车辆具备:作为动力源的发动机I和电动发电机2 ;作为电力源的电池3 ;驱动系统4,其由用于将动力源的输出传递到后轮47的多个部件构成;以及控制系统5,其由用于对发动机1、电动发电机2以及驱动系统4的部件进行控制的多个控制器等构成。
[0019]发动机I是汽油发动机。也能够使用柴油发动机。
[0020]电动发电机2是在转子中埋设有永磁体且在定子中缠绕有定子线圈的同步型电动发电机。电动发电机2具有作为接收来自电池3的电力供给来进行旋转驱动的电动机的功能以及作为在转子因外力进行旋转时使定子线圈的两端产生电动势的发电机的功能。
[0021]电池3对电动发电机2等各种电气部件供给电力,并且蓄积由电动发电机2发电得到的电力。
[0022]FR混合动力车辆的驱动系统4具备第一离合器41、自动变速机42、第二离合器43、传动轴44、最终减速差动装置45以及驱动轴46。
[0023]第一离合器41设置在发动机I与电动发电机2之间。第一离合器41是能够由第一电磁阀411控制油流量和液压来使扭矩容量连续地变化的湿式多片离合器。第一离合器41能够通过使扭矩容量发生变化而被控制为接合状态、滑动状态(半离合状态)以及分离状态这三种状态。
[0024]自动变速机42是前进7速后退I速的有级变速机。自动变速机42具备四组行星齿轮机构和与构成行星齿轮机构的多个旋转元件相连接来变更它们的连接状态的多个摩擦接合元件(三组多片离合器、四组多片制动器以及两组单向离合器)。调整向各摩擦接合元件供给的液压来变更各摩擦接合元件的接合和分离状态,由此切换变速级。
[0025]第二离合器43是由第二电磁阀431控制油流量和液压来使扭矩容量连续地变化的湿式多片离合器。第二离合器43能够通过使扭矩容量发生变化而被控制为接合状态、滑动状态(半离合状态)以及分离状态这三种状态。在本实施方式中,借用自动变速机42所具备的多个摩擦接合元件的一部分来作为第二离合器43。
[0026]传动轴44将自动变速机42的输出轴与最终减速差动装置45的输入轴相连接。
[0027]最终减速差动装置45是将最终减速装置与差动装置一体化而得到的,在使传动轴44的旋转减速之后传递到左右驱动轴46。另外,在转弯行驶时等需要使左右驱动轴46的转速产生速度差时,能够自动地施加速度差来顺利地行驶。在左右驱动轴46的前端分别安装有后轮47。
[0028]FR混合动力车辆的控制系统5具备整合控制器51、发动机控制器52、马达控制器53、逆变器54、第一离合器控制器55、变速机控制器56以及制动器控制器57。各控制器连接于CAN (Control Ier Area Network:控制器局域网络)通信线58,能够通过CAN通信来互相发送和接收数据。
[0029]加速器行程传感器60、车速传感器61、发动机旋转传感器62、电动发电机旋转传感器63、变速机输入旋转传感器64、变速机输出旋转传感器65、SOC (State Of Charge:电荷状态)传感器66、车轮速度传感器67、制动器行程传感器68以及加速度传感器69等的用于检测FR混合动力车辆的行驶状态的各种传感器的检测信号输入整合控制器51。
[0030]加速器行程传感器60检测表示驾驶员的请求驱动扭矩的加速踏板的踩入量(以下称为“加速器操作量”)。车速传感器61检测FR混合动力车辆的行驶速度(以下称为“车速”)。发动机旋转传感器62检测发动机转速。电动发电机旋转传感器63检测电动发电机转速。变速机输入旋转传感器64检测自动变速机42的输入轴421的转速(以下称为“变速机输入转速”)。变速机输出旋转传感器65检测自动变速机42的输出轴422的转速。SOC传感器66检测电池蓄电量。车轮速度传感器67检测四个轮的各车轮速度。制动器行程传感器68检测制动踏板的踩入量(以下称为“制动器操作量”)。加速度传感器69检测混合动力车辆的前后加速度。
[0031]整合控制器51管理FR混合动力车辆整体的能源消耗,为了使FR混合动力车辆以最高效率行驶,基于所输入的各种传感器的检测信号选择EV (Electric Vehicle:电动车辆)行驶模式或者HEV(Hybrid Electric Vehicle:混合动力汽车)行驶模式中的任一个模式来作为目标行驶模式,并计算出用于输出到各控制器的控制指令值。具体地说,作为控制指令值,计算出目标发动机扭矩、目标电动发电机扭矩、目标第一离合器扭矩容量、目标第二离合器扭矩容量、目标变速级以及再生协调控制指令等,并向各控制器输出。
[0032]此外,EV行驶模式是将第一离合器41分离而仅以电动发电机2作为动力源来驱动FR混合动力车辆的行驶模式。
[0033]HEV行驶模式是将第一离合器41接合而还包括发动机I作为动力源来驱动FR混合动力车辆的行驶模式,具备发动机行驶模式、马达辅助行驶模式以及发电行驶模式这三种行驶模式。
[0034]发动机行驶模式是仅将发动机I作为动力源来驱动FR混合动力车辆的模式。马达辅助行驶模式是将发动机I和电动发电机2 二者作为动力源来驱动FR混合动力车辆的模式。发电行驶模式是仅将发动机I作为动力源来驱动FR混合动力车辆并使电动发电机2作为发电机而发挥功能的模式。
[0035]经由CAN通信线58对发动机控制器52输入由整合控制器51计算出的目标发动机扭矩。发动机控制器52控制发动机I的吸入空气量(节流阀的开度)、燃料喷射量、点火时期等,以使得发动机扭矩成为目标发动机扭矩。
[0036]经由CAN通信线58对马达控制器53输入由整合控制器51计算出的目标电动发电机扭矩。马达控制器53控制逆变器54以使得马达扭矩成为目标电动发电机扭矩。
[0037]逆变器54是使直流和交流两种电互相转换的电流转换器。逆变器54将来自电池3的直流转换为任意频率的三相交流并供给到电动发电机2,以使得马达扭矩成为目标电动发电机扭矩。另一方面,当电动发电机2作为发电机而发挥功能时,将来自电动发电机2的三相交流转换为直流并供给到电池3。
[0038]经由CAN通信线58对第一离合器控制器55输入由整合控制器51计算出的目标第一离合器扭矩容量。第一离合器控制器55控制第一电磁阀411,以使得第一离合器41的扭矩容量成为目标第一离合器扭矩容量。
[0039]经由CAN通信线58对变速机控制器56输入由整合控制器51计算出的目标第二离合器扭矩容量和目标变速级。变速机控制器56控制第二电磁阀431以使得第二离合器43的扭矩容量成为目标第二离合器扭矩容量。另外,控制向自动变速机42的各摩擦接合元件供给的液压,以使得自动变速机42的变速级成为目标变速级。
[0040]对制动器控制器57输入来自整合控制器51的再生协调控制指令。在由电动发电机产生的再生制动扭矩相对于踩入制动踏板时根据制动器操作量计算出的请求制动力不足的情况下,制动器控制器57基于再生协调控制指令实施再生协调制动控制,使得利用由制动器产生的摩擦制动扭矩弥补该不足的部分。
[0041 ] 在此,在FR混合动力车辆停车期间基本选择EV行驶模式,从而发动机成为停止状态。然而,在启动FR混合动力车辆时等发动机处于冷却状态的情况下,为了将发动机提前预热而使催化剂活化,有时即使在车辆停车期间也选择HEV行驶模式,来以第一离合器接合的状态使发动机启动。在这种情况下,在使发动机启动之后实施如下的怠速控制:在保持将第一离合器接合的HEV行驶模式的状态下进行怠速运转,通过反馈控制将发动机转速维持为怠速转速。
[0042]作为该HEV行驶马达时的怠速控制的方法,存在发动机怠速控制和马达怠速控制这两种怠速控制方法,其中,在该发动机怠速控制中,将电动发电机扭矩控制为规定的目标发电机扭矩,并且对发动机扭矩(吸入空气量)进行反馈控制,由此将发动机转速维持为怠速转速,在该马达怠速控制中,将发动机扭矩控制为规定的目标发动机扭矩,并且对电动发电机扭矩进行反馈控制,由此将发动机转速维持为怠速转速。
[0043]在本实施方式中,在HEV行驶模式下的怠速运转时,根据FR混合动力车辆的运转状态来切换是实施发动机怠速控制还是实施马达怠速控制。
[0044]具体地说,在HEV行驶模式下的怠速运转时,基本上实施利用响应性和控制性优良的电动发电机进行反馈控制的马达怠速控制。由此,与发动机怠速控制时相比能够实施稳定的怠速运转,因此与发动机怠速控制时相比能够使点火时期产生滞后角,能够促进发动机的预热。而且,例如在电池SOC变得极少等情况下,仅在难以实施马达怠速控制时实施发动机怠速控制。
[0045]在此,根据FR混合动力车辆的运转状态的不同,有时必须在HEV行驶模式下的怠速运转中从马达怠速控制切换为发动机怠速控制。
[0046]在马达怠速控制中,作为载荷而对发动机输入了电动发电机的反馈扭矩(以下称为“F/B电动发电机扭矩”),该电动发电机的反馈扭矩是基于实际发动机转速与目标怠速转速的偏差而计算出的。然而,当从马达怠速控制切换为发动机怠速控制时,该F/B电动发电机扭矩为零。因此,获知了如果单纯地从马达怠速控制切换为发动机怠速控制则会产生以下问题:在切换时F/B电动发电机扭矩为零的部分,发动机转速暂时降低或者突然上升。
[0047]因此,在本实施方式中,在从马达怠速控制向发动机怠速控制切换时,设为通过将马达怠速控制中的F/B电动发电机扭矩接替为发动机的反馈扭矩(以下称为“F/B发动机扭矩”)并实施发动机怠速控制,来抑制切换时的发动机转速暂时降低、突然上升。以下,对该本实施方式的HEV行驶模式下的怠速控制进行说明。
[0048]图2是对本实施方式的HEV行驶模式下的怠速控制进行说明的流程图。
[0049]在步骤SI中,整合控制器51读入各种传感器的检测值。
[0050]在步骤S2中,整合控制器51基于电池SOC、电池温度、电池的输入输出电流等来判断是否能够实施马达怠速控制。如果整合控制器51判断为能够实施马达怠速控制则进行步骤S2的处理,另一方面,如果整合控制器51判断为不能实施马达怠速控制则进行步骤S3的处理。
[0051]在步骤S3中,整合控制器51实施马达怠速控制。在马达怠速控制中,如上所述那样将发动机扭矩控制为规定的目标发动机扭矩,并且对电动发电机扭矩进行反馈控制,由此将发动机转速维持为怠速转速。另外,与发动机怠速控制时设定的基本点火时期相比点火时期产生滞后角。
[0052]在步骤S4中,整合控制器51判断是否为从马达怠速控制向发动机怠速控制切换时。如果是从马达怠速控制向发动机怠速控制切换时,则整合控制器51进行步骤S5的处理。另一方面,如果不是从马达怠速控制向发动机怠速控制切换时,则整合控制器51进行步骤S6的处理。
[0053]在步骤S5中,整合控制器51实施从马达怠速控制向发动机怠速控制的转变控制。具体地说,将马达怠速控制中的F/B电动发电机扭矩接替为F/B发动机扭矩来转变为发动机怠速控制。
[0054]在步骤S6中,整合控制器51实施发动机怠速控制。在发动机怠速控制中,如上所述那样将电动发电机扭矩控制为规定的目标发电机扭矩,并且对发动机扭矩(吸入空气量)进行反馈控制,由此将发动机转速维持为怠速转速。
[0055]图3是对从马达怠速控制向发动机怠速控制切换时的F/B电动发电机扭矩的接替方法进行说明的图。
[0056]如图3所示,在发动机怠速控制中,将基于发动机载荷、发动机水温,点火时期等计算出的发动机的前馈扭矩(以下称为“F/F发动机扭矩”)与F/B发动机扭矩相加,来计算出目标发动机扭矩。然后,基于该目标发动机扭矩,根据图3的表计算出目标吸入空气量,控制节流阀的开度以使得成为目标吸入空气量。
[0057]在此,当对发动机扭矩与吸入空气量的关系进行说明时,如图3所示,在发动机扭矩成为规定的发动机扭矩之前,与发动机扭矩的增加相应地,所需的吸入空气量也线性地增加。然而,当发动机扭矩超过规定的发动机扭矩时,进入所谓的非音速区域,与发动机扭矩的增加相应地,所需的吸入空气量非线性地增加。
[0058]因而,如图3所示,在音速区域与非音速区域内,输出与F/B电动发电机扭矩量相当的发动机扭矩所需的吸入空气量不同。于是,如果对将根据F/F发动机扭矩和F/B发动机扭矩分别独立地计算出的吸入空气量相加得到的吸入空气量与基于将F/F发动机扭矩和F/B发动机扭矩相加得到的扭矩而计算出的吸入空气量进行比较,则前者的吸入空气量少。也就是说,在前者的情况下,即使将F/B电动发电机扭矩接替为F/B发动机扭矩,也不能供给为了输出与F/B电动发电机扭矩量相当的发动机扭矩所需的吸入空气量。
[0059]因此,在本实施方式中,当将F/B电动发电机扭矩接替为F/B发动机扭矩时,基于将F/F发动机扭矩与接替后成为F/B发动机扭矩的F/B电动发电机扭矩相加而得到的发动机扭矩来计算出目标吸入空气量。
[0060]由此,即使在将F/F发动机扭矩与接替后成为F/B发动机扭矩的F/B电动发电机扭矩相加而得到的发动机扭矩处于非音速区域的情况下,吸入空气量也不会不足。由此,在从马达怠速控制向发动机怠速控制切换时,能够可靠地利用发动机扭矩弥补F/B电动发电机扭矩量。
[0061 ] 图4是对本实施方式的HEV行驶模式下的怠速控制的动作进行说明的时序图。
[0062]在启动发动机之后实施马达怠速控制直到时刻tl为止。在马达怠速控制中,将发动机扭矩控制为规定的目标发动机扭矩(图4的(C)),并且对电动发电机扭矩进行反馈控制(图4的(B))。由此,将发动机转速维持为怠速转速(图4的(A))。此外,在图4的例子中,怠速控制中的目标电动发电机扭矩是负值,利用电动发电机2进行发电。另外,在图4的例子中,对吸入空气量进行前馈控制以使得发动机扭矩成为规定的目标发动机扭矩,但实际的发动机扭矩比目标发动机扭矩小,因此,通过利用反馈控制使实际的电动发电机扭矩比目标电动发电机扭矩大(负的扭矩小)来维持怠速转速。此时,F/B电动发电机扭矩是正值。
[0063]当在时刻tl从马达怠速控制切换为发动机怠速控制时,马达怠速控制中的F/B电动发电机扭矩被接替为F/B发动机扭矩。由此,在时刻tl的时间点,追加了与F/B电动发电机扭矩量相当的吸入空气量(图4的(D)),因此能够抑制切换时的发动机转速的暂时性的降低、突然上升(图4的(A))。此外,在该例中,F/B电动发电机扭矩是正值,因此进行了吸入空气量的追加(增量),但在F/B电动发电机扭矩是负值的情况下进行吸入空气量的减量,从而能够抑制切换时的发动机转速的暂时性的突然上升。
[0064]另外,当在时刻tl从马达怠速控制切换为发动机怠速控制时,点火时期朝向发动机怠速控制时用的点火时期(基本点火时期)逐渐提前。
[0065]在时刻tl之后实施发动机怠速控制。在发动机怠速控制时,将电动发电机扭矩控制为规定的目标发电机扭矩(图4的(B)),并且对发动机扭矩(吸入空气量)进行反馈控制(图4的(D))。由此,将发动机转速维持为怠速转速(图4的(A))。
[0066]根据以上说明的本实施方式,当在HEV行驶模式下的怠速运转中从马达怠速控制切换为发动机怠速控制时,设为将马达怠速控制中的F/B电动发电机扭矩接替为F/B发动机扭矩并实施发动机怠速控制。即,设为对发动机的输出扭矩附加电动发电机的载荷扭矩量(F/B电动发电机扭矩量)来转变为发动机怠速控制,该电动发电机的载荷扭矩量在马达怠速控制中被输入到发动机以使得将发动机转速维持为怠速转速。
[0067]由此,当从马达怠速控制切换为发动机怠速控制时,F/B电动发电机扭矩为零,从而能够抑制由发动机载荷急剧变化导致的发动机转速的暂时性的降低、突然上升。
[0068]另外,根据本实施方式,当将接替后成为F/B发动机扭矩的F/B电动发电机扭矩转换为目标吸入空气量时,设为将对F/F发动机扭矩追加F/B电动发电机扭矩而得到的扭矩作为目标发动机扭矩并转换为目标吸入空气量。
[0069]由此,在从马达怠速控制向发动机怠速控制切换时,能够可靠地利用发动机扭矩弥补F/B电动发电机扭矩量。
[0070](第二实施方式)
[0071]接着,参照图5来说明本发明的第二实施方式。本实施方式与第一实施方式的不同点在于,根据点火时期的滞后角量来校正接替后的F/B发动机扭矩。下面,以该不同点为中心进行说明。此外,在以下所示的各实施方式中对发挥与上述第一实施方式相同的功能的部分使用相同的附图标记,并适当省略重复的说明。
[0072]如上所述,在马达怠速控制时,与发动机怠速控制时相比能够进行稳定的怠速运转,因此与发动机怠速控制时相比能够使点火时期产生滞后角。
[0073]在此,在第一实施方式中,除了考虑发动机载荷、发动机水温以外,还考虑点火时期来计算出F/F发动机扭矩,但对于F/B发动机扭矩,没有考虑点火时期的影响。
[0074]因此,在本实施方式中,当将F/B电动发电机扭矩接替为F/B发动机扭矩时,根据点火时期的滞后角量来校正F/B发动机扭矩。
[0075]图5是对本实施方式的F/B发动机扭矩的校正方法进行说明的图。
[0076]如图5的㈧所示,在第一实施方式中,当将F/B电动发电机扭矩接替为F/B发动机扭矩并将该F/B发动机扭矩量换算为吸入空气量时,进行该换算而得到的吸入空气量成为如下吸入空气量:为了在将点火时期设为发动机怠速控制时通常设定的基本点火时期的状态下输出该F/B发动机扭矩所需的吸入空气量。
[0077]因此,在马达怠速控制时使点火时期产生滞后角的情况下,当切换为发动机怠速控制时吸入空气量不足,发动机转速有可能暂时降低。
[0078]因此,在本实施方式中,如图5的(B)所示,根据点火时期的滞后角量对接替后的F/B发动机扭矩进行增大校正,将校正得到的该F/B发动机扭矩量换算为吸入空气量。
[0079]由此,即使设为使点火时期产生滞后角,在从马达怠速控制切换为发动机怠速控制时吸入空气量也不会不足,从而能够抑制发动机转速的暂时性的降低。
[0080]以上,对本发明的实施方式进行了说明,但上述实施方式只不过示出了本发明的适用例的一部分,宗旨并非是将本发明的技术范围限定于上述实施方式的具体结构。
[0081]例如,FR混合动力车辆的第二离合器43也可以如图6所示那样另外设置于电动发电机2与自动变速机42之间,还可以如图7所示那样另外设置在自动变速机42的后方。另外,并不限于此,第二离合器43只要设置在从电动发电机2到驱动轮之间即可。
[0082]另外,在上述各实施方式中,作为自动变速机42,使用了前进7速后退I速的有级变速机,但变速级数并不限于此,另外,也能够使用无级变速机。
[0083]本申请要求2012年7月13日向日本专利局申请的特愿2012-157589号的优先权,通过参照而将该申请的全部内容编入本说明书。
【权利要求】
1.一种混合动力车辆的控制装置,该混合动力车辆具备发动机和电动发电机来作为动力源,该混合动力车辆的控制装置具备: 发动机怠速单元,其在上述发动机与上述电动发电机相连接的状态下将发动机转速维持为怠速转速的怠速运转时,实施通过上述发动机将发动机转速维持为怠速转速的发动机怠速控制; 马达怠速单元,其在上述怠速运转时实施通过上述电动发电机将发动机转速维持为怠速转速的马达怠速控制; 切换单元,其根据混合动力车辆的运转状态来切换是实施上述发动机怠速控制还是实施上述马达怠速控制;以及 怠速控制转变单元,其在上述怠速运转时从上述马达怠速控制切换为上述发动机怠速控制时,对上述发动机的输出扭矩附加上述电动发电机的载荷扭矩量来转变为上述发动机怠速控制,该电动发电机的载荷扭矩量是在上述马达怠速控制中被输入到上述发动机以将发动机转速维持为怠速转速的载荷扭矩量。
2.根据权利要求1所述的混合动力车辆的控制装置,其特征在于, 上述发动机怠速单元实施设定上述发动机的输出扭矩的反馈校正量的反馈控制,以使得发动机转速成为怠速转速, 上述马达怠速单元实施设定上述电动发电机的输出扭矩的反馈校正量的反馈控制,以使得发动机转速成为怠速转速, 上述怠速控制转变单元通过将上述马达怠速控制中的上述电动发电机的输出扭矩的反馈校正量接替为上述发动机的输出扭矩的反馈校正量,来对上述发动机的输出扭矩附加上述电动发电机的载荷扭矩量。
3.根据权利要求1或2所述的混合动力车辆的控制装置,其特征在于, 上述怠速控制转变单元将上述发动机的吸入空气量增加使上述发动机输出与上述电动发电机的载荷扭矩量相当的输出扭矩所需的吸入空气量,来转变为上述发动机怠速控制。
4.根据权利要求3所述的混合动力车辆的控制装置,其特征在于, 上述怠速控制转变单元考虑非音速区域来计算所要增加的吸入空气量。
5.根据权利要求3或4所述的混合动力车辆的控制装置,其特征在于, 还具备点火时期控制单元,该点火时期控制单元使上述马达怠速控制中的上述发动机的点火时期与上述发动机怠速控制中的上述发动机的点火时期相比产生滞后角, 上述怠速控制转变单元基于点火时期的滞后角量来校正所要增加的吸入空气量。
6.—种混合动力车辆的控制方法,该混合动力车辆具备发动机和电动发电机来作为动力源,在上述发动机与上述电动发电机相连接的状态下进行将发动机转速维持为怠速转速的怠速运转,该混合动力车辆的控制方法包括以下步骤: 切换步骤,在上述怠速运转时,根据混合动力车辆的运转状态从通过上述电动发电机将发动机转速维持为怠速转速的马达怠速控制切换为通过上述发动机将发动机转速维持为怠速转速的发动机怠速控制;以及 转变步骤,当从上述马达怠速控制切换为上述发动机怠速控制时,对上述发动机的输出扭矩附加上述电动发电机的载荷扭矩量来转变为上述发动机怠速控制,该电动发电机的载荷扭矩量是在上述马达怠速控制中被输入到上述发动机以使得将发动机转速维持为怠速转速的载荷扭矩量。
【文档编号】F02D9/02GK104470778SQ201380037451
【公开日】2015年3月25日 申请日期:2013年5月1日 优先权日:2012年7月13日
【发明者】渡边桂, 大埜健 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1