用于柴油微粒过滤器效率评估的发动机控制的制作方法

文档序号:12428221阅读:319来源:国知局
用于柴油微粒过滤器效率评估的发动机控制的制作方法与工艺

本公开涉及一种设计成控制柴油内燃机,用于评估柴油微粒过滤器(DPF)效率的系统和方法。



背景技术:

各种各样的排气后处理装置已经被开发出来,来有效地限制内燃机的排气排放。用于现代柴油发动机排气的后处理系统通常包括柴油微粒过滤器(DPF),DPF用于在排气被排到大气之前收集和处理柴油发动机排出的烟灰微粒物质。

通常,DPF作为用于从排气流去除微粒物质的捕集器。典型的DPF包含诸如铂和/或钯的贵金属,所述贵金属用作催化剂,以进一步氧化存在于排气流中的烟灰和碳氢化合物。DPF可利用过热排气来再生或清洁,以烧尽收集的微粒。



技术实现要素:

本发明公开了一种用于控制柴油发动机的方法,该柴油发动机经由排气系统与具有柴油微粒过滤器(DPF)的排气后处理(AT)系统流体连通。该方法包括:检测柴油发动机的稳态操作,在稳态操作期间,该发动机产生经由排气系统引导至DPF中的第一微粒物质(PM)或烟灰流量。该方法还包括:在发动机稳态操作期间,触发阀,以调节至发动机的排气再循环(EGR),由此将第二微粒物质流量经由排气系统引导至DPF。第二流量大于第一流量。该方法另外包括:响应于引导至DPF中的第二微粒物质流量,而经由置于DPF下游的PM传感器检测离开DPF的微粒物质流量。该方法还包括:经由PM传感器,将指示检测到的离开DPF的微粒物质流量的信号传送给控制器。另外,该方法包括:经由控制器,将检测到的离开DPF的微粒物质流量和微粒物质流量阈值进行比较。此外,该方法包括:如果检测到的离开DPF的微粒物质流量大于微粒物质流量阈值,则经由控制器调节排气系统中的燃料注入,以使DPF再生,即,烧尽其上收集的微粒物质。

柴油发动机的稳态操作可被确认为发动机的转速和负荷中的每一者都基本恒定时的发动机操作。

该方法还可包括:如果在所述的调节排放系统中的燃料注入以烧尽在DPF中收集的微粒物质之后检测到的离开DPF的微粒物质流量大于微粒物质流量阈值,则(诸如经由故障指示灯(MIL))设定指示DPF已经失效的信号。

控制器可编程有查找表,该查找表将在发动机的稳态操作期间经由排气系统引导至DPF中的第二微粒物质流量与检测到的离开DPF的微粒物质流量关联起来,以建立用于可接受的DPF的阈值。

第一微粒物质流量可在PM传感器的检测精确度或灵敏度之外。另一方面,第二微粒物质流量可在PM传感器的检测精确度之内。

PM传感器的检测精确度可由于在其上收集了微粒物质而降低。

第一微粒物质流量可以约为每立方米排气流1.1毫克,而第二微粒物质流量可以比第一流量大至少10%或大于每立方米排气流1.2毫克。

本发明还提供一种用于控制柴油发动机AT系统中的再生的系统以及一种使用这种系统的车辆。

通过以下对实施所述公开的实施例和最佳方式的详细描述并结合附图和所附权利要求书,本公开的上述特征和优点以及其他特征和优点将显而易见。

附图说明

图1是具有连接到排气系统的柴油发动机的车辆的示意性平面图,该排气系统具有用来减少排气排放的后处理(AT)系统。

图2是评估在图1中示出的排气后处理(AT)系统中柴油微粒过滤器(DPF)效率的方法的流程图。

具体实施方式

参照附图,其中在附图的若干个视图中相似的参考标号表示相似的部件,图1示意性地描述了机动车辆10。车辆10包括配置为经由从动轮14推进车辆的压缩点火式或柴油内燃式发动机12。柴油发动机12的内燃在特定量的环境空气流16与来自燃料箱20的计量数量的燃料18混合时,以及由此产生的空气-燃料混合物在发动机的汽缸(未示出)内被压缩时发生。

如图所示,发动机12包括排气歧管22和涡轮增压器24。涡轮增压器24由排气流26激发,排气流26在每次燃烧事件之后,通过排气歧管22由发动机12的单个汽缸释放。涡轮增压器24连接至排气系统28,该排气系统28接收排气流26,并最终向环境中释放气流,一般在车辆10的一侧或尾部之上。尽管发动机12被描述为具有附接到发动机结构的排气歧管22,但该发动机可包括(诸如大体上形成在排气歧管中的)排气通道(未示出)。在这种情况下,上述通道可包含在发动机结构中,诸如发动机的汽缸盖。此外,尽管涡轮增压器24示出了,但并不阻碍发动机12在没有这种功率增大装置的情况下配置和操作。

车辆10还包括柴油发动机后处理(AT)系统30。AT系统30包括一些排气后处理装置,这些排气后处理装置配置为有序地从排气流26中去除微粒物质(PM)或烟灰,即,主要是发动机内燃的含碳副产物和排放成分。如图所示,AT系统30作为排气系统28的一部分进行操作,并包括柴油机氧化催化剂(DOC)32。DOC32的主要功能是减少一氧化碳(CO)和无甲烷碳氢化合物(NMHC)。另外,DOC32配置为产生二氧化氮(NO2),这是置于DOC32的下游的选择性催化还原(SCR)催化剂34所需要的。DOC32通常含有由诸如铂和/或钯的贵金属构成的催化剂物质,该催化剂物质在其中作用以实现上述目的。通常,相对于NO2的产生,DOC32在高温下被激活并达到操作效率。因此,如图1所示,DOC32可被紧密联接至涡轮增压器24,以在气体到达DOC前减少来自排气流26的热能损失。

另一方面,SCR催化剂34配置为在DOC32产生的NO2的帮助下,将NOx转变为双原子氮气(N2)和水(H2O)。当还原剂被用在柴油发动机中时,SCR转变过程另外需要通用名称为“柴油机-排气-流体”(DEF)36的控量的或计量的还原剂。DEF36可以是包括水和氨(NH3)的尿素水溶液。在AT系统30中DOC32的下游和SCR催化剂34的上游的位置处,DEF36从储存器37中被喷射入排气流26。因此,当排气流26流经SCR催化剂时,DEF36接近SCR催化剂34。SCR催化剂34的内表面包括基面涂层,该基面涂层用作吸引DEF36,使得DEF在NO和NO2存在时可以与排气流26相互作用,并产生化学反应以减少来自发动机12的NOx的排放。

在SCR催化剂34之后,排气流26进入到与柴油微粒过滤器(DPF)40串联且布置在其上游的第二柴油机氧化催化剂(DOC)38。DOC38和DPF40可以置于单个罐42内部,如图1所示。DOC38配置成将存在于排气流26中的碳氢化合物和一氧化碳氧化成二氧化碳(CO2)和水。DPF40配置成在排气流26排放到大气中之前收集和处理由发动机12排出的微粒物质。因此,DPF40作为用于从排气流去除微粒物质(具体地是,烟灰)的捕集器。类似于上述DOC32、DOC38和DPF40中的每一者通常均包含贵金属,诸如铂和/或钯,所述贵金属充当受检装置中的催化剂以实现它们各自的目的。在流经罐42内部的DOC38和DPF40之后,排气流26被认为是充分清洁过的有毒微粒物质,然后可被允许离开排气系统28进入到大气中。

AT系统30还可以包括配置成在发动机12下游的不同点处感测排气流26的温度的多个温度探头44、45、46、47和48。AT系统30还包括控制器50。根据本公开,控制器50配置为调节发动机12的操作、以及排气后处理装置(即DOC32、SCR催化剂34、DOC38和DPF40)的操作。每个温度探头44、45、46、47和48与控制器50电通信,以便有助于AT系统30的调节。

控制器50可配置为中央处理单元(CPU),其配置成调节内燃机12(图1中所示)、混合动力传动系统(未示出)或其他替代类型的动力装置,以及其它车辆系统或专用控制器的操作。为了适当地控制AT系统30的操作,控制器50包括存储器,其至少一些是有形的和非瞬时的。存储器可以是参与提供计算机可读数据或过程指令的任何可记录介质。这样的介质可采取多种形式,包括但不限于非易失性介质和易失性介质。

用于控制器50的非易失性介质可以包括例如光盘或磁盘以及其它永久存储器。易失性介质可以包括例如动态随机存取存储器(DRAM),其可构成主存储器。这样的指令可以由一种或多种传输介质进行传输,包括同轴电缆、铜线和光纤,包括包含联接到计算机处理器的系统总线的导线。控制器50的存储器还可以包括软盘、柔性盘、硬盘、磁带、任何其它磁介质、CD-ROM、DVD、任何其它光学介质等。控制器50可配置或配备有其它所需的计算机硬件,诸如高速时钟、必需的模拟-数字(A/D)和/或数字-模拟(D/A)电路、任何必要的输入/输出电路和装置(I/O)、以及适当的信号调制和/或缓冲电路。控制器50所需的或由此可访问的任何算法可以存储在存储器中并自动执行以提供所需的功能。

在发动机12操作过程中,发动机12排出的碳氢化合物可以时常沉积在DPF40上,从而影响AT系统30的操作效率。因此,DPF40在其上的碳基烟灰积聚到某特定量之后必须再生或清洁,以烧尽所收集的微粒。排气后处理装置的再生可以,例如,在特定质量流量的空气已经由发动机消耗用于燃烧一段时间之后开始。通常,这样的再生可以利用高温排气流来完成以烧尽所积聚的微粒。DPF40可以经由被直接喷射到DPF上游的排气流中的燃料18再生,然后在适当的情况下点燃喷射的燃料。

车辆10还包括配置成评估DPF40的效率的系统52。系统52包括DPF40和控制器50,并且还可以包括DOC38。系统52包括微粒物质(PM)传感器54,该PM传感器设置在DPF40下游并且配置为检测离开DPF的微粒物质的流量并将指示所检测的流量的信号传送给控制器50。另外,系统52包括排气再循环(EGR)阀56,该EGR阀配置为调节排气流26的一部分经由通道58到发动机12的再循环。EGR阀56接收来自排气歧管22的排气流26的一部分,并将该部分引导回发动机的汽缸用于压缩和动力冲程。结果,在动力冲程上发动机12使用较少的燃料,从而避免发动机爆震,这允许发动机以显著稀薄的燃料-空气比运行,以及产生改进的燃料经济性和降低的气体排放。然而,随着EGR阀56使排气流26的受检部分再循环,与没有EGR的操作相比,发动机12通常在排气中产生增加量的微粒物质。

AT系统30还包括特定装置,诸如配置为选择性地将预定量的柴油燃料18喷射到SCR催化剂34之后且在DOC38上游的排气流26中的HC喷射器60。柴油燃料18的这种喷射被用来使排气流过热,并执行AT系统30的再生,具体地是DPF40的再生。控制器50可调节HC喷射器60的操作,以在AT系统30的再生被认为适当时开始或触发这种再生。控制器50还配置成检测发动机12的稳态操作,期间发动机产生第一微粒物质流量62,排气系统28随后将该第一流量62引导至DPF40。根据本公开,发动机12的稳态操作被确定为发动机转速和负荷都基本上恒定时的发动机操作。当例如车辆10在水平面上以稳定车速行驶时,发动机12的负荷可以是相对恒定的。第一微粒物质流量62或浓度可以是每立方米排气流26约1.1毫克。

控制器50另外配置为在发动机12的稳态操作期间触发EGR阀56,以调节到发动机汽缸的排气再循环,由此经由排气通道58将第二微粒物质流量64引导至DPF40。第二微粒物质流量64可以比第一流量62大至少10%,或至少每立方米排气流26为1.2毫克。换句话说,排气流26在第二流量64比在第一流量62将更大量的微粒物质引导至DPF40。通常,在瞬态发动机操作过程中,从代表性发动机12发生微粒物质的最大流量或浓度,并可能达到每立方米排气流26约52.8毫克。

控制器50另外配置为响应于被引导至DPF的第二微粒物质流量64从PM传感器54接收指示检测到的离开DPF40的微粒物质流量66的信号。控制器50还配置成将检测到的离开DPF40的微粒物质流量66与微粒物质流量阈值68进行比较。控制器50还配置成,如果检测到的离开DPF的微粒物质流量66大于微粒物质流量阈值68,则调节经由HC喷射器60进入排气系统28的燃料18的喷射以使DPF40再生,例如,通过发送适当的控制信号。微粒物质流量阈值68可以设定为车辆10每行驶一英里约15毫克。

有时,如在发动机12的稳态操作期间,第一微粒物质流量62可以具有使得第一流量在PM传感器54的检测精确度和/或灵敏度之外的低值。另一方面,当EGR阀56使排气流26的一部分再循环到发动机12时,第二微粒物质流量64相对于第一流量62将增加到第二流量将在PM传感器54的检测精确度和/或灵敏度之内的程度。注意到PM传感器54的检测精确度和灵敏度可能在“老化的”PM传感器中降低,这是由于累计操作循环期间微粒物质在其上的收集。因此,第二微粒物质流量64可以选择成使得也可以可靠地采用老化的PM传感器54来评估DPF40的有效性。

上述经由EGR阀56到发动机12的排气流26的一部分的再循环允许对AT系统30中的DPF40的效率进行干预评估。如本文所采用的,术语“干预”意味着为了DPF40的效率评估的受检有限目的对主发动机12的操作进行修改。DPF40效率的这种干预评估旨在对发动机12的排放具有最小的影响,因为在发动机的稳态操作期间产生的微粒物质的实际增加显著低于任何特定的排放要求。

控制器50可以另外配置成如果检测到的离开DPF的微粒物质流量66大于微粒物质流量阈值68,则设定识别DPF40发生故障或已经失效的信号70。这种评估通常表示DPF40已经老化且目前不能除去必要量的微粒物质。控制器50可以配置为在经由HC喷射器60的燃料18的调节喷射以烧尽DPF40中收集的微粒物质之后执行这种评估以及设定信号70。信号70可经由故障指示灯(MIL)和/或嵌入在控制器50的存储器中的供授权实体进行后续检索的故障代码生成。通常,微粒物质可以在车辆10每行驶一英里1至10毫克的范围内逃离有效的DPF40。针对比较,如果微粒物质在车辆10每行驶一英里15至50毫克或更大的范围内逃离DPF40,则可以认为受检DPF故障。

控制器50可编程有查找表72,该查找表72将在发动机12的稳态操作期间被引导至DPF40的第二微粒物质流量64与检测到的离开DPF40的微粒物质流量66相关联。用于查找表72的基准数据可在AT系统30的测试和验证期间凭经验进行编辑。第二流量64和检测流量66之间的这种表格关联性可以建立用于有效的或可接受的DPF40(即,产生低于流量阈值68的微粒物质的DPF)的阈值,其由控制器50用来设定信号70。

图2示出了控制柴油发动机12的方法80,用于AT系统30中的DPF40的效率的干预评估,如上面关于图1所描述的。该方法开始于框82,其中其包括经由控制器50检测发动机12的稳态操作,期间发动机产生经由排气系统被引导至DPF40中的第一微粒物质流量62。在框82之后,该方法前进到框84,其中,该方法包括在发动机12的稳态操作期间触发EGR阀56,以(诸如通过增加EGR的量)调节到发动机的排气再循环,从而将第二微粒物质流量64经由排气系统28引导至DPF40中。如上关于图1所讨论的,第二流量64大于第一流量62。

接着框84,该方法前进到框86,其中,该方法包括响应于被引导至DPF中的第二微粒物质流量64经由PM传感器54检测离开DPF40的微粒物质的流量。在框86之后,该方法前进到框88,并且包括经由PM传感器54将指示检测到的离开DPF40的微粒物质流量66的信号70传送给控制器50。接着框88,该方法前进到框90,并且包括比较经由控制器50将检测到的离开DPF40的微粒物质流量66与微粒物质流量阈值68进行比较。在框90之后,该方法前进到框92,其中,该方法包括如果检测到的离开DPF的微粒物质流量66大于微粒物质流量阈值68,则经由控制器50调节HC喷射器60,以喷射燃料18到排气系统28用于使DPF40再生。

在框92中的DPF40的再生之后,该方法可以循环返回框82。因此,控制器50可被编程为连续地监测发动机12和AT系统30的操作,以触发DPF40的效率的这种干预评估。另一方面,接着框92,该方法可以前进到框94,其中,如果在经由HC喷射器60喷射燃料18之后检测到的离开DPF的微粒物质流量66大于微粒物质流量阈值68,则控制器50设定指示DPF40已经失效的信号。如以上关于图1所讨论的,控制器50可编程有查找表72,该查找表72将在发动机12的稳态操作期间被引导至DPF40的第二微粒物质流量64与检测到的离开DPF40的微粒物质流量66相关联,以建立用于可接受的DPF的阈值。

具体实施方式和附图或图是对本公开的支持和描述,但本公开的范围仅由权利要求限定。虽然已详细描述了用于实施所要求保护的公开的一些最佳模式和其它实施例,但存在各种替代设计和实施例用于实施所附权利要求中限定的本公开。另外,在附图中示出的实施例或本说明书中提到的各种实施例的特征不必理解为彼此独立的实施例。相反,有可能的是,在一个实施例的一个示例中所描述的每个特征可以与来自其他实施例的一个或多个其他期望特征相结合,得到未用文字或参考附图描述的其它实施例。因此,这样的其他实施例落在所附权利要求的范围的框架之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1