SCR系统控制装置的制作方法

文档序号:12587946阅读:557来源:国知局
SCR系统控制装置的制作方法

本发明涉及一种SCR系统控制装置,属于柴油机后处理系统控制技术领域。



背景技术:

SCR后处理技术是柴油机降低尾气中NOx的主要技术手段,其基本原理是通过喷射尿素水解雾化形成的氨气在催化器内与排气中的NOx发生氧化还原反应,生成无害的氮气。

随着国家排放法规逐步加严,从国四排放法规开始,SCR系统已经批量应用在柴油车上。SCR系统一般由控制系统、尿素喷射系统、相关传感器、尿素加热装置等几部分组成,其中控制系统是SCR系统的大脑,根据传感器相关信号及执行器反馈的信号,控制尿素泵定时定量将尿素喷入到SCR催化净化器内,降低NOx排放值。

目前,SCR控制策略主要由以下几部分组成:尿素喷射量开环控制模块、尿素喷射量反馈控制模块、信号采集模块、尿素泵控制模块、尿素加热模块等几部分组成。尿素喷射量开环控制模块基于原机NOx的排放值,根据理论计算量及SCR催化剂转化效率,查表得出实时的尿素喷射量,作为前馈尿素喷射量。尿素喷射量反馈控制模块基于下游NOx传感器的值进行闭环控制。当检测到下游NOx值过多时,增加喷射量;当检测到下游NOx值过低时,减少喷射量。信号采集模块主要采集相关传感器传入的信号,如排气温度信号、环境温度信号、NOx浓度信号等。尿素泵控制模块主要控制尿素泵的喷射时刻及喷射量。尿素加热模块主要控制尿素管路、尿素泵及尿素箱的加热解冻。

分析目前的SCR控制策略,能够满足国四、国五排放控制系统。但存在以下缺陷:

1、尿素反馈基于NOx传感器进行闭环控制。由于NOx传感器无法区分NOx和NH3两种气体,会误把NH3气当成NOx,从而导致闭环控制偏差较大。

2、所有信号输入均依靠传感器的测量值,无法判断当前传感器测量值是否合理及准确。若有人故意把SCR上游排温传感器放置在排温较低的区域,会导致尿素喷射量减少或不喷。

3、基于传感器存在测量误差和相应时间延迟,容易造成尿素喷射量与实际需求喷射量偏差较大。

到了国六阶段,NOx排放限值较国五降低了80%,同时相比国五氨泄漏水平降低50%,要求控制系统的控制精度进一步精确才能够满足国六排放控制要求。



技术实现要素:

本发明的目的是克服现有技术中存在的不足,提供一种SCR系统控制装置,可以解决目前SCR控制系统的缺陷,提高SCR控制系统的精度,发挥催化剂最大性能,满足国六排放法规对NOx的排放控制。

按照本发明提供的技术方案,所述SCR系统控制装置,其特征是:包括信号模块、前馈控制模块、化学反应动力学模型模块、反馈模块、尿素喷射控制模块以及执行器控制模块;

所述信号模块主要负责对来自车辆、发动机的信号进行处理和检测;对SCR系统传感器信号进行处理和检测;以及对来自外部诊断仪的信号进行处理和检测;

所述前馈控制模块主要根据上游NOx浓度值、排气质量流量、SCR温度以及催化剂温度效率MAP,得到基础尿素喷射量,作为前馈尿素喷射量;

所述反馈模块主要是基于化学反应动力学模型模块计算得到的NH3泄漏量进行基于NH3泄漏量的实时PID控制,保证NH3泄漏不超过规定值,计算出闭环修正的反馈尿素喷射量;

所述尿素喷射控制模块基于前馈尿素喷射量与反馈尿素喷射量之和,得到总的尿素喷射需求量;然后根据发动机运行工况及瞬态循环喷射量修正,输出最终要求尿素泵喷射的尿素量;

所述执行器控制模块主要是驱动尿素泵及喷嘴进行实时的尿素喷射。

进一步的,还包括老化模型模块,所述老化模型模块主要是计算SCR催化剂的老化系数。

进一步的,所述化学反应动力学模型模块主要包含以下几部分:SCR载体温度场模型、NH3吸附脱附反应模型、NH3氧化模型以及NOx化学反应模型。

进一步的,所述SCR载体温度场模型将整个催化剂均分成N个小份,以每份催化剂的下游温度作为沿排气轴向分布的下一份催化剂的上游温度,并基于能量守恒定律,计算每份催化剂上的温度。

本发明具有以下优点:

(1)本发明利用化学反应模型可准确预估SCR出口处NH3泄漏值,基于NH3泄漏进行闭环控制;

(2)能够准确预估化学反应过程,可有效提高控制精度,发挥催化剂最大性能;

(3)本发明具备SCR温度场模型,可实时进行SCR温度场计算,减少了温度传感器延迟和误差对控制精度带来的影响;

(4)利用准确的闭环控制策略,可进行自适应尿素喷射量调节,保证使用寿命内满足排放。

附图说明

图1为本发明所述SCR系统控制装置的逻辑框图。

图2为所述化学反应动力学模型模块的逻辑框图。

图3为本发明所述SCR系统控制装置的具体架构图。

具体实施方式

下面结合具体附图对本发明作进一步说明。

如图1所示,本发明所述SCR系统控制装置包括信号模块1、前馈控制模块2、老化模型模块3、化学反应动力学模型模块4、反馈模块5、尿素喷射控制模块6以及执行器控制模块7。

所述信号模块1主要作用是对来自车辆、发动机的信号进行处理和检测;对SCR系统传感器信号进行处理和检测;以及对来自外部诊断仪的信号进行处理和检测。

所述前馈控制模块2主要作用是根据上游NOx浓度值、排气质量流量、SCR温度以及催化剂温度效率MAP,得到基础尿素喷射量,作为前馈尿素喷射量。

所述老化模型模块3主要作用是计算SCR催化剂的老化系数,依据对SCR温度对催化剂的老化系数进行积分得到。

所述反馈模块5主要作用是基于化学反应动力学模型模块4计算得到的NH3泄漏量,并根据下游NOx信号,进行基于NH3泄漏量的实时PID控制,保证NH3泄漏不超过规定值,计算出闭环修正的反馈尿素喷射量。

所述尿素喷射控制模块6基于前馈尿素喷射量与反馈尿素喷射量之和,得到总的尿素喷射需求量;然后根据发动机运行工况及瞬态循环喷射量修正,输出最终要求尿素泵喷射的尿素量。

所述执行器控制模块7主要作用是驱动尿素泵及喷嘴进行实时的尿素喷射;驱动尿素加热模块,当需要加热时进行尿素加热控制等。

如图2所示,所述化学反应动力学模型模块4主要包含以下几部分:SCR载体温度场模型41、NH3吸附脱附反应模型42、NH3氧化模型43以及NOx化学反应模型44。所述化学反应动力学模型模块4能够实时得到SCR温度、SCR出口处的NH3泄漏量及NOx值;所述化学反应动力学模型4计算得到的NH3泄漏量作为反馈模块5进行闭环控制的基本依据,通过反馈模块5的实时调节可以得到最佳的反馈尿素喷射量,即保证了最大提高NOx转化效率,又防止NH3泄漏出现。

所述SCR载体温度场模型41是将整个催化剂均分成N个小份,以每份催化剂的下游温度作为沿排气轴向分布的下一份催化剂的上游温度,并基于能量守恒定律,计算每份催化剂上的温度。

所述NH3吸附脱附反应模型42根据NH3吸附脱附方程搭建模型计算得出:

氨气的吸附方程为:

NH3+Z→ZNH3

氨气的脱附方程为:

ZNH3→NH3+Z;

式中,NH3和ZNH3分别表示气态氨气和吸附态氨气,Z表示催化剂的活性粒子。

所述NH3氧化模型43根据NH3的氧化反应方程搭建模型得出:

NH3氧化方程为:

4ZNH3+3O2→2N2+6H2O+4Z。

所述NOx化学反应模型44主要根据NOx化学反应方程搭建模型得出,具体化学反应如下:

标准SCR反应:

4ZNH3+4NO+O2→4N2+6H2O+4Z;

快速SCR反应:

4ZNH3+2NO+2NO2→4N2+6H2O+4Z;

慢速SCR反应:

8ZNH3+6NO2→7N2+12H2O+8Z。

如图3所示,本发明所述SCR控制装置的具体架构主要分为三部分:一是信号采集部分,包括相关传感器(SCR温度传感器、上下游NOx传感器、环境温度信号、尿素液位信号、尿素温度信号等)、整车发动机信号、电源等;二是SCR控制器主体,实现SCR控制策略功能;三是执行器部分,负责执行SCR控制器发出的各类指令,包括尿素泵、尿素喷嘴、尿素箱加热装置、尿素管加热装置、加热阀、OBD灯等部件。

本发明所述SCR系统控制装置基于尿素喷射前馈控制模块,得到初步的尿素喷射量;建立了基于SCR化学反应过程的物理模型,本模型能够精确计算SCR温度,以及发生在SCR催化剂上的化学反应:NH3吸附脱附反应、NH3氧化反应、SCR快速化学反应、SCR慢速化学反应、SCR标准化学反应等过程。因此通过本模型精确标定,可实时得到SCR出口处的NH3泄漏量及NOx值。化学反应动力学模型计算得到的NH3泄漏量作为反馈模块进行闭环控制的基本依据,通过反馈模块的实时调节可以得到最佳的尿素喷射量,即保证了最大提高NOx转化效率,又防止NH3泄漏出现。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1