一种基于苝四羧酸的有机半导体聚合物薄膜材料及其制备方法和应用与流程

文档序号:19682134发布日期:2020-01-14 17:31阅读:677来源:国知局
一种基于苝四羧酸的有机半导体聚合物薄膜材料及其制备方法和应用与流程

本发明属于光催化裂解水析氧领域,具体涉及一种基于苝四羧酸的有机半导体聚合物薄膜材料及其制备方法和在光催化裂解水析氧方面的应用。



背景技术:

光驱动的光电化学电池(pec)是太阳光用作能量源的装置,并且可以产生氢。为了设计高效的光电化学电池装置,需要通过催化剂降低析氢反应(her)和氧析出反应(oer)的过度电位。与析氢反应的过程相比,oer过程更具挑战性,因为它涉及四个质子的转移,并且对于oer具有高的过电位。尽管过去几十年来一直致力于开发用于oer的高效催化剂,但是对于oer催化剂的发现和改进有很大的空间,特别是在低成本、大规模制造和环境友好型催化剂方面。

在无机半导体中,贵金属(如pt)和过渡金属氧化物(如ruo2和mno2)是研究最多的催化剂。然而,贵金属的高成本、稀缺性和非环境友好的过渡金属氧化物在很大程度上阻碍了其在pecs中的大规模应用。相反,有机半导体聚合物由于其独特的物理化学特性,如低成本、溶液加工性和高消光系数等,近年来已被证明是用于光电化学电池光吸收材料的优良材料。其中,一种钾盐-3,4,9,10-四羧酸盐(k4ptc)因其高的水溶性和溶液加工性而受到关注。此外,从电化学的角度来看,k4ptc中的羧基是电化学活性基团,例如rcoo-的电化学氧化(称为kolbe反应,最古老的电-有机反应之一)。所以有望利用简单的一步电化学沉积方法制备以苝四羧酸为基础的聚合物薄膜光催化材料。



技术实现要素:

为了克服上述材料的局限性,满足光催化析氧技术的发展需要,本发明提供一种催化效率高、成本低廉、合成方法简便的材料制备方法及其在光催化裂解水产氢中的应用。

为实现上述发明目的,本发明采用以下技术方案:

一种基于苝四羧酸的有机半导体薄膜材料,是以空白ito玻璃作为工作电极,pt丝和pt片分别作为参比电极和对电极。在电氧化电位下聚合成苝四羧酸聚合物(ptca)沉积在空白ito玻璃表面。所述ptca薄膜形貌随沉积时间的不同而发生变化,小于300s时呈无序的颗粒状,颗粒大小在20-50nm范围内。当沉积时间大于300s时,颗粒在纵向上继续生长,长成长条状并且无序分布。通过控制沉积时间的不同,在其他都相同的沉积条件下,沉积时间为300s、600s、1200s,所修饰的ptca薄膜厚度分别为21.1nm,30.1nm,42.0nm。

上述基于苝四羧酸的有机半导体薄膜材料的制备方法,包括以下步骤:

(1)a、分别称取0.58g的k4ptc和1.72g的na2so4于100ml容量瓶中配成100ml溶液;b、实验前将空白ito切割一定的尺寸大小,分别在0.1mnaoh、去离子水、丙酮、乙醇、去离子水超声清洗15min;实验前将电解池用王水或者食人鱼液浸泡半小时左右,去除金属离子和有机污染物,浸泡完用去离子水充分清洗备用;

(2)将所述溶液在参比电极位置处倒入电解池中,以空白ito玻璃为工作电极,pt丝和pt片分别作为参比电极和对电极。在0.7v恒定电位下,沉积300-1200s,得到不同厚度的薄膜材料;

(3)将步骤(2)中得到的负载了薄膜材料的ito玻璃立即从沉积溶液中取出,用去离子水淋洗表面并用氮气吹干备用。

所得的基于苝四羧酸的ptca薄膜材料用于光催化水析氧反应中,具体实验流程和检测方法为:

(1)将负载ptca薄膜材料的ito玻璃用铜导线连接,在扫描电化学显微镜的敞口电解池中,以负载ptca薄膜材料的ito玻璃为工作电极,pt丝为对电极,ag/agcl/kcl.sat为参比电极的条件下进行光电化学性能测量;

(2)利用扫描电化学显微镜敞口电解池控制负载在ito玻璃上的ptca薄膜的面积为0.785cm2,控制氙灯与电解池之间的距离从而控制光强,在施加一定偏压情况下进行光催化析氧测试。所使用的光源为300w的氙灯,设置其光催化时候的光强为258mw/cm2,截止波长大于420nm;

(3)待光催化测试结束,通过比较光电化学电流的大小观察不同沉积厚度的薄膜材料以及空白ito对析氧反应的光电化学催化性能。

本发明是将半导体性质的ptca薄膜材料负载在ito表面。由于二者的最低占据分子轨道(homo)能级和最高未占据分子轨道(lumo)能级匹配,在光照下,在ptca薄膜中产生的光生电子(e-)从价带激发跃迁到导带(cb),再转移到ito的导带上,因此快速有效地与空穴(h+)分离,增强了光催化析氧的性能。

与现有技术相比,本发明的优点在于:

(1)本发明的基于苝四羧酸的ptca薄膜材料材料是通过一步电化学沉积合成的,相比于普通的离子溅射和真空等方法负载形成的薄膜材料,该方法制备简单,步骤更少,成本低廉,更适用于工业化生产。

(2)本发明通过改变沉积时间,能够在相同的条件下,控制基于苝四羧酸的ptca薄膜材料的厚度以及形貌。

(3)本发明的基于苝四羧酸的ptca薄膜材料在可见光下能够有良好的光催化析氧活性,最佳可达到单纯ito的6.9倍。

附图说明

图1为实施例1中空白ito的场发射扫描电镜图(a)、实施例1中基于苝四羧酸的ptca薄膜材料的场发射扫描电镜图(b)、实施例2中基于苝四羧酸的ptca薄膜材料的场发射扫描电镜图(c)和实施例3中基于苝四羧酸的ptca薄膜材料的场发射扫描电镜图(d);

图2为实施例1-3中制备的基于苝四羧酸的ptca薄膜材料的原子力扫描电镜图;

图3为实施例1的前体k4ptc和制备的基于苝四羧酸的ptca薄膜材料的x射线光电子光谱图;

图4为实施例1的前体k4ptc和制备的基于苝四羧酸的ptca薄膜材料的傅里叶变换红外光谱图;

图5为实施例1-3中的空白ito玻璃和所合成的基于苝四羧酸的ptca薄膜材料在可见光作用下催化水析氧的效果对比图。

具体实施方式

下面结合对比例和实施例对本发明做进一步的阐述,但不是对本发明的限定。

实施例1

一种基于苝四羧酸的ptca薄膜材料,以空白ito玻璃作为载体,将聚合物薄膜负载在ito玻璃表面。

基于苝四羧酸的ptca薄膜材料的制备方法,包括以下步骤:

(1)清洗ito玻璃:

将ito玻璃切割成一定尺寸,分别在0.1mnaoh、去离子水、丙酮、乙醇、去离子水中超声清洗15min;

(2)制备基于苝四羧酸的ptca薄膜:

a、分别称取0.58g的k4ptc和1.72g的na2so4于100ml容量瓶中,配置成混合黄色溶液。

b、将步骤a充分溶解后的反应物50ml倒入敞口电解池中,以空白ito为工作电极并用铜导电胶作为导线,pt丝和pt片分别为对电极和参比电极,通过控制0.7v的恒定电位,沉积300s得到基于苝四羧酸的ptca薄膜材料。

c、待沉积完成,将ito玻璃取出,用去离子水轻轻淋洗电极表面,并迅速用氮气吹干。

实施例2

本实施方式与实施例1基本相同,区别仅在于步骤(2)中沉积时间改为600s。

实施例3

本实施方式与实施例1基本相同,区别仅在于步骤(2)中沉积时间改为1200s。

形貌以及结构测试

利用fsem对实例1-3制得的基于苝四羧酸的ptca薄膜材料进行表征。图1a为单纯的ito,其呈均匀的花状结构,表面平整。图1b中为沉积300s的ptca薄膜负载在空白ito玻璃表面。其表面为一些不规则颗粒,粒径为20~50nm。另外,在ito表面电化学沉积600s,1200sptca薄膜后(1c-1d),不规则颗粒继续纵向长大,形成条状结构和非连续排列。随着沉积时间的延长,样品的颜色逐渐加深,颜色由淡粉色变为紫红色。

为了确定样品的厚度是否随沉积时间的增加而增加,我们利用afm对实施例1-3中的ptca薄膜材料进行表征。沉积300s、600s、1200s的薄膜厚度分别为21.1nm、30.1nm、42.0nm,如图2a-2c。因此,随着沉积时间的增加,薄膜厚度增加。然而,即使沉积时间为1200s,由于生长的ptca薄膜电导率差,薄膜的厚度仍小于50nm。

利用xps对实施例1中的前体k4ptc和制得的基于苝四羧酸的ptca薄膜材料进行表征,结果如图3a-3c所示。在k4ptc的xps中观察到了c、k和o元素。相反,在ptca薄膜中没有检测到k-1s的信号,表明薄膜上没有物理吸附的k4ptc盐。在496ev处,可归属于sn3d的峰出现在ito衬底上。高分辨率c1s谱可分解为三个峰。位于284.9ev处的主峰对应于环的芳烃的c=c结合能。原子的化学位移随成键原子电负性的增加而增大。羧基中的c原子与o原子结合。因此,以288.6ev和289.8ev为中心的其它两个峰o-c=o和cooh为特征峰。高分辨率o1s光谱分别属于c=o和c-o-c两个不同结合能的o物种(531.5ev和533.4ev)。

利用ft-ir,如图4,对实施例1和3中的前体k4ptc和基于苝四羧酸的ptca薄膜材料进行表征,通过比较ptca和k4ptc的ft-ir光谱,在1027cm-1和1130cm-1对应于聚合物的c-o-c对称拉伸振动处,在1237cm-1,1303cm-1和1423cm-1处发现了对应于-cooh基团的平面内弯曲振动的峰值,在1773cm-1对应于-cooh基团的c=o拉伸振动的峰值,这在k4ptc的光谱中不存在。因此,xps和ft-ir的实验结果证明,聚合物并不是完全去羧化而形成石墨烯等所有的碳有机化合物,而是含有羧酸基团的部分脱羧聚1合。

图5示出了在0.1mkcl溶液中,在1.55v(相对于对ag/agcl(kcl饱和))的偏压下,空白ito、ptca-300s/ito、ptca-600s/ito、ptca-1200s/ito在可见光照明下的电流-时间瞬态响应。ptca-600s/ito的光流值(3.4×10-5a)最大,比ito电极大6.9倍。此外,较厚的薄膜利用的阳光不足。此外,厚膜可以产生很大的体电阻,并导致载流子输运的减少这表明活性层厚度和载流子运输之间存在权衡。结果证实,在光和电的影响下,适当的厚度可以促进电荷的分离,加速电荷的释放和转移。

应用实施例1

基于苝四羧酸的ptca薄膜材料在可见光照射下裂解水析氧的应用

步骤一:将负载基于苝四羧酸的ptca薄膜材料的ito玻璃用铜导线连接,在扫描电化学显微镜的敞口电解池中,以ito电极为工作电极,pt丝为对电极,ag/agcl/kcl.sat为参比电极的条件下进行光电化学性能测量;

步骤二:利用扫描电化学显微镜敞口电解池控制负载在ito上的基于苝四羧酸的ptca薄膜的面积为0.785cm2,控制氙灯与电解池之间的距离从而控制光强,在施加一定偏压情况下进行光催化析氧测试。所使用的光源为300w的氙灯,设置其光催化时候的光强为258mw/cm2,截止波长大于420nm;

步骤三:待光催化测试结束,通过比较光电化学电流的大小观察不同沉积厚度的薄膜材料以及空白ito对析氧反应的光电化学催化性能。

经检测,空白ito以及实施例1-3中制备的ptca薄膜材料在可见光照射下催化裂解水析氧光电化学催化活性对比结果如图3所示,从图中可以看出以下几点:负载上基于苝四羧酸的ptca薄膜材料后,催化剂的光催化析氧性能都得到了很好的提升,最高可达到单纯ito的6.5倍。2、在一定的沉积电位内,随着沉积时间的增加,ptca薄膜材料的光催化性能先上升后降低,总体呈现正态分布。这可能是由于活性层薄膜不能充分利用太阳光,而厚膜则会产生较大的体电阻,使载流子运输变差。有源层厚度与载流子输运之间存在权衡。结果表明,适当的厚度在光、电的影响下,不仅可以促进电荷分离,而且可以加速电荷的释放和传递。

这说明基于苝四羧酸的ptca薄膜材料是一种的高效新型有机半导体光催化剂。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1