控制器的制作方法

文档序号:5608947阅读:134来源:国知局
专利名称:控制器的制作方法
技术领域
本发明涉及控制器,特别涉及适用于使用高压流体的场合的控制器。
背景技术
以往,作为控制器,较为公知的有两种,一种控制器是由弹簧向下弹压阀杆而使阀关闭,由空气压或电磁线圈等以比弹簧力大的力向上驱动阀杆而使阀开启;另一种控制器是由弹簧对阀杆施加使其向上的力使阀开启,由空气压或电磁线圈等施加的比弹性力大的力使阀杆向下而使阀关闭。
当将这种控制器用作高压流体用控制器时,为了防止流体的泄漏,就必须增大使阀关闭的力。然而,对于由弹簧向下弹压阀杆而使阀关闭、由空气压或电磁线圈等向上驱动阀杆而使阀开启的控制器,如果增大弹簧的弹性力,随之而来的是,必须增大用于推动阀杆的空气压等的驱动力,由于提高驱动力是有限度的,因此,便出现了无法根据需要来增大使阀关闭的力的问题。对于由弹簧向上弹压阀杆而使阀开启、而由空气压或电磁线圈等以比弹簧力大的力向下推压阀杆而使阀关闭的控制器,同样也会出现为了增大使阀关闭的力而必须提高空气压等的向下的加载力的问题。
因此,为了解决上述问题,公开了如下的控制器,该控制器具有阀本体,其伴随着阀杆的上下运动而使流体通路开闭;壳体,其固定在阀本体上部;作动轴,其设置在壳体内上方且能在其中上下自由运动;驱动装置,用来使作动轴上下运动;动力放大装置,其设置在壳体内下方用来放大作用在作动轴上的力并将该力传递至阀杆(例如参见日本特开平7-139648号公报)。该专利文献1中的控制器的动力放大装置备具有锥体状辊支承部件,其从作动轴下端垂直向下方延伸;设在阀杆上端的圆盘状辊承载部件;一对滚子支承体,其位于2滚子承载体构件之间,相对锥体状构件的轴线对称配置;一对滚动滚子,其支承在各滚子支承体的上部且能转动并与锥体状滚子承载体构件的锥面接触;一对加压滚子,其支承在各滚子支承体的下部且能自由转动,并与圆盘状滚子承载体构件的上表面接触。各滚子支承体支承在壳体上,能相对加压滚子的轴线,以靠近锥体状滚子承载体构件的轴线侧的轴为中心摆动。
在上述日本特开平7-139648号公报中所公开的控制器有下列优点不必提高空气压、弹簧的弹性力和电磁线圈等的驱动力就能根据需要加大使阀关闭的力,因此即使在使用高压流体场合也能可靠防止流体的泄漏,但是,也存在因构造复杂和零件数量增多而导致制造成本变高的问题。

发明内容
本发明的目的在于提供一种控制器,其具有动力放大装置,该动力放大装置用来放大作用在作动轴的力并将其传递至阀杆,而且其构造简单并能降低成本。
本发明的控制器,其特征为,其具有阀本体,其伴随阀杆的上下往复运动可使流体通路开启和关闭;壳体,其固定在阀本体上部;作动轴,其设置在壳体内上方且能在其中上下自如运动;驱动装置,用来使作动轴上下运动;动力放大装置,其设置在壳体内下方可放大作用在作动轴的力并能将该力传递至阀杆;动力放大装置具有锥体状构件,其从作动轴的下端垂直向下方延伸且前端变细;圆盘状构件,其设置在阀杆上端;第1摆动体和第2摆动体,夹着锥体状构件相对地配置于上述锥体状构件与上述圆盘状构件之间并能绕贯穿其下部的摆动轴而摆动;各摆动体具有板状本体;上接触面,其形成于本体上部且与锥体状构件的锥面接触;下接触面,其形成于本体下部且与圆盘状构件的上表面接触;各摆动体的下接触面形成为以处于偏离摆动轴的轴线的位置上的中心线为中心的圆弧状的凸轮面。
若采用本发明的控制器,则由于各摆动体具有板状本体,形成在本体上部且与圆锥体状构件的锥面接触的上接触面,和形成在本体下部且与圆盘状构件的上表面接触的下接触面,因此,不需要与圆锥体状构件和圆盘状构件接触的滚子,此外,由于各摆动体的下接触面是由以处于偏离摆动轴的轴线的位置上的中心线为中心的圆弧状的凸轮面构成的,因此,能按所要求的放大率放大作用在作动轴上的力并将其传递至阀杆。这样,与现有的控制器相比,可使构造简单从而减少零件数量,还能获得动力放大装置,并能得到具有与现有控制器相同功能却大幅降低其制造成本的控制器。
此外,对于锥体状构件既可形成为例如其前端为朝向下方的圆锥状或圆锥台状,也可在圆锥部分的上方设置圆柱部。此外,锥状体构件也可是垂直剖面的形状为三角形或梯形的长方体。
在上述控制器中,第1摆动体和第2摆动体既可分别有各自的摆动轴,也可使第1摆动体和第2摆动体的下部彼此重叠,二者共用一个摆动轴。在后一场合,能减少摆动轴的数量,从而能近一步简化构造,还能减少零件的数量。


图1为表示本发明的控制器的第1实施方式的纵剖视图。
图2为表示本发明的控制器的第2实施方式的纵剖视图。
具体实施例方式
下面参照

本发明的实施方式。
在本说明书中,将图1的上下作为上下。再有,在以下的描述中,将该图的左规定为前,该图的右规定为后,左右是指朝向前方而说的左右。
图1表示本发明的控制器的第1实施方式,其中,控制器具有阀本体1;壳体2,其固定在阀本体1上部;作动轴3,其设置在壳体2内上方并可在其中上下自如运动;驱动装置4,其用来使作动轴3上下运动;动力放大装置5,其设置在壳体2内下方并可将作用在作动轴3上的力传递至阀杆16上。
阀本体1由如下部件构成阀壳11,其包括向上开口的凹部11a、流体流入通路11b和流体流出通路11c,其中,流体流入通路11b的一端向前方开口而另一端向凹部11的底面中央部开口,流体流出通路11c的一端向后方开口而另一端向凹部11a的底面后部开口;环状阀座12,其设置在流体流入通路11b的另一端开口周缘处;隔膜(阀体)13;隔膜推压件14;盘15,其下端安装有隔膜推压件14;阀杆16,其可使盘15上下运动;阀盖17,其具有阀杆的导向孔17a,并与阀壳11螺纹连接,从而构成伴随阀杆16上下运动而使隔膜13和阀座12之间的流体流入通路11b开启或关闭的隔膜阀的形式。隔膜13由多片(如6片)薄板构成,其与阀座12接触的部分用耐腐蚀性强的优质材料制成,而其它部分则用强度高和耐压性能优良的材料制成。隔膜13自身具有反弹力和复原力,当来自阀杆16的向下的力低时,在流体压力和隔膜13自身的反弹力的作用下,隔膜13被压向上方,使流体通路11b开启。
壳体2由向上开口的中空状的下部壳体21和向下开口的中空状的上部壳体22组成,隔板23固定在下部壳体21的上端部和上部壳体22的下端部对接部分的内圆周处。水平截面为圆形的缸室24形成于壳体2内的隔板23的上方,水平截面为方型的动力放大装置的容纳室25形成于壳体2内的隔板23的下方。在上部壳体22的顶部的中央开设有导入压缩空气用和兼作作动轴导向用的通孔26。在隔板23的中央开设有作动轴插入用通孔27。在下部壳体21的下端部设有内螺纹部,设置在盖帽17上端部的外螺纹部与该内螺纹部连接,这样,阀盖17将壳体2固定在阀本体1上。
作动轴3的上端部能插入上部壳体22的顶壁的通孔26内,并能自由滑动,下端部能插入隔板23的作动轴插入用通孔27内,并能自由滑动。可沿缸室24上下滑动的活塞31与作动轴3的中间部形成为一体。该缸室24由该作动轴3的活塞31分隔成上部缸室24a和下部缸室24b。在作动轴3的活塞31的上表面和上部壳体22的顶壁的下表面分别设有环状的弹簧承接凹槽32、33,将活塞31向下弹压的弹簧34被嵌入在这些弹簧承接凹槽32、33内并卡定在其中。在作动轴3中设有压缩空气流入通路35,该压缩空气流入通路35的一端与上部壳体22的通孔26连通,另一端则与下部缸室24b连通。在上部缸室24的周围的壁上设有空气流出通路36,其用来在活塞31上行时使上部缸室24a内的空气得以排出。此外,在作动轴3的下端部形成向下开口的截面为圆形的凹部37。
使作动轴3上下运动的驱动装置4主要包括活塞31,弹簧34,缸室24和压缩空气流入通路35,其中,活塞31始终由弹簧4向下弹压,还受到经过压缩空气流入通路35导入缸室24内的空气向上的驱动,此外,作用在该活塞31上的力被传递至作动轴3,向上下驱动作动轴3。
动力放大装置5具有锥体状构件41,其设置在作动轴3的下端并垂直向下延伸,且与作动轴形成为一体;圆盘状构件42,其设置在阀杆16上端并与其组成为一体;前后一对摆动体43、44,其相对锥体状构件41的轴线对称地配置在两构件41、42之间;前后摆动轴45、46,其设置在各摆动体43、44的下部并分别与摆动体43、44组成为一体,该前后摆动轴45、46向左右延伸;以及保持器47,其固定在下部壳体21内,支承前后摆动轴45、46。
锥体状构件41是通过使长方体的前后面为斜面而形成的,斜面彼此之间所成的角度为例如90°。在锥体状构件41的上表面上设有向上方突出的轴部,通过将该轴部紧配合于入设在作动轴3的下端的凹部37中,使锥体状构件41与作动轴3构成一体。圆盘状部件42的上表面是圆形且是平面。
各摆动体43、44具有板状本体43a、44a;上接触面43b、44b,形成在本体43a、44a上部且与锥体状构件41的锥面接触;下接触面43c、44c,其形成在本体43a、44a下部且与圆盘状构件42的上表面接触。各摆动体43、44的下接触面43c、44c形成为圆弧状凸轮面,该圆弧是以与摆动轴45、46的轴线平行的中心线为中心形成的,该中心线设置在向比摆动轴45、46的轴线更远离锥体状构件41的轴线的一侧(前后方向的外侧)偏心的位置上。因此,当前后摆动体43、44摆动时,下接触面43c、44c的与圆盘状构件42相接触的部分与摆动轴45、46的轴线之间的距离会发生变化,从而导致下接触面43c、44c推压圆盘状构件42的力发生变化。
前后摆动轴45、46插入设在前后摆动体43、44的下端部上的摆动轴插入孔内,其左右两端部保持在设置于保持器47内的轴承(图中未示)上,因此,摆动轴45、46被转动自如地支承在下部壳体21内,且无法前后、上下、左右移动;前后摆动体43、44能分别以摆动轴45、46的轴线为中心围绕水平轴摆动。再者,也可采用将摆动轴45、46较松地、即能够转动地插入设在保持器47内的保持孔中的连接方式,以取代用轴承支承摆动轴45、46的连接方式。
图1表示流体通路处于关闭时的状态,作动轴3被弹簧34的弹性力向下弹压而处于下方的位置上,随之,前后摆动体43、44的上接触面43b、44b处于彼此远离的方向的位置上,而下接触面43c、44c则处于彼此接近的方向的位置上。弹簧34的弹性力经由上接触面43b、44b、前后摆动体43、44的本体43a、44a以及下接触面43c、44c被传递至圆盘状构件42,将阀杆16向下压。这样,该力被传递至隔膜13,使流体流入通路11b的开口关闭。
若将作用在作动轴3的力设为F,锥体状构件41的锥面的半角设为α,则在摆动体43、44的上接触面43b、44b上作用与锥面垂直方向的力,作用在一方的摆动体43、44上的该力G为G=F÷2Sinα。作用在摆动体43、44的上接触面43b、44b上的力G,经由摆动体本体43a、44a和下接触面43c、44c被传递至圆盘状构件42。将摆动轴45、46的轴线与上接触面43b、44b的圆弧中心线之间的距离设为C,将连接摆动轴45、46的轴线与上接触面43b、44b的圆弧中心线的线与锥体状构件41锥面的夹角设为γ,将摆动轴45、46的轴线与下接触面43c、44c的圆弧中心线之间的水平距离设为δ,将一接触面43c、44c压圆盘状构件42的向下的力设为N,则式N×δ=G×Cosγ×C成立。因此,前后两侧摆动体43、44压圆盘状构件42的向下的力为2N=F×Cosγ×C÷Sinα÷δ,通过将α、γ、δ和C设定为适当的值,能按任意的放大率将作用在作动轴3上的力放大后传递至阀杆16上。
当采用第1实施例的控制器时,将压缩空气经过上部壳体22的通孔26输入时,压缩空气通过作动轴3的空气流入通路35,从缸室24的下方被供给至下部缸室24b内。这样,空气压产生的向上的力作用于活塞31,由于该力大于由弹簧34产生的向下的力,因此,向上驱动作动轴3。随之,前后上接触面43b、44b朝彼此接近的方向移动,使前后摆动体43、44摆动,而前后摆动体43、44的下接触面43c、44c则朝彼此远离的方向移动。因此,下接触面43c、44c与圆盘状构件42接触的部分和摆动轴45、46的轴线之间的距离变小,使下接触面43c、44c向下压阀杆16的力消失。于是,隔膜13被流体压力和隔膜13自身反弹力向上压,流入通路11b被开启。
图2表示本发明的控制器的第2实施例。该实施例的控制器在动力放大装置的摆动体及其摆动轴的构成上有所不同,随之,保持器47的构成也发生变化,这些便是与第1实施例的不同之处。在下列说明中,在与第1实施例相同的部分上标注相同标号,而省略其说明。
动力放大装置50具有锥体状构件41,其设置在作动轴3的下端并垂直向下延伸,且与作动轴3设置成一体;圆盘状构件42,其设置在阀杆16上端并与阀杆16设置成一体;前后一对摆动体43、44,其相对锥体状构件41的轴线对称配置在两构件41、42之间;摆动轴51,其设置在下部彼此重叠的摆动体43、44的下部并分别与摆动体43、44设置成一体,且向左右延伸,为两摆动体43、44所共用;保持器52,其固定在下部壳体21内用来支承共用摆动轴51。
各摆动体43、44的下接触面43c、44c形成为圆弧状凸轮面,该圆弧是以与共用摆动轴51的轴线平行的中心线为中心的,该中心线设置在向比共同摆动轴51的轴线更远离锥体状构件41的轴线的一侧偏心的位置上。因此,当前后摆动体43、44摆动时,下接触面43c、44c的与圆盘状构件42接触的部分与共用摆动轴51的轴线之间的距离发生变化,从而导致下接触面43c、44c推压圆盘状构件42的力发生变化。
共用摆动轴51插入设在前后摆动体43、44的下端部的摆动轴插入孔内,其两端部保持在设置于保持器52内的轴承(图中未示)上,这样,共用摆动轴51被支承在下部壳体21内,该共用摆动轴51能自如转动,但无法前后、上下、左右移动,而前后摆动体43、44能分别以共用摆动轴51的轴线为中心绕水平轴摆动。再者,也可使前后摆动轴43、44各为一个,在该实施例中,前摆动体43为左右一对,后摆动体44夹在左右前摆动体43之间,两摆动体43、44相互导向。此外,在圆盘状构件42的左右两外缘上设有凸出缘42a,其用来防止两摆动体43、44的下端部在左右方向上向外移动。
图2表示流体通路处于关闭时的状态,作动轴3由弹簧34的弹性力向下弹压而位于下方,随之,前后摆动体43、44的上接触面43b、44b位于彼此远离方向的位置,而下接触面43c、44c则位于彼此接近的方向的位置。弹簧34的弹性力经由上接触面43b、44b、前后摆动体43、44的本体43a、44a以及下接触面43c、44c被传递至圆盘状构件42,将阀杆16向下压。接着,该力被传递至隔膜13,将流体流入通路11b的开口关闭。
当采用第2实施例的控制器时,将压缩空气经过上部壳体22的通孔26输入时,压缩空气通过作动轴3的空气流入通路35,从缸室24的下方供给至下部缸室24b内。这样,空气压产生的向上的力作用于活塞31上,由于该作用力大于由弹簧34产生的向下的力,因此,作动轴3被向上驱动。这样,前后上接触面43b、44b便朝彼此接近的方向移动,使前后摆动体43、44摆动,而前后摆动体43、44的下接触面43c、44c朝彼此远离的方向移动。因此,下接触面43c、44c与圆盘状构件42接触的部分和共用摆动轴51的轴线之间的距离变小,下接触面43c、44c向下压阀杆16的力消失。于是,隔膜13被流体压力和隔膜13自身反弹力的向上压,流入通路11b被开启。
再有,在上述实施例中,在使流体通路开启时,作动轴3是由空气压驱动的,但也可用例如电磁线圈驱动代替空气压驱动。此外,可以在用弹簧向上弹压作动轴的同时,用空气压或电磁线圈等以比弹性力大的力向下推压阀杆而使阀关闭,也可通过消除由空气压或电磁线圈等产生的作用力而使阀开启。
本发明的控制器具有动力放大机构,可用来将作用在作动轴上的力放大后传递至阀杆,而且,由于该构造简单并能降低制造成本,因此,适合用于使用高压流体的场合。
权利要求
1.一种控制器,具有阀本体,其伴随阀杆的上下往复运动使流体通路开启和关闭;壳体,其固定在阀本体上部;作动轴,其设置在壳体内上方且能在其中上下自由运动;驱动装置,用来使作动轴上下运动;动力放大装置,其设置在壳体内下方,将作用在作动轴的力放大后传递至阀杆,其特征在于动力放大装置具有锥体状构件,其从作动轴的下端垂直向下延伸且前端变细;圆盘状构件,其设置在阀杆上端;第1摆动体和第2摆动体,其夹着锥体状构件相对地配置于圆盘状构件与锥体状构件之间,并能绕贯穿其下部的摆动轴摆动,各摆动体具有板状本体;上接触面,其形成于本体上部且与锥体状构件的锥面接触;下接触面,其形成于本体下部且与圆盘状构件的上表面接触;各摆动体的下接触面是圆弧状的凸轮面,该圆弧以处于偏离摆动轴的轴线的位置上的中心线为中心。
2.如权利要求1所述的控制器,其特征为,第1摆动体和第2摆动体的下部彼此重叠,二者共用一个摆动轴。
全文摘要
本发明提供一种控制器,其特点如下动力放大装置(5)具有锥体状构件(41),其从作动轴(3)的下端向下方延伸;圆盘状构件(42),其设在阀杆(16)上端;前后摆动体(43、44),其设置两构件(41、42)之间,并夹者锥体状构件(41)相对配置,并能绕贯穿下部的摆动轴(45、46)摆动。各摆动体(43、44)具有板状本体(43a、44a);上接触面(43b、44b),其形成在本体上部且与锥体状构件(41)的锥面接触;以及下接触面(43c、44c),其形成在本体下部且与圆盘状构件(42)的上面接触。各摆动体的下接触面(43c、44c)由圆弧状的凸轮面构成,该圆弧由以处于从摆动轴的轴线偏心的位置上的中心线为中心的圆弧状的凸轮面构成。
文档编号F16K31/52GK1703597SQ200380101238
公开日2005年11月30日 申请日期2003年10月31日 优先权日2002年12月3日
发明者德田伊知郎, 坪田宪士, 山路道雄, 筱原努 申请人:株式会社富士金
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1