一种利用空分系统储能的IGCC电站调峰装置的制作方法

文档序号:11755057阅读:434来源:国知局

本实用新型属于IGCC发电技术领域,涉及一种利用空分系统储能的IGCC电站调峰装置



背景技术:

电力生产具有随用随发,电能不能大规模存储的特点,因此,电网的发电侧和用电侧必须维持发电和用电的平衡。我国电网的峰谷差呈现不断增长的趋势,目前部分区域电网的昼夜峰谷差已达到60%以上,电网的调峰压力巨大。我国电网发电形式的组成主要包括火电、水电、核电、风电等,其中火电比重占据绝对的优势地位,水电装机容量趋于稳定,核电装机容量在稳步增长,风电装机则更是爆发式的增长。核电机组由于需要稳定运行,只能承担基本负荷,不能参与调峰,风电机组由于风资源不可控,也无法承担调峰责任,反而需要增加配套的调峰机组才能保证风电上网,水电机组由于受水利调节以及自身容量的限制,只能满足部分电网调峰的需求,因此,火电机组调峰是未来电网发电的必然要求。未来火电机组若想能够较好的生存,必须要有较高的调峰能力。

此外,风能作为一种成熟的可再生能源技术,已经得到了大力发展,截止2015年,我国风电装机容量高达1.5亿千瓦。风力发电具有运行不稳定,可靠性差的特点,风力发电机组的发电功率不是根据电力需求侧的需求进行发电,而是根据风况的情况进行发电,当风场风速大的时候就可以多发出电能,风速小的时候发电功率就少,因而风电的上网进一步提升了电网的调峰需求。为保证大规模风电上网,避免弃风现象造成的能源浪费,就必须配套能够快速响应的调峰机组,当风电场发电功率增大时,调峰机组降低负荷,以保证电网供需平衡,当风电场因为风小而发电功率减小时,调峰机组要升高负荷,以满足电网的电力负荷需求。这种大规模的快速负荷响应调峰责任只能由火电机承担。

整体煤气化联合循环(Integrated Gasification Combine Cycle,IGCC)是集成煤气化与燃气轮机联合循环的清洁高效发电技术,作为未来燃煤发电的重要发展方向之一,其调峰能力还不能满足电网的快速变负荷需求。IGCC发电是一种清洁高效的燃煤发电技术,相比于传统的燃煤机组,IGCC在发电效率、CO2排放水平、粉尘排放、氮氧化物排放、硫氧化物排放以及水耗方面都具有很大优势。然而,由于IGCC的工艺流程比较长,包括空分系统制氧、气化炉反应、合成气净化、燃气轮机发电、余热锅炉回收余热、汽轮机发电等一系列流程,当电网需要机组进行升降负荷时,IGCC电站首先需要从空分系统制氧量和气化炉投煤量进行调整,系统响应速率较慢,因而IGCC的负荷变动速率较慢,调峰能力比较弱,难以满足未来调峰需求。IGCC发电技术亟待完善,以提升调峰能力。



技术实现要素:

为克服IGCC发电系统负荷响应慢、调峰能力弱的缺点,本实用新型提出一种利用空分系统储能的IGCC电站调峰装置,通过直接降低和提升IGCC的厂用电的方法,实现IGCC电站快速调峰的能力。

本实用新型是通过以下技术方案来实现:

一种利用空分系统储能的IGCC电站调峰装置,包括气化炉、合成气净化单元、燃气轮机发电系统、余热锅炉系统和蒸汽轮机发电系统,所述的气化炉所需氧气由空分系统提供;所述的空分系统包括向精馏塔提供冷却空气的可变频调节的空气冷却压缩系统,在精馏塔内空气被分成氮气和氧气,分别存入液氮储罐和液氧储罐,液氧储罐经液氧泵、冷箱与氧气加热器相连接,从氧气加热器出来的高压氧气送去气化炉。

所述的空气冷却压缩系统包括空冷塔,自空冷塔出来的空气送往分子筛干燥器进行干燥,从分子筛干燥器出来的空气再经过增压机压缩后送膨胀压缩机,经过循环水冷却器冷却后进入冷箱进一步冷却,从冷箱出来的冷却空气再进入膨胀机膨胀降温后送入精馏塔。

所述的空分系统采用独立的空压机将空气加压后送空冷塔进行冷却;

或者,空分系统从燃气轮机压气机抽取高压空气送往空冷塔内进行冷却。

进一步的,从精馏塔出来的液氧送入液氧储罐,液氧泵从液氧储罐抽取液氧加压后送去冷箱与空气换热,然后送去氧气加热器,从氧气加热器出来的高压氧气送去气化炉;

从精馏塔出来的液氮存入液氮储罐,液氮泵从液氮储罐抽取液氮加压后送去冷箱与空气换热,然后送去氮气加热器加热后得到高压氮气,送去高压氮气系统;从精馏塔顶部分离的氮气送去低压氮气系统;

氧气加热器和氮气加热器均采用低压蒸汽作为加热源。

在氧气进入气化炉的同时投入煤粉,气化炉内发生气化反应生成合成气,合成气从气化炉出来后送合成气净化单元,经过净化的合成气送燃气轮机发电;燃气轮机的排烟送去余热锅炉回收排烟的余热,并产生蒸汽送去蒸汽轮机发电。

当电网不需要IGCC电站调峰时,空分系统处于正常工作状态,空压机的进气量与空分系统提供的氧气和氮气量相平衡,此时利用冷箱的换热即可满足氮气和氧气的加热,氮气加热器和氧气加热器不需要工作;

当IGCC电站因调峰需要提升负荷的时,减少空分系统的进气量,逐步降低空压机和增压机的出力直至停机,空分系统依赖液氧储罐存储的液氧和液氮储罐存储的液氮持续向气化炉提供氧气和高压氮气系统提供氮气;随着冷箱空气流量的减少,液氧和液氮在冷箱内不能获得充分加热,根据负荷需要启动氧气加热器和氮气加热器,调节对其供热的低压蒸汽流量,保证从氧气加热器和氮气加热器中流出的氧气和氮气的温度。

与现有技术相比,本实用新型具有以下有益的技术效果:

本实用新型提供的利用空分系统储能的IGCC电站调峰装置,克服了IGCC发电系统变负荷速度慢,电网调峰能力差的弊端,利用空分系统的储存能力实现了IGCC输出功率快速调节的能力,全厂输出功率可以在短时间内最快实现20%的范围的提升和降低。与气化炉和燃气轮机负荷调节协调配合,可以实现IGCC电厂更宽范围的快速变负荷能力。由于采用直接调节厂用电功率的策略进行输出功率调节,可以快速满足电网调峰需求,因而可以减轻气化炉、燃气轮机、余热锅炉、汽轮机等设备的快速变负荷负担。

本实用新型拓展了IGCC电厂调峰的负荷变动范围,使IGCC可以短时间承担超过额定输出功率20%的负荷。在IGCC电厂中,空分系统是主要的耗电大户,其中空压机和增压机的耗电功率约占总发功率的20%,通过降低空压机和增压机的功率,即可快速提升IGCC电站上网功率。在空分系统内设置大容量的液氧储罐和液氮储罐,并且专门设置了氧气加热器和氮气加热器。利用IGCC空分系统的储能能力,通过直接降低和提升IGCC的厂用电的方法,实现IGCC电站快速调峰的能力。

附图说明

图1为本实用新型的结构示意图。

其中,1为煤粉;2为气化炉;3为合成气净化单元;4为燃气轮机;5为燃气轮发电机;6为余热锅炉;7为余锅排烟;8为蒸汽轮机;9为蒸汽轮发电机;10为凝汽器;11为给水泵;12为氧气加热器;13为氮气加热器;14为膨胀压缩机;15为膨胀机;16为循环水冷却器;17为冷箱;18为液氧泵;19为液氮泵;20为液氧储罐;21为液氮储罐;22为精馏塔;23为低压氮气;24为过冷器;25为空气;26为空压机;27为空冷塔;28为分子筛干燥器;29为增压机。

具体实施方式

下面结合具体的实施例对本实用新型做进一步的详细说明,所述是对本实用新型的解释而不是限定。

如图1所示,一种利用空分系统储能的IGCC电站调峰装置,包括气化炉2、合成气净化单元3、燃气轮机发电系统、余热锅炉系统和蒸汽轮机发电系统,所述的气化炉2所需氧气由空分系统提供;所述的空分系统包括向精馏塔22提供冷却空气的可变频调节的空气冷却压缩系统,在精馏塔22内空气被分成氮气和氧气,分别存入液氮储罐21和液氧储罐20,液氧储罐20经液氧泵18、冷箱17与氧气加热器12相连接,从氧气加热器12出来的高压氧气送去气化炉2。

进一步的,所述的空气冷却压缩系统包括空冷塔29,自空冷塔29出来的空气送往分子筛干燥器28进行干燥,从分子筛干燥器28出来的空气再经过增压机29压缩后送膨胀压缩机14,经过循环水冷却器16冷却后进入冷箱17进一步冷却,从冷箱17出来的冷却空气再进入膨胀机15膨胀降温后送入精馏塔22。

所述的空分系统采用独立的空压机26将空气加压后送空冷塔27进行冷却;

或者,空分系统从燃气轮机压气机抽取高压空气送往空冷塔内进行冷却。

上述装置的调峰方法,包括以下操作:

IGCC电站接到电网快速升负荷指令时,在不增加发电功率的情况下,通过降低空压机和增压机负荷,实现IGCC电站向电网供电功率的大幅提升,满足调峰快速响应的要求;利用液氧储罐存储的液氧满足气化炉用氧的需求,利用液氮储罐存储的液氮满足高压氮气的需求;利用低压蒸汽对从冷箱出来的氧气在氧气加热器内进行加热调节;利用低压蒸汽对从冷箱出来的氮气在氮气加热器内进行加热调节;

IGCC电站接到电网降低负荷的指令时,增加空压机进气量,使空分系统进气量大于氧气和氮气的输出量,以补充高负荷调峰时液氧储罐和液氮储罐的液氧储量和液氮储量,以备电网下一次升负荷调峰的需求;由于空压机和增压机的负荷增加,IGCC电站电增加,对电网输出的功率降低,随着冷箱空气侧流量加大,对液氧和液氮的加热作用加大,调整氧气加热器和氮气加热器的加热蒸汽负荷直至切除加热蒸汽。

下面给出具体的实施例和调峰方法。

参见图1,一种利用空分系统储能的IGCC电站调峰装置,主要包括空分系统、气化炉、合成气净化单元、燃气轮机发电系统、余热锅炉系统、蒸汽轮机发电系统等组成(主要设备及运行参数如表1所示)。

空气25从空压机26入口进入,经压缩后送入空冷塔27,经冷却后送去分子筛干燥器28,在分子筛28内被干燥后,送去增压机29,从增压机29出来以后送去膨胀压缩机14,然后送去循环水冷却器16冷却降温,然后送去冷箱17,空气在冷箱17内降温后进入透平膨胀机15,在其中膨胀降温后送入精馏塔22,在精馏塔22内空气被分成氮气和氧气,其中部分高纯氮气从精馏塔顶部出来,作为低压氮气23送去电厂低压氮气系统。从精馏塔抽出液氧送至液氧储罐20,液氧储罐20向液氧泵18提供液氧,液氧泵18把液氧加压后送去冷箱17进行吸热气化,从冷箱17出来的氧气送去氧气加热器12,在氧气加热器12内利用低压蒸汽进行进一步加热升温后送至气化炉2。从精馏塔抽出液氮送至液氮储罐21,液氮储罐21向液氮泵19提供液氮,液氮泵19把液氮加压后送去冷箱17进行吸热气化,从冷箱17出来的氮气送去氮气加热器13,根据氮气温度情况,在氮气加热器内利用低压蒸汽进行进一步加热升温后送至全厂高压氮气系统。

煤粉1和氧气一起被送入气化炉2,在气化炉内完成气化以后生成粗合成气,粗合成气被送入合成气净化系统净化以后得到洁净的合成气然后送去燃气轮机4燃烧膨胀做功,燃气轮机带动燃气轮发电机5发电,燃气轮机排烟送去余热锅炉6,余热锅炉6回收烟气余热后排烟7排入大气。余热锅炉6产生的蒸汽送去蒸汽轮机8膨胀做功,蒸汽轮机8带动蒸汽轮发电机9发电,蒸汽轮机8排出乏汽送入凝汽器10,乏汽在凝汽器10内凝结成水后由给水泵11打回余热锅炉。

表1利用空分储能的IGCC调峰装置主要设备及运行参数

在上述系统中,空分系统是主要的耗电大户,其中空压机和增压机的耗点功率约占总发功率的20%。当电网不需要IGCC发电系统调峰的时候,空分系统处于正常工作状态,空压机的进气量与空分系统产的氧气和氮气量相平衡,此时利用冷箱的回热加热功能即可满足氮气和氧气的加热功能,氮气加热器和氧气加热器不需要工作;

当电网不需要IGCC电站调峰时,空分系统处于正常工作状态,空压机的进气量与空分系统提供的氧气和氮气量相平衡,此时利用冷箱的换热即可满足氮气和氧气的加热,氮气加热器和氧气加热器不需要工作;

当IGCC发电系统需要调峰提升负荷的时候,根据升负荷的需要,控制减少空分系统的进气量,降低空压机和增压机的出力,直至空压机和增压机停机,此时,空分系统依赖液氧储罐存储的液氧和液氮储罐存储的液氮持续向气化炉提供氧气和向IGCC全厂高压氮气系统提供氮气。由于冷箱空气流量的减少,在冷箱内液氧和液氮不能获得充分加热,根据负荷需要,启动氧气加热器和氮气加热器,通过低压蒸汽加热,调节低压蒸汽流量可保证从氧气加热器和氮气加热器出来的高压氧气和高压氮气温度合格。

通过降低增压机和空压机负荷甚至停机的方法,可以使IGCC对外输出的功率快速提升,对电网输出功率爬坡速度可达电厂额定发电负荷的15%/min,短时电厂输出功率增幅最高可达20%。

通过降低空分系统功率增加电站功率输出以后,若在几个小时之内电网要求电站降低输出功率,则等到当电网调峰需要IGCC降低负荷的时候,增加空压机进气量,使空分系统进气量大于氧气和氮气的输出量,以补充高负荷调峰时液氧储罐和液氮储罐的液氧储量和液氮储量,以备电网下一次升负荷调峰的需求,由于增加空压机和增压机的负荷增加,厂用电增加,IGCC发电系统对电网输出的功率降低,该工况下,由于冷箱空气侧流量加大,对液氧和液氮的加热作用加大,可根据温度情况,调整氧气加热器和氮气加热器的负荷直至切除加热蒸汽。

通过降低空分系统功率增加功率输出以后,若在较长时间之内电网都要求机组维持高输出功率,则通过逐步提升气化炉、燃气轮机发电系统、蒸汽轮机发电系统等的负荷逐渐实现电厂发电功率的提升,与此同时逐步恢复空压机和增压机负荷,增加厂用电功率,直至使空分系统恢复到正常工作水平。

以上给出的实施例是实现本实用新型较优的例子,本实用新型不限于上述实施例。本领域的技术人员根据本实用新型技术方案的技术特征所做出的任何非本质的添加、替换,均属于本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1