用于轴流式涡轮发动机的具有分段式内部护罩的压缩机的制作方法

文档序号:15091807发布日期:2018-08-04 13:37阅读:193来源:国知局

本发明涉及分段式内部护罩密封的领域。更确切地说,本发明涉及涡轮发动机的两个内部护罩分段之间的密封。本发明还涉及轴流式涡轮发动机,具体是飞机涡轮喷气发动机或飞行器涡轮螺旋桨发动机。



背景技术:

在涡轮喷气发动机中,整体叶片转子的压缩机需要使用双壳式外部壳体结构以允许安装定子。此外,内部护罩必须以一定角度分开。然后每个整流器内部护罩具有切口或分离部。这些结构限定了沿着周向的相邻节段。所述分离部形成不期望的引起泄露的通道。

文件ep3018295a1公开了一种包括低压压缩机、变速箱和风扇的涡轮喷气发动机。压缩机包括多个整流器,每个整流器具有将内部护罩连接到由半壳制成的外壳的成环形排的定子叶片。半壳(像内部护罩一样)由复合材料制成。而且,内部护罩是分段的,并且在其节段之间具有成角度的缝隙。这些相同的成角度的缝隙或狭槽通过叶片箱的平台以密封的方式闭合,进一步形成与主流动接触的平滑的引导表面。但是,这种布置复杂而沉重。其增加了整流器的不均匀性以及几何结构限制。此外,由于转子的刀刃边缘(knifeedge)(也称为环状翅片)之间的缝隙,在与内部平台的接口处,甚至在节段的周向端部处,会存在一些泄漏。



技术实现要素:

技术问题

本发明的目的是解决现有技术所提出的这些问题中的至少一个。更确切地说,本发明的目的是简化内部护罩角度节段之间的密封,同时在涡轮发动机运行期间保持空气动力性能。本发明的另一个目的是提出一种耐用、轻便、经济、可靠、易于制造、便于维护、易于检查并且提高输出的解决方案。

技术方案

本发明的目的是提供一种用于轴流式涡轮发动机的组件,具体是用于涡轮喷气发动机的组件,所述组件包括:同轴的外部护罩和内部护罩,所述内部护罩被分段并且包括其节段之间的周向间隙;将内部护罩连接到外部护罩的成环形排的叶片;用于与风扇联接的减速比驱动器;其特征在于,其还包括用于所述驱动器的冷却回路,该回路构造成在涡轮发动机的运行期间至少加热外部护罩,从而周向地减小节段之间的周向间隙。

根据本发明的有利模式,组件可以包括以下特征中的一个或多个,其可被单独地采用或以所有可能的技术组合来采用:

组件包括环状分流器,外部护罩被固定到所述分流器,冷却回路被构造成防止所述分流器结冰。

外部护罩包括具有有机树脂和纤维(具体是碳纤维和/玻璃纤维)的复合材料。

至少一个或多个叶片是金属和/或形状记忆叶片。

冷却回路被构造为对叶片进行加热。

冷却回路包括热交换器,具体是与叶片和/或外部护罩热接触。

至少一个或每个周向间隙通常在空间中相对于护罩的旋转轴线和/或涡轮发动机的旋转轴线根据两个角度形成倾斜的直线。

内部护罩具有变化直径的外部环形表面。

叶片从上游到下游具有径向高度变化。

内部护罩包围驱动器。

叶片由与外部护罩不同的材料制成。

叶片具有大于外部护罩的膨胀系数。

驱动器是减速器,具体是行星减速器。

冷却回路是用于润滑驱动器的回路,并且包括从驱动器流到外部护罩和/或内部护罩的油。

护罩包括至少:二、四、八个节段和间隙,形成交替顺序。

本发明的另一个目的是提供一种涡轮喷气发动机,具体是一种双流喷气发动机,其包括一组件,其特征在于该组件符合本发明,涡轮喷气发动机具体包括风扇和压缩机。

根据本发明的有利模式,涡轮喷气发动机可以包括以下特征中的一个或多个,其可独自地或以所有可能的技术组合来采用:

涡轮喷气发动机包括支撑风扇和外部护罩的壳体,驱动器可被置于所述壳体中。

驱动器是适合于相对于第一轴(具体是涡轮轴)减小风扇转速的齿轮减速装置。

驱动器适合于相对于第一轴增加压缩机的转速。

驱动器联接到风扇以及压缩机,压缩机的转速大于风扇的转速。

内部护罩和外部护罩在它们之间限定压缩机的入口。

涡轮喷气发动机的涵道比大于或等于5、10、或15。

压缩机为低压压缩机。

本发明的另一目的是提供一种用于控制涡轮喷气发动机内部护罩节段之间的周向间隙的方法,该涡轮喷气发动机包括一组件,该组件包括:对风扇进行驱动的减速比驱动器、通过周向间隙分段的内部护罩、外部护罩及将内部护罩与外部护罩连接的成环形排的叶片,所述方法包括用于涡轮发动机运行的步骤(a)和用于热交换的步骤(b),其特征在于,涡轮发动机还包括用于与驱动器、外部护罩和/或叶片进行热交换的回路;在用于热交换的步骤(b)期间,该回路能够减小内部护罩节段之间的周向间隙,该组件可符合本发明,和/或涡轮喷气发动机可符合本发明。

根据本发明的有利模式,在用于热交换的步骤(b)期间,周向间隙关闭;具体是通过形状记忆材料的膨胀和/或形状改变;这些节段可沿着圆周相互接触。

根据本发明的有利模式,该方法还包括用于停止涡轮喷气发动机的步骤(c),与热交换步骤(b)期间相比,周向间隙在停止步骤(c)期间开放到更大程度。

通常,本发明的每个目的的有利方式也可以应用于本发明的其他目的。本发明的每个目的可以与其他目的相结合,本发明的目的也可以与说明书的实施例相结合,而且根据所有可能的技术组合,这些实施例可以相互结合。

所产生的优势

将外部护罩热联接到驱动器可以使其热受制于由风扇提供的机械力。一旦风扇已经提供了巨大的机械作用力,外部护罩和叶片的膨胀使得内部护罩可以更迅速地变形,并且因此闭合内部护罩的节段之间的间隙。由于密封性得到改善,一旦风扇的功率增加,性能就变得更佳。响应时间减少,例如取决于运行模式。

因此,本发明提供了一种智能组件,其中间隙由涡轮喷气发动机的应力自动关闭。尽管在停止构造和运行构造之间存在膨胀应力,但是在运行变得苛刻和关键时,输出被优化。用于起飞和巡航飞行的输出可被优化。

附图说明

图1示出了根据本发明的轴流式涡轮发动机。

图2是根据本发明的涡轮发动机组件的图。

图3示出了根据本发明的图2中的组件一部分的放大图。

图4示出了根据本发明的组件的两个相邻节段。

图5是用于控制涡轮喷气发动机内部护罩节段之间的周向间隙的方法图。

具体实施方式

应清楚地理解,本发明提出了一种涡轮喷气发动机,其具有风扇,风扇由形成热源的驱动器驱动,所述热源的热量经由冷却和/或润滑回路影响内部护罩的节段之间的周向间隙的尺寸,所述内部护罩附接到定子叶片。

在以下描述中,术语“内部”和“外部”是指相对于轴流式涡轮发动机的旋转轴线的定位。轴向对应于沿着涡轮发动机的旋转轴线的方向。径向垂直于旋转轴线。上游和下游指的是涡轮发动机中流动的主要流经方向。

图1以简化的方式示出了轴流式涡轮发动机2。在该具体情况下,它是双流涡轮式喷气发动机(dualflowturbojetengine)。涡轮喷气发动机包括称为低压压缩机4的第一压缩级、称为高压压缩机6的第二压缩级、燃烧室8以及一级或多级的涡轮机10。

在运行中,经由中心轴传递到转子12的涡轮机10的机械动力使两个压缩机4和6运动。压缩机包括与多排定子叶片相关联的多排转子叶片。因此,转子12围绕其旋转轴线14的旋转使得可以产生空气通过量(throughputofair)并逐渐地将该空气压缩到燃烧室8的入口。

通常被称为风扇16的进气通风机被联接到转子12并产生气流,该气流被分成穿过前述各个多级涡轮发动机的主流动(primaryflow)18,和沿着发动机穿过环形导管(部分示出)且随后在涡轮出口处重新与主流动汇合的旁路流动(bypassflow)20。风扇可以是无导管类型的,例如具有可能处于下游的反向旋转双转子(counterrotatingdoublerotor)。

可以加速旁路流动,以产生可用于飞行器飞行的反推力。例如,涡轮喷气发动机可以具有12的涵道比(bypassratio),其中在飞行中该比可对应于冷流空气质量除以热流空气质量。

形成具有减速比的减速装置(例如行星减速齿轮)的驱动器22可以降低风扇相对于相关涡轮机的转速。

图2是涡轮发动机转子12的支撑壳体24的截面图,其中涡轮发动机可以类似于图1的涡轮发动机。在图中可以看到部分低压压缩机4、驱动器22和用于主流动18和旁路流动20的分流器26。

低压压缩机通常可对应于文献ep3018295a1中描述的那种,支撑壳体24被置于压缩机的外壳28与分流器26之间。压缩机转子12的转子叶片29可被外壳28包围。转子12或其多排叶片29中的至少一排可以形成整体叶片盘或整体叶片鼓轮。

驱动器22可以联接到低压涡轮。相对于低压涡轮机的转速,可以降低风扇的转速。压缩机4的速度可以大于风扇(和可选的低压涡轮机)的速度,特别是由于具有双行星齿轮系(可选地具有双输出)的驱动器。

支撑壳体24形成涡轮发动机的结构、框架。其被设计成除了能够承载涡轮发动机的总载重量(deadweight)之外,还支撑风扇的推力。其可以用首字母缩略词fhf来表示,意思是“fanhubframe(风扇轮毂框架)”。它可以是一个中间壳体。驱动器22可固定到支撑壳体24。支撑壳体可以是风扇轮毂框架和/或中间壳。其可以至少部分地容纳在设置在壳体24中的腔室中。

分流器26包括成环形排的定子叶片30,从而可以从其悬挂内部护罩32,而且内部护罩32被分段。由此,内部护罩32被分成散布在一个圆上的多个节段。这些节段根据周向间隙(不可见)分开,也称为角间隙。这些间隙绕着旋转轴线14分布。当停止时,内部护罩节段彼此间隔开,即它们可以彼此不接触。在运行过程中,这些节段运动并一起靠得更近,直到沿着周向在它们的端部处能够相互接触。

内部护罩32可围绕驱动器22,和/或与其轴向地相距一定距离。驱动器可以与冷却回路34相关联。该回路34可包括液体冷却剂,例如油,使得在运行期间能够冷却和排出至少50kw。通过使用油,回路34可成为润滑回路,为其赋予第二功能。

冷却回路34与分流器26热协作。其可以加热该分流器,以便在其与气流(18;20)接触时抵制在分流器上形成冰。因此,分流器26成为可用于对回路34进行冷却的热交换器。这种热交换使得分流器26变形。变形可以发生在外部护罩处、和/或在定子叶片30处和/或在内部护罩32处。变形可以由膨胀和/或由用于制造内部和外部护罩以及叶片30的形状记忆材料结构变化引起。

图3是图2一部分的放大图。例如当涡轮发动机已经停止时,内部护罩32在第一位置以实线示出;并且例如当涡轮发动机运行且分流器26在内部变形时,内部护罩32在第二位置以虚线示出。变形可包括直径的变化。

分流器26包括固定到环形外壁38的外部护罩36。其固定接合部可以是环形钩40。因此,环形的分流边缘42可形成在上游,由此形成在外壁38上。该分流边缘42形成主流动18与旁路流动20之间的环形分离线。定子叶片30从外部护罩36径向向内延伸。

外部护罩36和/或叶片30由金属材料制成。替代地或可选地,外部护罩36和/或叶片30由形状记忆材料制成。外部护罩36可以由有机基质和碳纤维复合材料制成,以使其变轻并降低其膨胀系数,叶片可以是金属的。定子叶片30可以包括至少:10(-6)或2.50×10(-5)k(-1)的膨胀系数。

主流动18的喷射的径向高度可以轴向变化。因此,除了径向位移48之外,由叶片30驱动的变形可变得复杂,使得每个节段沿着垂直于旋转轴线14的轴线倾斜。

分流器26部分地容纳冷却回路34,冷却回路34可包括管道44和热交换器46。例如当叶片30穿过外部护罩36时,热交换器可以与叶片30和/或外部护罩36热接触。因此,回路34能够向叶片提供热量。相应地,护罩和/或叶片可以变形,例如膨胀。在另一种情况下,当它们由形状记忆材料制造时,它们可改变状态。

回路34可以在叶片30和/或内部护罩32内部延伸,并因此延伸到其节段中。由此,与回路34交换的热量可导致叶片30和/或内部护罩32的节段的变形。变形可以局部化。变形可以是叶片和/或节段的膨胀和/或形状记忆材料的形状变化。

图4示出了内部护罩32的两个节段50,其被周向间隙52分开,周向间隙例如相对于旋转轴线14倾斜。节段50和间隙52代表整个护罩,其中间隙和节段形成交替顺序。这些节段和间隙可对应于针对图3所描述的那些。同样,护罩节段50在第一位置以实线显示,而在第二位置以虚线显示。

在第一和第二位置之间,节段50靠得更近;更确切地说,其端部54沿着周向靠得更近。可选地,这些端部54可以彼此接触。由于各自更靠近在一起形成接触,所以每个周向间隙52可以闭合,并且可被密封。由此,可能冲入其中的泄漏物被阻止。由于通过定子叶片30产生的压力增加也增加,所以允许输出增益。

周向间隙52的闭合具体可以由节段50的周向伸长或其变形引起。间隙52可以随着对节段50进行周向推动的叶片30的结构变化而减小,则叶片30成为致动器。或者,这可以是由于节段的曲率改变而引起的。在变形期间,内部护罩可以保持恒定的直径。

图5是用于控制涡轮喷气发动机内部护罩节段之间的周向间隙的方法的图。涡轮喷气发动机可以对应于图1-4所描述的。

该方法可以包括以下步骤:

启动(100);

(a)涡轮发动机的运行(102);

(b)冷却回路与选自叶片、内部护罩和外部护罩中的至少一个元件之间的热交换(104);

(c)停止涡轮喷气发动机(106),其中与在用于热交换的步骤(b)期间相比,周向间隙开放到更大程度。

在用于热交换(104)的步骤(b)期间,内部护罩节段之间的周向间隙减小,并且可以以密封的方式关闭。在此提醒,这可以通过膨胀和/或形状记忆材料的形状改变或者通过分流器的元件所强制的变形来产生。这也适用于内部护罩、叶片或外部护罩的节段。

用于热交换(104)的步骤(b)可以分解成至少三个阶段,包括停放阶段108、起飞阶段110和巡航飞行阶段112。这些阶段可以对应于飞行器的渐进模式。当然,在用于热交换(104)的步骤(b)期间,用于运行(102)的步骤(a)继续进行。因此,这些步骤可以重叠。根据本发明,间隙可以在停放阶段108期间保持在第一位置,并且在起飞阶段110期间和/或在巡航飞行阶段112期间保持在第二位置。这使得可以选择合适的时间来关闭间隙,并且因此尽管存在多种热配置但仍能获得最大输出。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1