起动器的制作方法

文档序号:5232812阅读:134来源:国知局
专利名称:起动器的制作方法
技术领域
本发明基于1994年9月19日提交的日本专利申请No.6-222327并要求优先权,其内容在此作为参考。
本发明涉及一种具有超速离合器的起动器,用于起动内燃机。
在日本专利公开52-19528号公报所公开的带有行星齿轮减速机构的常规起动器中,在行星齿轮减速机构的内齿轮外周面与作为固定侧以容纳行星齿轮减速机构的壳体的内周面之间设置有超速离合器。
上述的这种传统结构具有下面的优点超速离合器设置在行星齿轮减速机构的外周面上,因此不需要超速离合器占用轴线方向的空间,死容积小,而且因为增加重量而导致的制造成本的增加较小。另外,即使需要大直径的传动部分用于高负载的超速离合器,也可以使用该行星齿轮减速机构的外周面。
然而,上述传统结构中,滚子沿窄小的方向咬入一个楔形空间中,该空间形成于设置在离合器外件内周面上、沿圆周方向倾斜的凸轮状槽与离合器内件的外周面,即内齿轮的外周面之间。这会导致线接触,并且力矩由这里产生的磨擦力来传送,因此,离合器外件和离合器内件必须能够承受很大的在滚子的接触表面上发生的应力。这就必须使离合器内件和离合器外件采用高强度的金属材料(例如,经热处理的铁或钢材)制作。因而,无法通过用树脂制造行星齿轮减速机构的内齿轮来减少内齿轮与行星齿轮啮合时的工作噪音。
另外,超速离合器具有这样的结构,当滚子沿窄小的方向咬入一个楔形空间中时,旋转力便被传送,该空间形成于设置在托架内周面上沿圆周方向倾斜的凸轮状槽与行星减速机构内齿轮即离合器内件的外周面之间,所述托架是离合器外件的固定侧。因此,当起动器超速时,作为离合器内件的内齿轮以高速度旋转,而由于这些是由金属制成的,并且很重,因而在旋转期间惯性能量很大。如果发动机很快地从超速状态转变为驱动状态时,作用在另一个离合部件的冲击便会增加,因而在旋转期间发生不平衡,从而可能破坏该装置,或者在驱动期间产生不正常的噪音。
另外,由于离合器外件(滚子凸轮)设置在前托架上,当起动器被发动机超速时,齿圈(离合器内件)旋转以吸收由发动机驱动旋转的小齿轮和起动电机之间的转动差,从而使超速旋转不能够传递到起动电机上。由于滚子始终与该离合器内件的外表面接触,因而滚子会被磨损。
本明的目的是提供一种带有高可靠性、并确保力矩传递的超速离合器的起动器。
在本发明所述的起动器中,在离合器内件和离合器外件上均形成有槽,从而使滚子与每个槽接触。滚子在前后力矩的传递方向夹在槽的滚子接触表面之间,这样,例如带有楔形效应的滚子型超速离合器的那样大的应力不会作用在每个槽的接触表面和滚子接触表面上。因此,可以把树脂或者有色金属材料用作离合器内件或者离合器外件。这将允许使用轻质材料,而且,这种材料的加工成本将低于铁和钢材,从而可以制造一种低成本和重量轻的超速离合器。离合器的惯性被减小,在小齿轮与发动机齿圈啮合时所产生的冲击力可以减到最低限度。在离合器外件和离合器内件上形成复杂的槽时,加工也会容易。
在起动器被发动机超速,离合器外件相对于离合器内件空转,以吸收起动电机和小齿轮之间的转动差时,滚子受到离心力的作用并从离合器内件的外周面上离开。这会防止滚子或者离合器内件的外周面的非正常磨损。
再有,离合器内件上的槽的数目大于离合器外件上槽的数目,这样,起动器起动时,如果滚子再次与滚子槽啮合,例如在在滚子没有与滚子槽啮合,或者在发动机突然从起动器超速状态停止,并且突然再次起动时,则离合器内件和离合器外件之间的空转距离被缩短,从而可以抑制啮合期间产生的冲击。
另外,滚子配合表面具有与滚子半径大致相同的曲率半径,从而加宽力矩传递表面,可以使离合器具有很大的传递力矩能力。
再有,槽中的滚子配合表面具有与滚子半径基本相同的曲率半径,从而使离合器具有更大的力矩传递能力。
附图中

图1是本发明起动器第一实施例的侧视剖视图;图2A和2B是第一实施例中小齿轮旋转限制元件的前视图和部分正视剖视图;图3是第一实施例中超速离合器的放大剖视图;图4是第一实施例中中心托架的后侧视图;图5是图4中所示中心托架的侧视剖视图;图6是第一实施例的电枢的侧视剖视图7是第一实施例中磁力开关的一部分的立体图;图8是第一实施例中端架和刷簧的剖视图;图9是第一实施例中电刷固定元件的垂直剖视图;图10是第一实施例中电刷固定元件的水平剖视图;图11A、11B和11C是表明第一实施例工作状态的电路图;图12是第二实施例中超速离合器的放大剖视图;图13是第三实施例中超速离合器的放大剖视图。
下面参照附图根据实施例对本发明进行详细描述。
本发明的起动器的第一实施例如图1~图11所示。
起动器主要包括与安装在发动机(未示出)上的发动机齿圈100相啮合的小齿轮传动装置200,盖住行星齿轮减速机构300的壳体400,起动电机500,以及盖住磁力开关600的端架700。在起动器内部,壳体400和电机500由电机壁800隔开,而电机500和端架700则由电刷固定元件900隔开。
(小齿轮传动装置200)如图1、图2A和图2B所示,与发动机齿圈100相啮合的小齿轮210形成于小齿轮传动装置200上。
与输出轴220上形成的螺旋花键221相配合的小齿轮螺旋键槽211形成于小齿轮210的内周面上。
外径尺寸大于小齿轮210的凸缘213以环形方式形成于小齿轮210上,位于与齿圈相对的一侧。数目多于小齿轮210外齿数的凸齿214形成于凸缘213的外周面上。这些凸齿214与下述小齿轮旋转限制元件230上的限制瓜231相配合。因为在小齿轮210后端部形成的圆环形部分216向外圆周弯曲,所以垫片215可在小齿轮210的后端部沿轴向方向转动并不会脱落。
小齿轮210始终通过由压缩螺旋弹簧构成的回位弹簧240被压向输出轴220的后端或称电机一侧。回位弹簧240并不直接作用于小齿轮210,在本实施例中,通过一个后述的活门420上的环形件421作用于小齿轮210,该活门开闭壳体400的开口部分410。
(小齿轮旋转限制元件230)轴向延伸并与形成于小齿轮210的凸缘213上的多个凸齿214相配合的限制部分的限制瓜231形成于旋转限制部分232的一端。限制瓜231与小齿轮210的凸齿214相配合。另外,为了改善限制爪231的刚度,将其沿轴向形成,并具有朝内部径向弯成的L形截面(爪呈杆形)。旋转限制部分232根据磁力开关600的操纵,由图中的带状元件680往下拉,从而使限制爪231与小齿轮210的凸缘213上的一个凸齿214配合。这时,回位弹簧部分233的一端236抵靠在限制架362上限制住其位置,而回位弹簧部分233松脱。由于限制爪231与小齿轮210的凸齿214相配,所以当用电机500的电枢轴510和行星齿轮机构300使小齿轮210开始转动时,小齿轮210沿输出轴220的螺旋花键221进到图1的左侧。当小齿轮210与齿圈100接触并且防止了小齿轮210推进时,小齿轮旋转限制元件230由于输出轴210的进一步旋转力而松脱。小齿轮210将稍稍转动并与齿圈100啮合。当小齿轮210前进时,限制爪231就从凸齿214中脱开,而且限制爪231落到小齿轮210的凸缘213的后部。限制爪231的前端与垫片215的后表面相接触并且可利用发动机齿圈100的转动阻止小齿轮210的退回。
(小齿轮配合环250)
小齿轮配合环250安装在输出轴220的圆周上形成的截面为矩形的环槽中。该小齿轮配合环250由加工成环形的矩形截面钢材制成,大致呈S状的切口251(配合装置的例子)形成于其两端,以使一个突出部分与另一个凹入的切口相配合,而凹入的切口与另一个凸出部分相配合。
(行星齿轮机构300)图1中所示的行星齿轮机构300是一个降速或者减速装置,如下面将要解释的那样,用来降低电机500传递到输出轴220上的转速并且增加电机输出扭矩。行星齿轮机构300由安装在发动机电枢轴510(后述)的外周面前端的中心齿轮310、多个行星齿轮320、行星齿轮架330和管状的树脂制内齿轮340构成,多个行星齿轮320与中心齿轮310啮合并且绕中心齿轮310旋转。行星齿轮架330可转动地支承着绕着中心齿轮310的行星齿轮320,并且与输出轴220结合为一体,内齿轮340在行星齿轮320的外周面上与行星齿轮320啮合。
(超速离合器350)如图3所详述的那样,超速离合器350在一个方向上(只在与发动机旋转相同的方向)可转动地支承着内齿轮340。超速离合器350由下述元件构成作为与内齿轮340的前侧呈一体的第一筒形部分的离合器外件351;作为安置在与离合器外件351内周面相对位置上的第二筒状部分的环形离合器内件352,它形成于中心托架360的后表面上,该托架起着覆盖行星齿轮机构300前侧的安装侧作用;安放在槽或滚子储存部分351a中的滚子353,所述槽或者滚子储存部分351a倾斜于离合器外件351的内周面。该滚子储存部分351a是沿圆周径向向外倾斜的,并且具有一个在驱动带有减速机构的起动器期间与滚子353相配合的滚子配合表面351b。滚子储存部分351a具有一个径向的深度,使其足够能将滚子353储存其中,以使离合器外件351和离合器内件352不会通过滚子而啮合。
在离合器内件352的外表面上,沿圆周形成多个滚子槽部分355。这些滚子槽部分355包括在带有减速机构的起动器起动时与滚子353相配合的滚子配合面352b和将滚子导入该滚子储存部分352b中的滚子导向面352c。与滚子储存部分351a的滚子配合面351b相对的圆周面,是用来在带有减速机构的起动器如下所述超速运行时,将滚子353升高到滚子储存部分351a的滚子储存导向部分351d。
滚子配合面351b和滚子配合面352b之间的位置关系是使得滚子353在带有减速机构的起动器驱动时,在转矩传递方向之前或之后被每个表面夹在其中。离合器外件351的储存部分351a设置成使滚子353的最大内径稍微大于离合器内件352的最大外径的程度,以使离合器外件351在带有减速机构的起动器超速运行期间当滚子352被储存起来时可以自由旋转。应该明白,图3所示的上述结构是沿圆周设置的,以便使滚子351和空间351设置在一系列位置上。
在这种结构中,设置在行星齿轮机构300的内齿轮340上的第一筒形部分起作离合器外件351的作用。作为安装侧的第二筒形部分用作离合器内件352,从而在离合器外件351的内周面部分形成滚子353的滚子储存部分351a。因此,如果发动机转速超过了起动器速度,当形成离合器外件351的内齿轮340相对于离合器内件352空转,从而吸收发动机转速超过起动器转速时电机500和小齿轮210的转动差时,滚子353受到离心力作用并且从离合器内件352的外周面分离出。这防止了滚子353或者离合器内件352的外周面上的不正常磨损。
另外,在离合器内件352上,即第二筒形部分上不受到滚子接合表面352b和滚子353的接触部分上的那种采用楔形效应的类似于滚子型超速离合器的大的应力。因此,超速离合器可以提供大的扭矩。当超速离合器350采用中心托架360通过轴承370旋转地支承输出轴220时,轴线方向的长度不需要很长,而且尺寸可以被减小。
(中心托架360)图4和图5中所示的中心托架360安置在壳体400内的后侧。壳体400和中心托架360均连有一个圈簧390,圈簧一端设置在壳体400上,而另一端则设置在中心托架360上。构成超速离合器350的一部分的离合器内件352所受的旋转反作用力被圈簧390所吸收,从而使反作用力不会直接传递到壳体400上。
固定小齿轮旋转限制元件230和安装在小齿轮旋转限制元件230的下端的限制架362的两个支承臂361设置在中心托架360的前部。而与壳体400的内侧上的凸出部分(未示出)相啮合的多个切口部分363形成于中心托架360上。上部切口部分363也用作空气通道,以将壳体400中的空气导入座501中。凹入部分364形成于中心托架360的下端,以沿轴向穿过带状元件680(后面描述)。
(行星齿轮架330)行星齿轮架330具有一个沿径向延伸支承行星齿轮320的法兰状突出部分331。向后方延伸的销332安装在该法兰状突出部分331上,而且,这些销通过金属轴承333可旋转地支承着行星齿轮320。
与输出轴220成一体的行星齿轮架330由壳体轴承440可旋转地支承住,而壳体轴承前端安装在该壳体400内部前端,另外,中心托架轴承370安装在中心托架360的内周面上的管状部分365的内部。
行星齿轮架330在内管部分365的前端部带有环槽334,在该环槽334中安放有挡圈335。一个安装在行星齿轮架330上的可旋转的垫片336插入挡圈335和内管部分365的前端之间,行星齿轮架330的向后运动由挡圈335通过垫片336与内管部分365前端的直接接触而被限制住。支承行星齿轮架330后侧的中心托架轴承370的后端具有一个夹在内管部分365的后端与法兰形突出部分331之间的法兰部分371。行星齿轮架330向前的运动通过法兰状突出部分331经法兰部分371与内管部分365的后端的直接接触而被限制住。
一个径向延伸的凹入切口337形成于行星齿轮架330的后侧。可旋转电枢轴510的前端通过安置在该凹入切口337中的行星齿轮架轴承380而被支承住。
(壳体400)壳体400用壳体轴承440支承着输出轴220,壳体轴承440安装在壳体400的前端内部,壳体400还具有一个挡水壁460,它形成一个突出的部分以使壳体400与小齿轮210的外径之间的间隙在开口410的底部最小,以减少雨水等从开口410进入。在壳体400的前下端形成两条轴向延伸的滑动槽(未示出),以使活门420可在这些滑槽中移动。
(活门420)活门420由树脂材料制成,例如尼龙,安装在输出轴220的外周面上,而且它由夹在回位弹簧240和小齿轮210之间的环体421和打开和关闭壳体400的开口部分410的挡水部分422组成。
在起动器起动,小齿轮210沿着输出轴220开始前进时,环体421也随着小齿轮210前进。与环体421制成一体的挡水部分422也会前进,而打开壳体400的开口部分410。当起动器停止并且小齿轮210沿输出轴220退回时,环体421也随小齿轮210退回。与环体421制成一体的挡水部分422也退回,从而关闭壳体400的开口部分410。结果,作为开/关装置的活门420防止了起动器不工作时因齿圈100的离心力而使溅起的雨水进入到壳体400中。
(密封元件430)在密封元件430的端部形成有一环形槽,回位弹簧240的一端安装在该环形槽的内部。该密封元件430封住输出轴220的外周,以防止雨水或者尘土从壳体400的开口410进入在壳体400前端的壳体轴承440。
(电机500)电机500是由座501、电机壁800和电刷固定元件900罩住的,电刷固定元件900以后进行描述。在电机壁800与中心托架360中间夹住行星齿轮机构300,以防止行星齿轮机构的润滑油进入电机500。
如图1所示,电机500包括电枢轴510,安装在该电枢轴510上的电枢540和驱动电枢540转动的固定磁极550。固定磁极550安装在座501的内表面上,该电枢540包括整体转动的电枢铁心520和电枢线圈530。
(电枢轴510)电枢轴510由行星齿轮架轴承380可旋转地支承在行星齿轮架330的内部后面和固定在电刷固定元件900的内周面上的电刷固定元件轴承564上。电枢轴510的前端通过行星齿轮减速机构300的内侧,如上所述的行星齿轮减速机构300的中心齿轮310形成于电枢轴510前端部的外周面上。
(电枢线圈530)在该实施例中,如图6所详细表示出的那样,多个(例如25个)上线圈杆(upper coil bar)531和同样数量的下线圈杆(lower coilbar)532用于电枢线圈530,上线圈杆531和下线圈杆532中的每一个都沿径向堆积形成两个分层绕组线圈。每个上线圈杆531和每个下线圈杆532都是组合在一起的,每一个上线圈杆531和每一个下线圈杆532的端部都电连接在一起从而形成环形线圈。
(上线圈杆531)上线圈杆531由例如具有良好导电性的铜材制成,并且具有一个固定在槽524的外周面上的上线圈件533,该槽524沿轴向穿过成叠的铁片521,线圈件533平行于固定磁极550延伸,并且该上线圈杆531具有两个上线圈端部534,它从上线圈件533的两个轴向端部向内径向弯曲,并且与电枢轴510的轴线方向相垂直延伸。上线圈件533和两个上线圈端部534可以通过冷锻成为一体,通过加压弯曲形成U形,或者可以分别形成上线圈件533和两个上线圈端部534,通过焊接连接起来。
(下线圈杆532)与上线圈杆531相同,下线圈杆532具有一个下线圈件536,由例如具有良好导电性的铜材构成,它被固定在槽524的外周面上,并且平行于固定电磁极550延伸,该下线圈杆532具有从下线圈件536的两端沿径向向内弯曲并且与电枢轴510的轴线方向相垂直延伸的两个下线圈端部537。下线圈件536和两个下线圈端部537可以通过冷型浇注制成一体,并且通过加压弯曲形成U形,或者可以分别形成下线圈件536和两个下线圈端部537,通过焊接等连接在一起,如同上线圈杆531那样。
每个上线圈端部534和每个下线圈端部537的绝缘由绝缘垫片560保证。每个下线圈端部537和电枢铁心520的绝缘则通过树脂绝缘环590保证(例如尼龙或者酚醛树脂)。
轴向延伸的一个上部内延伸部分538形成于两个上线圈端部534的内周面端部。上面所述的下线圈杆532内端上的下部内延伸部分539贴着该上部内延伸部分538的内周面。它们用连接技术在电性和机械上连接在一起,例如焊接连接在一起。上部内延伸部分538的外周面通过绝缘帽580与固定元件570外周面环形部分的内表面相靠,固定元件570压靠在电枢轴510上。
在该电枢540中,组成电枢线圈530的上线圈杆531两端的上线圈端部534以及下线圈杆532两端的下线圈端部537中的每一个都设置成与电枢轴510的轴线相垂直。因此电枢540的轴向长度被减小,电机500的轴向长度也被减小,而且起动器较传统结构的要小。
(固定磁极550)在本实施例中,固定磁极550由永磁体构成。也可以不用永磁体,而采用产生电磁力的励磁线圈来代替。
(磁力开关600)如图1所示,磁力开关600由后述的电刷固定元件900固定住,并且安置在后述的端架700上。磁力开关600设置成与电枢轴510近乎垂直。
随着通电,磁力开关600驱动插棒式铁心610上行,使两个与插棒式铁心610一起移动的接触器(下可动接触器611和上可动接触器612)相继与端螺栓620的头部621和固定接触器630的接触部分631接触。一根未示出的电池导线与端螺栓620相连。
从插棒式铁心610上部向上伸出的插棒式铁心轴615固定在插棒式铁心610的上侧。该插棒式铁心轴615从固定铁心642中心的一个孔中向上伸出。沿着插棒式铁心轴615的纵向可自由滑动的上可动接触器612位于插棒式铁心轴615的固定铁心642的上侧。
该上可动接触器612由于图7所示的插棒式铁心轴615上端所固定的固定环616的限制而不能移过插棒式铁心轴615的上端,这样,上可动接触器612沿着插棒式铁心轴615的纵向在固定环616和固定铁心642之间自由滑动。上可动接触器612始终被安置在插棒式铁心轴615上的板形弹簧构成的接触压簧作用压向上方。
上可动接触器612由具有很好导电性的例如铜材制成。当上可动接触器612的两端都上行时,固定接触器630上的两个接触部分631就会接触。一对电刷910的每根导线910a可以通过嵌塞或焊接法在电和机械上连接到上可动接触器612上。作为多个限制装置(在本实施例中为两个)的电阻器617的端部插入并在电和机械上固定在上可动接触器612的槽中。
一对电刷610中的每一根导线910a通过嵌塞或焊接法在电和机械上与上可动接触器612相连,但上可动接触器612和所述电刷910的每根导线910a可以制成一体。
电阻器617是用来在起动器刚开始起动时降低电机转速。带有很大电阻值的金属丝卷绕起来形成电阻器617。位于端螺栓620的头部621下方的下可动接触器611通过嵌塞等方法固定到电阻器617的另一端。
下可动接触器611由具有很好导电率的例如铜材制成。该接触器在磁力开关600断开,而且插棒式铁心610位于下部时,与固定铁心642的上表面相接触。当电阻器617随着插棒式铁心轴615的运动而上行时,下可动接触器611将会在上可移动接触器612与固定接触器630的接触部分631接触之前与端螺栓620的头部621相接触。
磁力开关600的更进一步的细节由于不是必要的,因而为简洁略去其说明。这里参照了1994年12月6日申请、并转让给本申请同一个受让人的,由Shiga等人申请的未决美国专利(号码不详)所公开的内容。
(端架700)如图8所示,端架700是一个由树脂,如酚醛树脂制成的磁力开关罩。磁力开关600设置在端架内。一个保持压缩螺旋弹簧914的弹簧保持柱710设置在端架700的后侧,朝着电刷910的位置突出,该弹簧将电刷910压向前方。
(电刷固定元件900)图9和图10中所示的电刷固定元件900将座501的内侧和端架700的内侧分开,并且设置成可转动地通过电刷固定器轴承564支承电枢轴510端部。另外,电刷固定元件900可以作为电刷固定器,可以支承磁力开关600,并且可以固定一个为带状元件680导向的滑轮690。电刷固定元件900具有一个未被示出的孔,通过该孔可以穿过带状元件680。
电刷910的前端被压缩螺旋弹簧914作用压向电枢线圈530后侧的上线圈端部534的后侧。这里对电刷固定元件900进行了简化。若不用这种电刷固定元件,也可以采用1994午12月6日申请、并转让给本申请同一个受让人的,由Shiga等人申请的未决美国专利(号码不详)所公开的那种电刷固定元件。
下面将参照图11A~图11C所示电路图对上述起动器的工作过程进行说明。
当电键开关10由操作者拧到图11A所示的起动位置时,磁力开关600中的吸引线圈650由电池20通电。当吸引线圈650通电时,插棒式铁心610被吸引线圈650中产生的磁力吸引,从而被向上提起(图11A中向左)。
当插棒式铁心610开始上升时,上可动接触器612和下可动接触器611也上升,与插棒式铁心610成一体的带状元件680的后端也上升。当带状元件680的后端上升时,带状元件680的前端被拉下(图11A中向右),而且小齿轮旋转限制元件230下降。当小齿轮旋转限制元件230下降,而且限制爪231与小齿轮210外周面上的凸齿214之一啮合时,下可动接触器611与端螺栓620的头部621接触。电池20的电压施加在端螺栓620上,端螺栓620的电压通过下可动接触器611、电阻器617、上可动接触器612和导线910a传递到上电刷910。换言之,由电阻器617传送的低电压通过上电刷910传送到电枢线圈530中。由于下电刷910始终由电刷固定元件900接地,所以由上线圈杆531和上线圈杆532组成线圈的电枢线圈530由低压电供电。然后电枢线圈530产生较弱的磁力。该磁力(引力或斥力)影响到固定磁极550的磁力,使电枢540以低速旋转。
当电枢轴510转动时,行星齿轮机构300中的行星齿轮320旋转,并由电枢轴510前端的中心齿轮310驱动。如果行星齿轮320通过行星齿轮架330在齿圈100被驱动旋转的方向向内齿轮340施加旋转力矩,那么,内齿轮340的旋转将被超速离合器的作用限制。换句话说,内齿轮340将不会旋转,并由于行星齿轮320的转动使行星齿轮架330减速运转,如果行星齿轮架330旋转,小齿轮210也会开始旋转,但当小齿轮210的旋转被小齿轮旋转限制元件230限制时,小齿轮210将沿着输出轴220的螺旋花键221前进。
当小齿轮210前进时,活门420也将会前进,从而导致壳体400的开口410打开。随着小齿轮210的前进,小齿轮210将完全与发动机齿圈100啮合,并且继而与小齿轮配合环250接触。当小齿轮210前进时,限制爪231将脱离小齿轮210上的凸齿214,然后限制爪231将落在装在小齿轮210的后表面上的垫片215的后面。
另外,当小齿轮210前进时,上可动接触器612将与如图11B所示的固定接触器630的接触部分631相接触。端螺栓620的电池电压将直接通过上可动接触器612和导线910a传递到上电刷910。换句话说,在由每个上线圈杆531和每个下线圈杆532构成的电枢线圈530中将通过高电流。电枢线圈530将会产生一个大的磁力,使电枢540高速旋转。
电枢轴510的转动将由行星齿轮机构300减速,从而增加旋转转矩,而行星齿轮架330将被驱动旋转。这时,小齿轮210的前端将与小齿轮配合环250相接触,并且将会与行星齿轮架330一起旋转。小齿轮210与发动机齿圈100相啮合,这样,小齿轮210将驱动齿圈100旋转,从而驱动发动机旋转。
当发动机转速提高时,发动机的旋转输出在超速运行期间从输出轴220上传递到行星齿轮320上。小齿轮210的旋转速度大于电枢540的旋转速度,与啮合于行星齿轮320上的内齿轮340成一体的离合器外件351转动。由于离心力,滚子353被滚子储存导向部分351d和滚子导向部分352c收容到离合器外件351的滚子储存空间351a中,离合器外件351将绕着离合器内件352空转。
当离合器外件351或换句话说内齿轮340空转时,停止向形成于电枢轴510上的中心齿轮310传递发动机旋转力,从而防止了电枢540的超速。
之后,当发动机起动,发动机齿圈100比小齿轮210转得快时,因为螺旋花键的作用产生一个使小齿轮210缩回的力。小齿轮210的缩回将通过已落到小齿轮210后面的旋转限制爪231来防止,并且防止小齿轮210的早期脱离,由此发动机将会被准确起动。
当由于发动机的起动使发动机齿圈100的转速大于小齿轮210的转速时,小齿轮210将会由齿圈100的旋转而驱动旋转。从齿圈传递到小齿轮210的旋转力矩将会通过行星齿轮架330传递到支承行星齿轮320的销332上,换句话说,行星齿轮320由行星齿轮架330驱动。由于在内齿轮340上施加一个与电机起动时旋转方向相反的力矩,超速离合器350将允许齿圈100转动。换句话说,当内齿轮340上施加一个与电机起动时方向相反的力矩时,超速离合器350的滚子353将从离合器内件352的凹入的切口355上脱开,使内齿轮340可以转动。
当发动机起动时,发动机齿圈100转动并驱动小齿轮210旋转的相对转动将被超速离合器350吸收,电枢540将不会被发动机驱动旋转。
当发动机已被起动时,电键开关10将会如图11C所示被操纵者从起动位置拧回,停止向磁力开关600的吸引线圈650中的通电。在吸引线圈的通电停止后,插棒式铁心610将由于压缩螺旋弹簧660而向下回落。
上可动接触器612将会从固定接触器630的接触部分631上脱开,而下可动接触器611将也会从端螺栓620的头部621上脱开,从而使向上电刷910的通电停止。
当插棒式铁心610回到下方时,小齿轮旋转限制元件230将由于小齿轮旋转限制元件230的回位弹簧236的作用而回到上面,限制爪231将会从小齿轮210的后面脱开。小齿轮210将会因回位弹簧240的作用回到后面,小齿轮210将会与发动机齿圈100脱离啮合。同时,小齿轮210的后端将会与输出轴220的法兰状突出部分222相接触,换句话说,小齿轮210回到起动器起动前的位置上。
当插棒式铁心610回到下方后,下可动接触器611与磁力开关600的固定铁心642的上表面相接触,上电刷910的导线910a按顺序与均由导电材料作的上可动接触器612,电阻器617,下可动接触器611,固定铁心642,磁力开关罩640以及电刷固定元件900连接。换句话说,上电刷910和下电刷910将会被电刷固定元件900短路。另外,由电枢540的惯性转动而在电枢线圈530中产生电动势。该电动势通过上电刷910,电刷固定元件900和下电刷910短路,因此制动力作用于电枢540的惯性旋转。结果转子540立即停止。
(实施例的优点)
设置在行星齿轮机构300的内齿轮340上的第一筒状部分作为离合器外件351,而作为固定侧的第二筒状部分则用作离合器内件352,从而形成一个滚子储存部分351a,以储存离合器外件351内周面上的滚子353。如果起动器被发动机超速,当内齿轮340即离合器外件351相对于离合器内件352空转,从而吸收电机500和小齿轮210在起动器被发动机超速时的转动差时,滚子353受到离心力作用并从离合器内件352的外周面上脱离。这防止了滚子353或者离合器内件352的内周面的不正常磨损。
在离合器内件352即第二筒状部分上也形成滚子槽355,以便用来储存部分滚子353,滚子353从这里穿过,并在前后力矩的传递方向上夹在滚子槽355的滚子配合部分352b和滚子导向表面352c之间,因此,在在每接触表面上,以及与滚子353的接触表面上不会作用象采用楔形效应的滚子型超速离合器那样的大的应力,因而可以形成大力矩的超速离合器350。
由于超速离合器350采用了中心托架360外周面一侧上的空间,以便通过轴承370可转动地支承输出轴220,因此轴向长度不需要加长,从而可以减小尺寸。通过将离合器内件352与中心托架360制成一体,也可以减少零件的数目。
(第二实施例)下面将参照图12描述本发明第二个实施例,应当明确,与第一实施例相同的零件将采用相同的标号。
在第二实施例中,一个用于储存滚子353的第二储存槽352a在与离合器外件351的内表面不接触的位置上形成于离合器内件352的外周面上。储存部分滚子353的第一槽351a形成于离合器外件351的内周面上。
(第三实施例)如图13所示,第三实施例具有一个设置于离合器外件351的滚子储存部分351a中的滚子压簧356,从而使滚子353被压配合在离合器内件352的滚子槽部分352a中。同时,储存滚子压簧356一端的滚子压簧储存部分351e设置在滚子储存部分351a中。另外,分别设置在离合器外件351和离合器内件352上的滚子配合表面351b和352b形成曲线,其曲率半径与滚子353大致相同。
本发明已参照上面三个最佳实施例进行了描述,然而应当明白,本发明并不仅限于这些例证的实施例,它可以在不脱离本发明的宗旨的情况下作出很多变形。
权利要求
1.一种起动器,包括带有电枢轴(510)的电机(500);可与发动机齿圈(100)相啮合的输出轴(220);安装于所述电枢轴和输出轴之间的超速离合器(350),所述离合器包括筒形的离合器内件(352),在其外周面上带有第一槽(355、352a),还有筒形的离合器外件(351),在其与所述离合器内件的外周面相对的内周面上带有第二槽(351a、352a),还有设置在所述离合器内件和离合器外件之间的滚子(353),其特征在于,所述离合器内件(352)和离合器外件(351)中至少一个由树脂或者有色金属制成,所述第一和第二槽(355、352a、351a)中的一个具有能够储存所述滚子的径向深度,以使所述滚子在所述输出轴超速期间在所述离合器外件和离合器内件之间形成非接触的关系。
2.如权利要求1所述的起动器,其特征在于所述离合器外件的第二槽(351a)具有将所述滚子储存到下述位置的径向深度,即所述离合器内件的外周面不会与滚子接触。
3.如权利要求1或2所述的起动器,其特征在于所述离合器内件(352)的第一槽(355、352a)的数目大于所述第二槽(351a)的数目。
4.如权利要求1或2或3所述的起动器,其特征在于所述第一槽(355、352a)具有大致与所述滚子半径相同的曲率半径。
5.如权利要求1或2或3或4所述的起动器,其特征在于所述第一和第二槽(355、352a、351a)的一部分具有与所述滚子的半径大致相同的曲率半径,其中,所述滚子(353)与所述第一和第二槽均接触。
6.一种起动器,包括包括有电枢轴(510)的电机(500);由所述电枢轴驱动时驱动发动机的输出轴(220);可有效地与所述电枢轴和输出轴相连的超速离合器(350),所述离合器包括内筒形元件(352),与所述内筒形元件共轴的外筒形元件(351),还有设置在所述内筒和外筒形元件之间的滚子(353),所述内筒和外筒形元件分别具有相对的内槽和外槽(355、352a、351a),而且其中容纳所述滚子,内槽和外槽中的一个具有与滚子直径相近的深度,以使滚子大致完全储存在其中,所述内槽和外槽中的一个沿径向及圆周方向形成。
7.如权利要求6所述的起动器,其特征在于所述内筒和外筒形元件(351、352)中的至少一个由树脂制成。
8.如权利要求6或7所述的起动器,其特征在于所述内槽和外槽中的一个的数目大于其中另一个的数目。
9.如权利要求6、7或8所述的起动器,其特征在于它还包括形成于所述电枢轴上的中心齿轮(310);与所述中心齿轮相啮合的行星齿轮(320);与所述行星齿轮相啮合并与所述离合器外件成一体的内齿轮(340);与所述输出轴同轴安置并与所述离合器内件成一体的中心托架(360)。
全文摘要
一种起动器,具有一个高可靠性的超速离合器(350),所述离合器在其离合器内件(352)和离合器外件(351)两者上均带有槽(351a、352a、355)。滚子(353)被每个槽(351a、352a、355)的滚子接触表面在前和后力矩传递方向上夹住,所以在每个接触表面和滚子接触表面不会受到象采用楔形效应的滚子型超速离合器那样的大的应力。这降低了超速离合器(350)的惯性,抑制了小齿轮(200)与发动机齿圈(100)啮合时的冲击力。
文档编号F02N15/02GK1119244SQ9510604
公开日1996年3月27日 申请日期1995年5月16日 优先权日1994年9月19日
发明者志贺孜, 林信行, 大见正升, 长尾安裕 申请人:日本电装株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1