一种自适应调节制氢发生装置驱动电路的制作方法

文档序号:12393980阅读:379来源:国知局
一种自适应调节制氢发生装置驱动电路的制作方法

本实用新型涉及一种自适应调节制氢发生装置驱动电路,属于制氢技术领域。



背景技术:

氢水顾名思义即是含有氢气的水,自从发现氢气的医学效应和生物学效应以来,近年来,国际医学界和生物学界都在积极研究。其中具有代表性的研究者是日本东京大学的太田教授和上海第二军医大学的孙学军教授。目前比较流行的观点认为氢气具有选择性抗氧化作用;对生物体有害的自由基,氢气能主动性选择与其结合生成水。医学界普遍认为自由基学说是疾病的和衰老的根本原因之一,氢气选择性中和有害自由基,为氧化损伤产生的疾病提供了一种治疗方法,更重要的是对人体预防疾病的发生和衰老提供了一种预防措施,氢气是所有元素中质量最轻的元素,常温常压下以气体形式存在。人体利用氢气的方法之一就是将氢气溶入高纯度的水中,借助水为载体进入身体,在体内散发从而对人体因有害自由基产生的氧化起到一个还原作用。

现有技术中最常使用的的是电解水制氢,电解水制氢装置核心部件——控制线路板通常采用DC-DC升\降压电路为恒压电源单元驱动电极片电解矿物质水溶液制氢。

在授权公告号为CN 103695957A的中国专利文献中公开了一种具有智能控制功能的制氢装置;包括控制电路、阳极电极和阴极电极,所述控制电路包括电源模块、显示模块、电流检测电路、驱动模块、输出电路、开关单元和控制器,所述阳极电机和阴极电极与输出电路连接;但是该现有技术存在以下缺失:首先由于纯净水是弱导电液体,采用电解纯水制氢,电解极片的驱动电压要求较高(一般DC5V±0.5V)才能实现电解制氢;富含矿物质水溶液是强导电液体,采用电解富含矿物质水溶液制氢,电解极片的驱动电压要求较低(一般2.0±0.5V)就能实现电解制氢。若采用DC-DC升\降压电路驱动电极片电解制氢则会出现:

1、矿物质浓度不同的水在同等制氢过程中制氢量(氢浓度)不同;

2、电解矿物质浓度值差过大的水溶液,电解制氢装置运行不稳定(电路中电流值因矿物质浓度值而变化)甚至烧毁(矿物质浓度值高电流值大)。



技术实现要素:

为了解决上述技术问题,本实用新型提供一种自适应调节制氢发生装置驱动电路,电解制氢设备在不同电解质浓度水溶液中运行稳定,制氢量一致。

本实用新型的技术方案如下:

一种自适应调节制氢发生装置驱动电路,包括充电单元、电池单元、控制单元、恒压电源单元、恒流电源单元、自适应电压调节单元、制氢电极单元和TDS监测单元;所述充电单元一端接外部电源,另外一端输出稳压直流电源VCC;所述电池单元输入端接充电单元,输出端与控制单元连接;所述TDS监测单元采集水中的TDS值;所述TDS监测单元与恒流电源单元电信号连接并将采集到的水中的TDS值发送给控制单元MCU;所述制氢电极单元包括阴极J1和阳极J2;所述恒流电源单元提供所述制氢电极单元工作恒电流源;所述恒压电源单元包括一集成运放电路,所述恒流电源单元包括一组合管电路,所述组合管电路包括N沟道的Q4和P沟道的Q10,Q4的G极与控制单元MCU的阻值采样端连接,Q10的D极与恒压电源单元的输出端连接,恒压电源单元的输出端与恒流电源单元的VDD端连接,恒流电源单元的电流输出端与制氢电极单元的阳极端连接,恒流电源单元的VP端通过控制MOS管Q12与制氢电极单元阳极端连接,制氢电极单元的阴、阳极分别接入恒流电源单元电路中并构成回路;所述制氢电极单元的阴极端与恒压电源单元的集成运放电路的反相输入端相连构成负反馈放大电路,恒流电源单元的VP端的电压信号经过负反馈放大电路放大后输入到控制单元MCU的ADC采样端口。

其中,所述自适应调节制氢发生装置驱动电路还包括水位监测单元和按键单元,所述水位监测单元与控制单元电信号连接并将水位信号发送给控制单元;所述按键单元与控制单元电信号连接并控制控制单元的启闭。

其中,所述自适应调节制氢发生装置驱动电路还包括呼吸灯指示单元和蜂鸣器单元,所述呼吸灯指示单元与控制单元连接并控制呼吸灯显示;所述控制单元与蜂鸣器单元连接并控制蜂鸣器单元报警。

本实用新型具有如下有益效果:

1、本实用新型不同矿物质浓度的水溶液在同等制氢过程中制氢量(氢浓度)一致。

2、本实用新型电解矿物质浓度差过大的水溶液,电解制氢装置运行稳定(矿物质浓度不同时电路中电流值保持一致)。

3、本实用新型纯净水、高硬度饮用水(矿物质浓度高的水,国标规定饮用水硬度小于450ppm)电解制氢装置运行稳定,制氢量(氢浓度)一致。

4、本实用新型在不同的矿物质浓度水溶液电解过程中要求通过电极片的电流值恒定,电极片两端的电压值可随水溶液中矿物质浓度值不同自适应调节。

附图说明

图1为本实用新型自适应调节制氢发生装置驱动电路的整体电路图;

图2为本实用新型自适应调节制氢发生装置驱动电路的工作原理示意图;

图3为本实用新型自适应调节制氢发生装置驱动电路的恒压电源单元的电路图;

图4为本实用新型自适应调节制氢发生装置驱动电路的恒流电源单元的电路图;

图5为本实用新型自适应调节制氢发生装置驱动电路的TDS监测单元的电路图。

图中附图标记表示为:

1-充电单元、2-电池单元、3-控制单元、4-恒压电源单元、5-恒流电源单元、6-自适应电压调节单元、7-制氢电极单元、8-TDS监测单元、9-水位监测单元、10-按键单元、11-呼吸灯指示单元、12-蜂鸣器单元。

具体实施方式

下面结合附图和具体实施例来对本实用新型进行详细的说明。

参见图1-5,一种自适应调节制氢发生装置驱动电路,包括充电单元1、电池单元2、控制单元3、恒压电源单元4、恒流电源单元5、自适应电压调节单元6、制氢电极单元7和TDS监测单元8;所述充电单元1一端接外部电源,另外一端输出稳压直流电源VCC;所述电池单元2输入端接充电单元1,输出端与控制单元3连接;所述TDS监测单元8采集水中的TDS值;所述TDS监测单元8与恒流电源单元5电信号连接并将采集到的水中的TDS值发送给控制单元MCU;所述制氢电极单元7包括阴极J1和阳极J2;所述恒流电源单元5提供所述制氢电极单元7工作恒电流源;所述恒压电源单元4包括一集成运放电路,所述恒流电源单元5 包括一组合管电路,所述组合管电路包括N沟道的Q4和P沟道的Q10,Q4的G极与控制单元MCU的阻值采样端连接,Q10的D极与恒压电源单元4的输出端连接,恒压电源单元4的输出端与恒流电源单元5的VDD端连接,恒流电源单元5的电流输出端与制氢电极单元7的阳极端连接,恒流电源单元5的VP端通过控制MOS管Q12与制氢电极单元7阳极端连接,制氢电极单元7的阴、阳极分别接入恒流电源单元5电路中并构成回路;所述制氢电极单元7的阴极端与恒压电源单元4的集成运放电路的反相输入端相连构成负反馈放大电路,恒流电源单元5的VP端的电压信号经过负反馈放大电路放大后输入到控制单元MCU的ADC采样端口。

其中,所述自适应调节制氢发生装置驱动电路还包括水位监测单元9和按键单元10,所述水位监测单元9与控制单元3电信号连接并将水位信号发送给控制单元3;所述按键单元10与控制单元3电信号连接并控制控制单元3的启闭。

其中,所述自适应调节制氢发生装置驱动电路还包括呼吸灯指示单元11和蜂鸣器单元12,所述呼吸灯指示单元11与控制单元3连接并控制呼吸灯显示;所述控制单元3与蜂鸣器单元12连接并控制蜂鸣器单元报警。

本实用新型的工作原理:

使用过程中,在控制单元3的控制下,当水中电解矿物质浓度值增高,极间电流增大,恒流电源单元5控制自适应电压调节单元6降低制氢电极单元7电压确保电流恒定;当水中电解矿物质浓度值降低,极间电流减小,恒流电源单元5控制自适应电压调节单元6增加制氢电极单元7电压确保电流恒定。

其中,恒流电源单元5中由N沟道的Q4与P沟道的Q10构成组合管电路,Q4的G极为组合管的控制极接控制单元3的I/O口,Q10的D极为组合管的漏极接恒压电源单元4的4.5V输出端,当I/O为高电平时,组合管导通,恒压电源单元4的4.5V输出端接入恒流电源单元5的电源端口,将恒流电源单元5的电流输出端连接到制氢电极单元7的阳极端,同时,恒流电源单元5的电流输入端通过控制MOS管Q12连接到制氢电极单元7阴极端,当Q12导通时,制氢电极单元7的阴、阳极分别接入恒流电源单元5电路中并构成回路,制氢电极单元7开始电解水制氢,电流稳恒在200mA±10mA。

TDS监测单元8通过制氢电极单元7的阳极电压经过水的传导在阴极上感应出电压值,不同的电解液有不同的电压值,制氢电极单元7的阴极端与恒压电源单元4的集成运放电路的反相输入端相连构成负反馈放大电路,将制氢电极单元7阴极端的电压信号放大后输入到控制单元3的ADC采样端口,通过ADC采样端口得出的不同电压值推算出水中TDS浓度值。

自适应电压调节单元6根据水中TDS浓度值调节恒压电源单元4输出电压:根据不同的TDS浓度值由控制单元3内部查表推算出对应PWM占空比波形控制的电压调节模块Q4的G极,从而调整制氢电极单元7阴、阳极输出的电压值从而达到恒流电解要求。

按键单元10将控制信号传输至控制单元3控制整个系统的工作状态,充电单元中1的电源提供系统运行所需电能,水位监测单元9将容器内水位高度数据输出给控制单元3,控制单元3根据容器内水位情况调整系统工作状态,呼吸指示灯单元11受控制单元3控制完成运行状态指示。

以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1