利用聚集角设计进行光学检测的方法和装置的制作方法

文档序号:5835744阅读:168来源:国知局
专利名称:利用聚集角设计进行光学检测的方法和装置的制作方法
技术领域
本发明涉及光学检测技术领域并涉及利用聚集角设计对具有图样的物件进行检测的方法和装置,具有图样的物件例如为集成电路、印刷电路、光刻掩模、液晶显示器等。
图样制作之前的晶片检测基于这样的事实,即光主要在通常平整光滑的无图样晶片表面的异常处发生散射。因此,检测到任何散射光就可能是有缺陷的象征。当对具有图样的晶片所进行的光学检测旨在探查缺陷(例如存在异物)时,该图样也将引起散射光。因此,检测到散射光不一定表示有缺陷。检测缺陷的传统技术被称为“模-到-数据库(die-to-database)”和“模-到-模(die-to-die)”技术,按照这些方法,把从单个模中散射出的光分别与事先准备的用于指示“无缺陷”模所散射的光的数据库和所述单个模的“邻近”模进行比较。信号间的差值表示存在于该物件表面的异常处所散射的光。一般地说,与“无缺陷”模或“邻近”模相比,检测到从单个模所散射的光分量差表示在该模中缺少或增加了某些特征,因此认为其有缺陷。
光学检测装置通常由例如照明系统和利用明场或暗场模式的聚光/检测系统等主要部件构成。明场检测模式基于检测过程中晶片的镜面反射系数的变化率,这种变化由散布在晶片上的缺陷所引起。暗场检测模式是利用缺陷的散射进行的,这种散射的取向与镜面反射不同。
聚集方案的通常目的在于尽可能地提高所检测信号的信噪比。业已发现多种暗场检测方案对于检测缺陷非常有效。根据美国专利No.4,898,471和5,604,585中公开的这种已有技术,为了便于有意义的信号对比,聚光系统在方位和俯仰上以一恒定聚集角聚集光,该方位角和俯仰角不同于镜面反射的方位角和俯仰角。但是,具有图样的物件(例如晶片)所散射的光总是含有从该图样向所述聚集角散射的光分量,所以,对这些光分量的检测表示所检测信号中增加了“噪声”。
本发明利用了聚光系统的可变角设计技术。这种技术披露在转让给本申请的受让人的一份未决申请中。根据这种技术,对被检测物件(例如晶片)进行逐区扫描,以对每个扫描区恒定的最大聚集角聚集每个扫描区的散射光,并通过一个滤光器将其导向检测装置。该滤光器的选择应当使得从所有聚集光中仅拾取在整个聚集角的一立体角部分(segment)传输的那部分光,与最大聚集角的其他立体角部分相比,其中这部分中来自图样散射的光强度最小。这可增加被检测信号的信噪比。所述的检测装置包括至少一个在暗场成像模式下工作的检测单元,即聚集的以某个方位角和仰角从该物件上所散射的光分量不同于大多数镜面反射所产生的光分量。
本发明的主要构思包括选择所述的可变角方案。这需要通过获得一明场或高分辨率的暗场图像并分析该所得图像,以确定聚集角视场中从图样反射回的光的传输立体角部分。这使预定的光聚集度(CLC)能用于暗场散射信号聚集,以防止与物件上的图样相关的并构成“噪声”的那部分信号进入检测器,从而使得所做的检测仅仅是与被照射区中任何特性相关的散射信号部分而不是图样的散射信号。换句话说,在物件的散射光通向暗场检测器的光路中放置一适当的掩模,该掩模切去了图样散射光的传输立体角部分。这就大大提高了被检测信号的信噪比。
因此,按照本发明的一个方面,提供一种对具有图样的物件进行光学检测的方法,该方法包括以下步骤(i)用入射光照射该物件的一个区域,以从该被照射区产生反射光;
(ii)获得被照射区的图像,并生成表示它的数据;(iii)分析所产生的数据,并确定镜面反射光的传输立体角之外的某一聚集角视场内被照射区中图样所散射的光分量的强度分布;(iv)基于所确定的分布,过滤所述聚集角视场内所聚集的光,以收集那些从该被照射区散射且至少在所述聚集角视场的一预定立体角部分内传输的光分量,将这些聚集光分量导向一个检测单元。
此处所用的术语“聚集角视场”是指对物件散射光进行聚集的最大立体角,它由检测单元的光学装置所限定。
在上述的步骤(ii)中,用于检测被照射区所获得图像的光可以是被照射区的镜面反射光(即明场检测模式)或镜面反射光传输立体角外的某一立体角中所传输的散射光(即暗场检测模式)。为了得到表示被照射区中所获得图样的图象的数据,需要足够高的分辨率。为此目的,该聚光光学装置将利用高数值孔径的物镜。
对生成数据的分析包括所谓的图样结构“模型”和获得表示散射图样的二维(或三维)离散阵列。该数据用于模拟聚集角视场内的暗场散射图样。其模拟结果用于确定模拟/成像标绘图中从作为强度分量(lobe)的周期性图样所产生的“背景”强度,还用于确定聚集角视场内以该立体角部分传输的聚集光分量而不是“背景”光分量。这可通过在整个聚集光光路中在适当位置设置一适当的掩模(滤光器)来实现(这就是所谓的“傅里叶滤波”)。
应当知道,每一种特定的图样结构都具有特定的从周期性图样散射出的“背景”光分量的传输立体角部分。因此,可以事先设计好含多个数据记录的程序库(数据库),与多种不同的图样结构相应,其中每一条记录表示出从特定周期性图样所散射出的光的传输立体角部分。这些不同的图样结构可以是在特定物件(例如晶片)的各个制作步骤中产生的,也可以是与多种不同类物件相关的图样。所述的数据库实际上代表参考数据,用于以一定角视场的至少一预定立体角部分聚集那些从被照明区散射出的光分量。
因此,根据本发明的另一方面,提供一种用于以被检物件散射光的某一最大聚集立体角检测具有图样的结构的方法,所述的最大聚集立体角位于所述具有图样结构镜面反射光的传输立体角之外,该方法包括以下步骤提供一个数据库,它包括用于表示所述最大聚集立体角部分内光传输的多个立体角部分的数据,所述的多个立体角部分对应于包含被检测的图样结构的多个图样结构,每个所述立体角部分分别与相应的图样结构所散射的光分量的传输方向相对应,与聚集立体角的其他立体角部分相比,其中由图样散射的光的成分(contribution)基本上为最小;从所述数据库中选出代表被检测的所述图样结构的数据,该数据用于从所述最大聚集角所聚集的整个光中过滤出那些在相应立体角部分中传输的光分量,并能对这些光分量进行检测。
所提供的数据用于检测多种结构中由每个图样结构所散射的光(通过明场或高分辨率暗场检测模式),并分析这些数据。该分析过程包括以下步骤以二维或三维离散散射体阵列的形式建立被检测图样的图像模型;确定在所述最大聚集立体角内由该模型图像所散射的光的强度分布。
根据本发明的又一方面,提供一种用于检测具有图样的物件的光学检测装置,该装置包括一个用于照射该物件的一个区域的照明系统;一个聚光系统,用于聚集那些在某一聚集角视场内的被照射区域所散射的光分量,而所述的聚集角视场位于镜面反射光分量传输的立体角之外;一个滤光器,设置在所述的聚集的散射光分量的光路中,从中把以所述聚集角的某一预定立体角部分传输的光分量分离出来;一个包括一检测单元的检测系统,用于接收从所述聚集的散射光中被滤过的部分,并产生表示它们的数据;和一个控制单元,用于根据表示被照射区域中图样所散射的光传输的至少一个立体角部分的预定数据来控制所述聚集的散射光光路中的滤光器。
预定的数据可以通过同样的光学检测装置或其他检测装置以明场或高分辨率暗场检测方式来预先获得。
优选地,滤光器可以是掩模形式的部件,包括多个不同的掩模,每一个都用于过滤所述最大聚集角中至少一个特定的立体角部分内传输的光分量,或者是对应于某一特定的图样结构。这种掩模部件可以选择性地起作用,将所选的掩模之一设置在所述聚集光光路中。掩模可以是LCD、机械式的等。滤光器最好置于该物件平面的傅里叶平面(共轭面)内。
根据本发明的再一方面,还提供一种检测具有图样的物件的光学检测装置,该装置包括(a)一个用于照射该物件的一个区域的照明系统;(b)一个聚光系统,包括第一聚光装置和第二聚光装置,第一聚光装置用于聚集从被照射区反射的光分量,第二聚光装置用于聚集那些在某一聚集角视场内的被照射区域所散射的光分量,且所述的聚集角视场位于镜面反射光分量传输的立体角之外;(c)一个滤光器,可选择地设置在在所述的聚集的散射光分量的光路中,从中把以所述聚集角视场的某一预定立体角部分传输的光分量分离出来;(d)一个检测系统,包括第一检测单元和第二检测单元,第一检测单元用于检测由所述第一聚光装置聚集的光分量并生成表示它的数据,第二检测单元用于检测所述的聚集的散射光的被滤过的部分并生成表示它的数据;和(e)一个控制单元,它根据第一检测单元所产生的数据而对这些数据加以分析并由此控制所述的滤光器。
根据本发明的另一方面,提供一种控制单元,它用于对具有图样的结构进行光学检测的系统,所述具有图样的结构具有某个从该被检测结构散射的光的最大聚集立体角,所述的某个最大聚集立体角位于由该结构镜面反射的光的传输立体角之外。该控制单元包括一个存储器,用于存储包含多个数据记录的数据库,这些数据记录与包括所述被检测图样结构在内的多个具有图样的结构相对应,其中每条数据记录都包含表示所述最大聚集立体角的至少一个立体角部分的数据,该立体角部分与相应图样结构所散射的光分量的传输方向相对应,与所述最大聚集立体角的其他立体角部分相比,该立体角部分内由图样所散射的光的分量基本为最小。
附图简介为理解本发明和了解如何实施本发明,以下将结合附图对优选实施例进行描述,但这种描述是非限定性的,其中

图1是根据本发明的一个实施例的一种光学检测装置的主要部件的示意图;图2示出根据本发明另一个实施例的一种光学检测装置;图3是图1所示装置的检测单元中主要部件的示意图;图4是图2所示检测单元中聚光光学装置的结构示意图;图5示意地示出一种适用于图1所示装置中的掩模部件的实例;图6a和6b分别表示被照射区域的实际明场图像和模拟的“理想”图像;图7a-7e分别表示五种不同图样结构的模拟图像;图8示意地示出投射到散射板上的照射函数,所述的照射函数用于模拟出现在物件表面的高斯束;图9示意地示出用作模拟目的的有关散射问题的几何图形;图10a和10b分别示出模拟散射结果和光强分布图。
参见图1,它示出了根据本发明的一种光学检测装置的一个可能的实例,该装置与被检测的晶片W相关。装置1包括一个照明系统2和一个聚光/检测系统。后者由第一聚光光学装置和第二聚光光学装置(未在此示出)组成,第一聚光光学装置与检测单元4相关,以明场成像模式工作;第二聚光光学装置与多个检测单元6相关,其中每个都以暗场成像模式工作。本实施例中,有四个这种检测单元6,每一个都与相应的聚光光学装置相关联。检测单元4和6的输出电路(未示出)与控制单元7相连。控制单元7通常为计算机系统,配有适当的硬件和适当的操作软件,使其能够成功地分析各检测单元传来的数据,以下将作更具体的描述。
照明系统2包括一个发射光束的光源8(例如激光)和光定向光学装置12,所述的光源可以为激光器,常用附图标记10表示。如果用激光器作光源,则光学系统12应具有设于光束10的光路上的适宜的扫描装置14(例如声光元件)和一个聚焦光学装置15(即物镜)。在以激光照射时,采用高数值孔径的物镜,以得到所得图像的高分辨率。扫描装置14使得光束10在扫描方向(即沿X轴)上移动,同时把晶片W支撑在移动台上以使其沿Y轴移动。扫描装置14与聚焦光学装置15共同工作,把光束10聚集到晶片表面的扫描线S(构成照射区)。显然,可以采用任何其他适宜的扫描装置,例如旋转镜。任何扫描装置的设置都是选择性的,且“非扫描”型光束也能用于同样的目的,即用于照射晶片表面上的线。在此示意地示出的光的传输,仅仅为了方便地示出装置1中的主要部件。
在图1所示的实施例中,照明系统2所提供的光束10法向入射该晶片W。因此,光学定向装置12包括一个分束器16,用于把入射和反射光分量分开。但应当注意,入射束可以以某一入射角入射到晶片表面。还应当注意,通常,基于明场的系统既可以利用与暗场成像中所用的相同的照射路径,也可以利用其自己的照射路径。
如上所述,本实施例中,检测单元4以明场成像模式工作,这就是说,它聚集由扫描线S镜面反射的光分量10a,其中所述的镜面反射光在某一立体角内传输。检测单元4包括一个适当的检测器,例如PMT、CCD或pin-二极管,能够接收所聚集的镜面反射光并产生表示扫描线S图像的数据。
每个检测单元6以暗场成像模式工作,即聚集那些以不同于发生几乎镜面反射方位角和仰角的方位角和仰角由晶片表面散射的光分量10b。
一般说来,检测单元6的聚光光学装置以某个最大聚集立体角(构成聚集角视场)聚集光,正如下面所述。检测单元4用于获得图样结构的图像,能分析该图像并确定所用的至少一个聚集角视场的立体角部分,以用检测单元6检测光。在该至少一个立体角部分,与聚集角视场的其他立体角部分相比、这是由图样反射的光的分量最小的光分量。
因此,尽管图1所示的实例中检测单元4是以明场检测模式工作以获得上述的图像并对其进行分析的,但是也可以采用高分辨率的暗场检测模式。高分辨率的暗场检测器可实现成像和检测两种功能。
本发明可利用通常设置于光学检测装置中的自动聚焦系统的检测器,作为图样成像用的明场检测器。图2中示意地示出了一种光学检测装置,用附图标记100表示,它包括一个照明系统102、一个以明场检测模式进行工作的自聚焦系统103和四个暗场检测单元6。检测单元6和自聚焦系统103中的检测单元(未示出)与控制单元7连接。该系统的检测器使物件中的被照射区成像,控制单元对该图像进行分析,以确定出最大聚集角视场的聚集角,用于通过检测单元6对光进行检测。
在图1和图2所示的实例中,四个检测单元6具有相似的结构,因此在以下结合图3所做的描述中仅描述其中一个的主要部件。检测单元6包括一个聚光系统18和检测器20,它们可以是任何适宜的种类,例如PMT,它们的结构及操作特性本身是已知的。
在该示范性的实施例中,聚光系统18包括,聚光光学装置22(构成第二聚光光学装置)、一束相干(成像)光纤束26(构成图像传输装置)和一个掩模构件28(构成滤波器),该掩模构件之后紧接着光学系统30。虽然不是必需元件,但是该优选实施例中还在光学装置22的光路中插入了一个偏振器24。相干光纤的工作原理本身是已知的,因此,除了给出以下提示外,在此不作特别的描述。相干光纤束用于图像传输。由于光纤束在输入和输出信号间提供所需的线形相干性,所以应保持所述相干光纤中单条光纤的相对位置。
因此,入射光10射到扫描线S上。如图1所示,镜面反射光分量10a被光学装置3a聚集,并由检测单元4接收。再看图3,由图样和那些扫描线S内的晶片表面上偶尔出现的异常所散射的光分量10b传向光学装置22。从扫描线S散射并以某一最大立体角(聚集角视场)传输的光分量10b被光学装置22聚集,并被导向偏振器24。该偏振器24被一合适的驱动器操作而以一种方式运动,以被定位在从聚光装置22发生的光的光路内或光路外。另外,当在所述光路中插入了偏振器时,则该偏振器24将以某一方式转动,以改变优选传输平面的方向(优选的偏振方向)。偏振器24的位移将影响通过它的光。由于图样可具有,表示所谓的“偏振噪声”的高偏振度,所以偏振器的位移将影响传向检测器的光分量的信噪比。此外,在对其进行检测前可对该特种物件施以学习模式(learning mode),这可以使从图样返回的光分量的偏振特性通过改变偏振器24的方向变成期望值,以检测其间的差别(缺陷),如果存在的话。
聚光光学装置22构造成可形成扫描线S的成角度的图像,该图像将经由光纤束26传向检测器20。如图4所示,聚光光学装置22包括第一和第二透镜组件32和34、以及一个位于透镜组件34的前焦平面P的狭缝36。透过透镜组件32和34的光传输形成一个光轴OA。透镜组件32的位置应适于聚集那些由扫描线S散射的光分量并使其以一定的立体角传输。透镜组件32的第一玻璃表面32a的大小决定了光学装置22的聚集立体角大小,它是整个检测单元6的最大聚集角(所谓的“聚集角视场”)。透镜组件32的结构适合于在成像平面IP上形成扫描线S的实像S’。成像平面IP基本与透镜组件34的前焦平面P重合。狭缝36的形状和大小与实像S’相似,且它位于所期望的图像的位置。对于透镜组件34来说,它从该扫描线S的实像S’形成带角度的图像S”。带角度的图像S”的每一点都由来自于扫描线S任一点并以最大聚集角的一个部分进行传输的光分量形成。最大聚集角的每一部分都投射到光纤束26的输入表面26a上的相应点(光纤)上,并由该光纤束传输进入从光纤束的输出表面上的相应点输出所产生的同样角度。
狭缝36将以以下的方式设置。由于照明单元内发生的反射,照射单元在晶片表面上产生扫描线的不希望有的额外图像(所谓的“鬼影”)。这种不希望有的图像还产生传向聚光光学装置的返回光。狭缝36应设计和设置成使得代表扫描线S实像S’的聚集光通过而到达透镜组件34,并阻挡任何与图像S’不相关的光通过。
由光纤束26前端所确定的表面26a(与光传输有关)位于整个聚光光学装置22的焦平面FP上,由此形成了该系统的入射光瞳的最佳位置。聚光光学装置22的这种结构以及它与光纤束26的相对位置大大增加了聚光系统18的分辨率,并优化了该光纤束的功能。光纤束26的尺寸最好应略微大于最大聚集角圆锥所限定的尺寸,从而使得所有聚集光束(即最大聚集角的所有立体角分量)都进入光纤束26中。
因此,聚光光学系统22形成了扫描线S的带角度的图像S”,并把代表该图像的聚集光导入光纤束26中。图像S”的每个点都代表扫描线S上散射的聚集光分量(聚集角视场内)的某一传输角。每个成角度的光分量都被投射到光纤束26输入表面26a上的相应点(光纤)上,并经光纤束传送进入从该光纤束输出表面上的相应点上产生的同样角度内。这种技术保证了沿扫描线S的所有点和所有检测单元6同样的观察角视场,从而增加了表示差值的信号中的信噪比,通过比较所有检测单元6所产生的数据,就可以测出该表示差值的信号。
再来看图5A,掩模组件28由在一块共用的盘状不透明板40上形成的多个不同结构的掩模构成。这可以是,例如,有孔金属圆盘或含铬玻璃掩模。该圆盘40由其马达(未在此示出)驱动而在垂直于光纤束纵轴的平面上转动,以在传输光光路中选择地定位一个适当的掩模。
图5A所示的实例中,把多个不同掩模设置成由透明和不透明区构成的近似于连续的图样,并沿圆盘40的周缘延伸。该图样的每一部分都由局部相邻透射(transmitting)和不透明区的不同组合而成,表示由该图样的不同部分所形成的多个不同掩模之一。一个透射/不透明区可与其左侧相邻区结合又与其右侧相邻区结合,分别形成该图样的两个不同部分。该圆盘相对于其轴线转动,使得图样(掩模)的不同部分位于射到该圆盘上的聚集光的光路中。
图5B示出了一种掩模组件128,它的结构与图5A所示的掩模组件28相比有一些差异。此处,掩模组件128由几个不同结构的掩模构成,本实例中有7个,分别用128a-128g表示,它们形成于共用的盘状不透明板40上。在掩模组件128的工作位置中,掩模128a-128g之一位于光纤束26产生的一光路中。掩模128a-128g中的每一个都表示一个孔径,该孔径用于确定某一聚集立体角,它小于由透镜组件32的第一玻璃表面32a所限定的最大聚集角。在光纤束26产生的光路中设置掩模128a-128g之一,可以选出一个最大聚集角的立体角部分。掩模128b、128c、128d、128f和128g具有不同的图样,它们分别形成于区域Rt和Rb,分别透射或阻挡传送到掩模上的光。当其处于工作位置时(即位于光纤束产生的光路中),这些掩模可以切断或选出一个或几个立体角部分。
一般来说,每个掩模都至少确定一个与最大聚集角(聚集角视场)的至少一个立体角部分相应的对于聚集光的透射区。当掩模组件28(或128)处于工作位置时,其中的一个掩模位于光纤束26产生的光路中,即位于晶片平面的共轭平面(或傅里叶平面)上,并使得相应立体角部分内的光分量传送到检测器20。
含有多个不同掩模的掩模组件可用于选择性地改变整个检测单元6的聚集角,因此,可以提供定制的聚光度。尤其应当注意的是,这种掩模组件可以沿两个相互垂直的轴同时改变立体角,如图中A1和A2所示,类似于散射方位角。
为实现本发明的目的,需要从被检测信号中滤除由图样散射代表“噪声”的光分量,并检测由异常处散射而表示“缺陷”存在的光分量。为确定从传向检测器20的光中滤除哪个立体角部分中的光,或者应当选择哪个立体角分量作为预定的聚集光,需要先对晶片的图样有所了解。该图样可以在由检测单元4(图1)以及自聚焦系统103(图2)获得的扫描线明场图像中看到,或者从高分辨率的暗场检测器中可知。
于是,表示该图像的数据适当地生成,并将其传输给控制单元7,控制单元7对这些数据进行分析,并建立一个模拟其中图样图像的“模型”。这示于图6A和6B。图6A以基本单元CE的近乎于完美的二维图样示出了被照射区的实像Ipat。该图像结构的模型包括在以散射点物体重复的单元中替换每个单元CE。图6B示出了一种由离散(点)散射DS形成的结构Ipat模型SM。
构建图像模型的步骤如下(1)基本单元的尺寸识别,包括图像矩阵Ipat与自身的相关性,至于两个侧向尺寸的移动,确定出第一最大的单元尺寸,这不表示没有移动,且所述的第一最大单元与单元的基本尺寸相应;(2)单元结构识别,在识别过程中,基本单元结构可以从已知的单元结构(例如FCC、BCC等)表选出,利用这种结构和步骤(1)中所确定的尺寸来建立图像,且结果与原始图像相关。给出高度相关值的结构是所想要的单元结构;(3)假定每个基本单元CE都为点散射。
图像模型方法所得出的结果为二维离散函数Sij,它与成比例的散射强度一起表示晶片表面的散射图样。
用于表示已知结构中沿X和Y轴的两个重复不连续散射点之间的距离(所谓的“间距”)的数据被预先输入并存储在控制单元。图7A-7E示出了已知结构的四种例子,即分别为FCC、BCC、对角结构和线状结构。此处的Δx和Δy表示沿X和Y轴的结构间距。
为考虑实际的散射图像,可以把照射函数的实际形状和大小投射在散射板上。换句话说,就是进行周期性散射计算。为此,设定照射函数,并从该函数中的每个元素算出散射的离散和。
(A)设定照射函数照射函数模型被认为是入射到晶片上的有限衍射光斑模型,因此可以得到一个二维离散函数Iij,它表示晶片表面上每个离散点(site)上的入射强度。这种离散照射函数通常由截头高斯束组成,所述的高斯束含有各种参数,例如光斑大小、入射角、光斑大小的相位畸变以及沿扫描线上的位置等。射到晶片上的光斑是截头高斯的傅里叶变换,其特征在于它具有以下参数两个主轴(扫描方向和扫描横向)的光斑大小为1/e2;与光斑最大强度相关的变迹宽度及其位置;光斑的远心,将其模拟成光斑主轴中的一个或两个上的线性相位差;光斑的总相位畸变;和扫描线长度。
上述步骤的结果得出一个二维离散Iij,它表示晶片表面上每个离散点上的入射强度。
图8示出了一种简单高斯光斑的例子。此处,RMS分布为10μm,因此,模拟光斑尺寸为20μm,总强度归为1。
然后,通过散射结构Sij和照射函数Iij中点与点的乘积计算出该平面上每个散射点最终的散射强度,即Pij=SijxIij
(B)利用散射问题的几何图形把分布于表面的瑞利点散射的散射度加到该聚集角内的每个角中,如图9所示。
利用矢量波形式,用影响包围该反射图样的大球内各点的表面场的幅值和相位和对来计算远场分布。正如所知,由于是小偶极子,远场中电场的总矢量形式由下述公式给出E=k2(r×p)×reikrr3]]>其中r表示检测器所在位置的矢量;p表示偶极子的振动方向矢量;k表示波数(|k|=2π/λ,其中λ表示束的波长)。应当注意除了考虑点散射物体以外,还可以考虑波形因子,即∫p(r)eikr对于一个给定的入射波偏振态P0,如果不存在横向偏振,则比例系数P=P0。
电场总量由下式表示 其中rij(θ,)=R(θ,)-DijDij=(i,j,0)R(θ,)=(Rsin(θ)cos(φ),Rsin(θ)sin(),Rcos(θ))并且R表示检测器的距离。
检测器区域内的最终强度分布由下式表示I(θ,)=|E(θ,)|2最终的模拟暗场散射图样通常由几个以特定角度的强度分量构成。模拟的模型图样可以与沿聚集角视场的实际散射强度图像比较。图10a和10b分别示出利用成像光纤观看到的实际图样和由模拟晶片结构散射而得到的图像。显然,在模拟成像方法中通过遮挡由周期性图样产生的、被看作模拟图像标绘图中强度分量的“背景“强度,可以显著地提高被检测信号中的信噪比。
再来看图5a和5b,根据最优化算法可以找到有效的暗场掩模,它能使结构的散射强度最小,同时又使聚集角视场的角间隙最大。在进行晶片扫描时采用这种有效掩模。
应特别注意大部分具有图样的物件都是连续制作的,因此,每种物件或施于同一物件的制作步骤之一所得的结构都可以预先成像,以确定其立体角部分,所述的立体角部分与所给光学装置的最大聚集角内图样散射光的传输相对应。在这些数据基础上,可以制成数据库,并将其存储于控制单元的存储器中。在这种情况下,实际上不必为获得和分析被检测结构的图像而设置特定的检测模式(明场或暗场检测),而仅利用数据库中的参考数据而据此控制掩模组件(滤波器)即可。不同类型的物件具有不同的图样结构,例如相同的晶片,由于对其进行了不同的处理,即具有带不同图样的上表层。
应当注意,尽管没有特别示出,但可以在光纤26的聚集光上游光路中设置掩模组件28(或128)。在这种情况下,应当把掩模组件放在聚集光光学装置22的焦平面FP上,光纤束26可以是也可以不是成像光纤。
还应当注意上述的这种机械使滤波器可以由其结构和工作原理本身都已知的微型电子-机械结构(MEMS)或可编程液晶显示器(LCD)代替。LCD段采用光阀,在打开模式下透射或反射光(依赖于其所用液晶材料的种类),在关闭模式下遮挡光。在美国专利No.5,276,498中公开了一种透射型LCD形式的空间滤波器。
应当理解,如果使用反射型LCD或MEMS作为掩模组件,则光纤束的位置应当使其接收由滤波器(所选的掩模)反射的聚集光。光纤束不必是成像类型的。
返回来看图3,光学系统30的结构使得掩模组件28聚集的光射到检测器20的整个敏感表面。例如系统30可以是远心成像系统,其中检测器20的敏感表面位于该系统的入射光瞳处。远心成像光学装置的原理本身是已知的,因此不必在此进行特别说明,但应当注意,这种光学装置可避免因距离而引起的放大倍数的改变,并能在沿该系统光轴的很大距离内保持图像的相同的放大倍数。光学装置30使掩模组件聚集的光投射到整个敏感表面,这与以下相关。任何一种检测器的敏感表面通常都具有非均匀敏感度分布。当空间内不同的光锥(由掩模引起)投射到敏感表面上相应的分开区域时,由检测器产生的输出信号的检测差值可能与这些区域的敏感度差值相关,而与散射光的差异无关。为避免输出信号与所选聚集角间的这种不希望有的依赖,光学装置30利用每一个聚集光分量(所选角度)来照射整个敏感表面。
本领域中的普通技术人员应当知道在不偏离所附权利要求的情况下可以对本发明的优选实施例进行各种修改。例如,用于成像目的的聚集/检测组件可以以高分辨率亮场或暗场检测模式工作。光纤束可以由其他任何适宜的图像传输装置替换,例如通常由多透镜系统组成的中继传输光学装置可用于保持某一光传输数值孔径。掩模组件可以包含形成于一共用圆盘上的几个空间分离的掩模,而不是形成透明和不透明区域的连续图样形式,也可以将其放置在图像传输装置之前或之后。
权利要求
1.一种对具有图样的物件进行光学检测的方法,该方法包括以下步骤(i)用入射光照射物件的一个区域,以从被照射区产生反射光;(ii)获得被照射区的图像,并生成表示它的数据;(iii)分析该生成的数据,并确定镜面反射光的传输立体角之外的一个聚集角视场内从被照射区的图样所散射的光分量的强度分布;(iv)基于所确定的分布,过滤在所述聚集角视场内所聚集的光,以便聚集那些由被照射区散射且至少在所述聚集角视场的一预定立体角部分内传输的光分量,将这些聚集光分量导向一个检测单元。
2.如权利要求1所述的方法,其中分析该生成数据的步骤包括以下步骤建立被照射区的图样结构的模型,从而得到表示所述散射图样的离散阵列;模拟所述的聚集角视场内的暗场散射图样;基于上述模拟结果,确定该周期性图样所产生的背景强度,以便确定所述至少一个聚集立体角部分,作为当与所述立体角的其他部分相比时产生的背景强度为最小的聚集立体角部分。
3.如权利要求2所述的方法,其中建立模型包括如下步骤确定基本单元的尺寸,其中所述的基本单元为两个侧向尺寸上重复多次的图样单元;确定所述图样中的单元结构;和假定每个基本单元为点散射。
4.如权利要求1所述的方法,其中所获得的图像是以明场检测模式得到的。
5.如权利要求1所述的方法,其中所获得的图像是以暗场检测模式得到的。
6.如权利要求1所述的方法,其中在生产线上的所述图样物件是具有相似图样的物件流,步骤(ii)和(iii)仅对所述物件流中的第一个图样物件进行。
7.一种以被检测物件散射光的最大聚集立体角对具有图样的结构进行检测的方法,所述的最大聚集立体角位于所述具有图样的结构镜面反射光的传输立体角之外,该方法包括以下步骤提供一个数据库,它包含用于表示在所述最大聚集立体角内光传输的多个立体角部分的数据,所述的多个立体角部分与包含所述被检测的图样结构在内的多个图样结构相对应,每个所述立体角部分分别与相应的图样结构所散射的光分量的传输方向相对应,与聚集立体角的其他立体角部分相比,其中由该图样散射的光的分量基本上为最小;从所述数据库中选出表示被检测的所述图样结构的数据,该数据用于从所述最大聚集角所聚集的所有光中过滤出在相应立体角部分中传输的光分量,并对所述这些光分量进行检测。
8.一种用于检测具有图样的物件的光学检测装置,该装置包括一个用于照射该物件的一个区域的照明系统;一个聚光系统,用于聚集那些在某一聚集角视场的被照射区域所散射的光分量,该聚集角视场位于镜面反射光分量传输的立体角之外;一个滤光器,在所述的聚集的散射光分量的光路中工作,以便从中把以所述聚集角视场的一个预定立体角部分传输的光分量分离出来;一个包括有一检测单元的检测系统,用于接收从所述聚集的散射光的被滤过的部分,并产生表示它们的数据;和一个控制单元,用于根据预定的数据来控制在所述聚集的散射光光路中的滤光器,该预定的数据表示在至一个立体角部分内传输的从被照射区域的图样所散射的光。
9.如权利要求8所述的装置,它还包括有,一个聚光/检测系统,用于获得被照射区图像,并产生代表该图像的数据,并由所述控制单元对其进行分析,以确定所述的预定数据。
10.如权利要求9所述的装置,其中所获得的图像是以明场检测模式得到的。
11.一种如权利要求9所述的装置,其中所获得的图像是以暗场检测模式得到的。
12.一种对具有图样的物件进行光学检测的装置,该装置包括(a)一个用于照射该物件的一个区域的照明系统;(b)一个聚光系统,包括第一聚光装置和第二聚光装置,第一聚光装置用于聚集从被照射区反射的光分量,第二聚光装置用于聚集那些在一个聚集角视场内从被照射区域所散射的光分量,且该聚集角视场位于镜面反射光分量传输的立体角之外;(c)一个滤光器,在所述的聚集的散射光分量的光路中选择性地工作,从中把以所述聚集角视场的一个预定立体角部分传输的光分量分离出来;(d)一个检测系统,包括第一检测单元和第二检测单元,第一检测单元用于检测由所述第一聚光装置聚集的光分量并产生表示它的数据,第二检测单元用于检测所述的聚集的散射光的被过滤的部分并产生表示它的数据;和(e)一个控制单元,它根据第一检测单元所产生的数据而对所述数据加以分析并据此控制所述的滤光器。
13.如权利要求12所述的装置,其中所述的滤光器包括多个不同掩模,每一个掩模过滤所述聚集角视场的至少一个立体角部分,并使其传输到所述第二检测单元,同时阻挡所述聚集角视场的其他立体角部分。
14.如权利要求13所述的装置,其中所述的多个不同掩模是由透明区和不透明区而形成一个连续图样,并沿一个圆盘状板的周缘延伸。
15.如权利要求13所述的装置,其中所述的不同掩模沿圆盘状板周边区域间隔开设置。
16.如权利要求12所述的装置,其中对由所述第一检测单元产生的数据的分析包括确定所述周期性图样所产生的背景强度,以便将至少一个所述聚集立体角部分确定为与所述聚集角视场的其他立体角部分相比时背景强度最小的聚集立体角部分;所述的滤光器被操纵以从所有聚集的散射光中滤出那些以所述至少一个立体角部分传输的光分量。
17.如权利要求16所述的装置,其中所述的控制单元包括一个处理工具,用于接收所述第一检测单元所产生的并表示被照射区中图样的图像的数据,以表示该散射图样的离散阵列的形式建立被照射区的图样结构的模型,并模拟所述聚集角视场内的暗场散射图样。
18.如权利要求12所述的装置,它还包括至少一个附加的检测单元,用于检测被照射区所散射的光,所述的至少两个检测单元检测以不同的方位角聚集光各部分。
19.如权利要求12所述的装置,其中利用明场检测模式对被照射区反射的光进行聚集和检测。
20.如权利要求9所述的装置,其中利用暗场检测模式对被照射区反射的光进行聚集和检测。
21.一种控制单元,用于对具有图样的结构进行光学检测的系统,所述图样结构具有从被检测结构所散射光的最大聚集立体角,所述的最大聚集立体角位于该结构镜面反射的光的传输立体角之外;所述的控制单元包括一个存储器,用于存储包含多个数据记录的数据库,这些数据记录与包括所述被检测图样结构在内的多个图样结构相对应,其中每条数据记录都包含表示所述最大聚集立体角的至少一个立体角部分的数据,这些立体角部分分别与相应的图样结构所散射的光分量的传输方向相对应,与所述最大聚集立体角的其他立体角部分相比,该立体角部分内由该图样所散射的光分量基本为最小。
全文摘要
本发明提供了对具有图样的物件进行光学检测的方法和装置。以入射光照射该物件上的一个区域,而由该被照射区产生反射光。获得被照射区的图像,并加以分析,以确定被照射区图样所散射的光的强度分布,所述的散射光是在镜面反射光的传输立体角之外的聚集角视场内传输的光。基于所确定的强度分布,聚集由被照射区散射并且以所述聚集角的至少一个预定立体角部分传输的光分量,并将其导引到暗场检测单元中。
文档编号G01N21/88GK1436302SQ01811299
公开日2003年8月13日 申请日期2001年6月19日 优先权日2000年6月20日
发明者A·科梅, E·米尔施坦 申请人:应用材料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1