激光振动检测方法及其实施装置的制作方法

文档序号:5882675阅读:315来源:国知局
专利名称:激光振动检测方法及其实施装置的制作方法
技术领域
本发明涉及一种对物体的振动进行精确测量和分析的设备,尤其涉及采用光测量方法对振动进行精确测量和分析的设备。
背景技术
目前已经公开的用于振动、加速度检测领域的传感器有电磁式传感器、压电传感器、光学传感器三类。电磁式传感器和压电传感器的共同缺陷是接触式测量方式,需要与被测物体连接在一起,这会影响到被测振动,使测量不够准确。另外电磁式传感器存在比较严重的非线性,测量的动态范围小,而压电传感器的低频响应比较差。
光学传感器是非接触测量方法,通常有干涉测量和多普勒测量两种。一般来讲,利用干涉测量对于装置的精度要求高,对准直的要求比较苛刻,所使用的激光器要求频率稳定、具有较长的相干长度,大气扰动和外界环境的振动会引起干涉信号的变化,导致测量误差。因此干涉式振动传感器多应用于实验测量。而多普勒测量无须干涉仪组件、不需要精密装配、多普勒信号频率与被测速度矢量成线性关系、不受环境条件和温度的影响,适于研究任何复杂的物体运动。在传统的激光多普勒测量系统中,多普勒信号都是从被测物体的散射光中获得,信号的信噪比低,且其中包含有光源、运动速度、接收器之间的角度因素,可能会引入较大的测量误差。对振动特性如振幅的计算方法通常是,信号中的每一个差拍波对应一个位移当量值,通过对相邻两个翻转点之间的差拍波的个数进行计数获得被测振幅,这种方法不能得到小于当量值的位移,其测量分辨率很低。基于位移测量正弦差拍波的细分方法,当测量振动时差拍波不再是正弦信号,这种方法会产生相当大的误差。另外当被测振幅小于1/2个位移当量值时,细分方法无法得被测振幅值。

发明内容
本发明目的在于为克服现有技术的不足,提供一种激光振动检测装置,其测量精度不受激光波长漂移的影响;光路结构简单、实用,能够提高接收信号的信噪比,并且装配、调试简单;使用简便,其测量精度不依赖于测量条件(激光器与被测物体的距离、大气扰动等);能够测量小于计数定量值的位移。为此,本发明采用的技术方案是一种激光振动检测方法,包括下列步骤将激光器发出的激光束经透镜聚焦,使聚焦后的光束投射到透射光栅发生衍射,生成的衍射光再经光阑过滤后,使其中的一束经λ/4波片后与经过光阑的其余光束通过聚焦透镜汇聚于混频元件发生衍射,调节聚焦透镜的位置使光束与所述其余光束产生的衍射光重合,使重合的衍射光再回射到透镜,经由反射棱镜、透镜聚焦到分束器发生双折射现象,产生的光束,分别对应地用光电接收器、光电接收器接收并转变为电流信号,将电流信号经放大电路单元送入信号处理单元,通过公式fd=2V/d得到振动频率,其中V为被测光栅20的运动速度,d为被测光栅20的光栅常数,fd为信号处理单元输出的交流信号频率;对于小于计数当量值的位移由测量电压通过下列公式得到对于M波形A^′=cos-1(Vp/Vm)πd2;]]>对于W波形A^′=d2(1-cos-1(Vp/Vm)π);]]>对于S波形A^′=d2cos-1(1-2Vp/Vm)π;]]>式中,d为混频元件常数,Vp、Vm为翻转点电压。
其中,所述的信号处理单元包括下列工作步骤对输入信号进行A/D转换,送入处理器中,通过快速傅立叶变换得到振动频谱,在其多个谱峰中,认定相互间整数倍关系的频率成分为有效,认定其中的最低频率为被测振动频率。
一种激光振动检测装置,包括激光器、激光器电源、聚焦透镜、透射光栅、光阑、λ/4波片、反射棱镜、聚焦透镜、透镜、渥拉斯顿棱镜、两个光电接收器、放大电路单元、信号处理单元组成,还包括混频元件,激光器发出的激光束经透镜聚焦后,到达透射光栅发生衍射,生成的衍射光再经光阑后,其中的一束经λ/4波片后与经过光阑的其余光束通过聚焦透镜汇聚于混频元件发生衍射,光束与所述其余光束产生的重合的衍射光,再回射到透镜,经由反射棱镜、透镜聚焦到分束器发生双折射现象,产生的光束,分别对应地由光电接收器、光电接收器接收转变为电流信号经放大电路单元送入信号处理单元。
其中,激光器是He-Ne激光器、半导体激光器或者其它类型的激光器中的一种;分束器为棱镜、光栅或者光劈;混频元件为反射光栅;信号处理单元是单片机、数字信号处理器或者计算机。
由于本发明在测量装置中加入了混频元件,因而具有测量精度不受激光波长漂移的影响;光路结构简单、实用,能够提高接收信号的信噪比,并且装配、调试简单;使用简便,其测量精度不依赖于测量条件(激光器与被测物体的距离、大气扰动等)的特点;同时基于翻转点附近的微小位移与电压值的关系采用相应的步骤得到微小位移值,所以本发明还具有测量小于计数当量值的位移的特点。


图1为本发明的结构示意图。
图2为图1中的振动信息处理单元的框图。
图3为振动M形差拍波图。
图4为振动W形差拍波图。
图5为振动S形差拍波图。
具体实施例方式
下面结合附图和实施例进一步说明本发明。
在图1中,包括激光器1、激光器电源2、聚焦透镜3、透射光栅4、光阑5、λ/4波片6、反射棱镜7、聚焦透镜8、混频元件20、反射棱镜7、透镜9、分束器10、光电接收器11,12、放大电路单元13、信号处理单元14等组成。激光器1发出的激光束经透镜3聚焦到透射光栅4,发生衍射现象,出射0级、±1级、±2级、……衍射光,光阑5滤除掉除+1级光15、-1级光16之外的其它衍射光。这两束光由透镜8变换为光束21和24汇聚到混频元件20并发生衍射,光束21衍射的±1级光为22、23;光束24衍射的±1级光为25、26。调节透镜8的位置可使得光束22和25相重合,回射到透镜8,经由反射棱镜7、透镜9聚焦到分束器10发生双折射现象,产生e光和o光,分别由光电接收器11、12接收转变为电流信号,即差拍波。λ/4波片6和分束器10用作偏振移相元件,产生90°相位差的sin和cos信号,以辨别运动方向,在本实施例中,分束器10为渥拉斯顿棱镜,混频元件20为反射光栅。
光电接收器输出的差拍信号,送到放大电路单元13,由放大器放大并转换为电压信号,经滤波处理去除电路噪声,送到信号处理单元14以获取振动信息。
当混频元件20静止时,光束22和25的频率相同,光电接收器输出的是直流信号。若混频元件20沿垂直于光轴方向的运动,如图所示,由于多普勒效应,光束22和25的频率会发生变化,光束22的频率为f22=f0+V/d,光束25的频率为f25=f0-V/d。其中f0为激光器发出的激光频率,V为被测光栅20的运动速度,d为被测光栅20的光栅常数。光电接收器将输出交流信号,其频率为fd=2V/d。
混频元件20振动时,在原点附近运动速度最大,对应的差拍波频率最高;在最大位移处,运动速度最小,差拍波的频率最低,对应于差拍波的翻转点。实际波形会因被测振幅的大小及初始相位的不同呈现不同的形状,M形、W形或S形。图3、图4、图5给出了实测得到的各种差拍波形。
在图2所示信号处理单元中,首先对经放大、滤波后的差拍信号进行A/D转换,送入处理器中,通过快速傅立叶变换得到振动频谱,在其多个谱峰中,只有相互间整数倍关系的频率成分为有效,其中的最低频率为被测振动频率,其它可认定为干扰。这样就得到了被测振动的频率。
在差拍波中,每一个差拍波对应了d/2的被测位移量。通过计数总的差拍波个数可以得到总的位移量。在翻转点附近的不完整的差拍波对应的位移量小于d/2。被测振幅A0<d/4,其差拍波形为S形。通过测量翻转点的电压可以得到被测振幅值A^′=d4N+A^′]]>对于M波形A^′=cos-1(Vp/Vm)πd2]]>对于W波形A^′=d2(1-cos-1(Vp/Vm)π)]]>对于S波形A^′=d2cos-1(1-2Vp/Vm)π]]>这样就得到了被测振动的振幅值。
如上所述,使用反射光栅的激光多普勒振动测量装置和方法简单、可靠,并提高了测量信号的信噪比。通过对差拍信号的频率分析,以峰值频率比值的方法可以排除干扰获得被测振动频率;基于翻转点附近的微小位移与电压值的关系,对于小于计数当量值的位移由测量电压得到,提高了微小振动位移的测量精度,提高了系统测量的最小分辨率、动态范围。这样能够以简单的结构获得振动的各种特性。该测量系统可以应用于汽车、机床、建筑物、地震波、半导体工业等的测量分析中。
权利要求
1.一种激光振动检测方法,其特征是,包括下列步骤将激光器(1)发出的激光束经透镜(3)聚焦,使聚焦后的光束投射到透射光栅(4)发生衍射,生成的衍射光再经光阑(5)过滤后,使其中的一束(15)经λ/4波片(6)后与经过光阑(5)的其余光束(16)通过聚焦透镜(8)汇聚于混频元件(20)发生衍射,调节聚焦透镜(8)的位置使光束(15)与所述其余光束(16)产生的衍射光重合,使重合的衍射光再回射到透镜(8),经由反射棱镜(7)、透镜(9)聚焦到分束器(10)发生双折射现象,产生的光束,分别对应地用光电接收器(11)、光电接收器(12)接收并转变为电流信号,将电流信号经放大电路单元(13)送入信号处理单元(14),通过公式fd=2V/d得到振动频率,其中V为被测光栅20的运动速度,d为被测光栅20的光栅常数,fd为信号处理单元(14)输出的交流信号频率;对于小于计数当量值的位移由测量电压通过下列公式得到对于M波形A^′=cos-1(Vp/Vm)πd2;]]>对于W波形A^′=d2(1-cos-1(Vp/Vm)π);]]>对于S波形A^′=d2cos-1(1-2Vp/Vm)π;]]>式中,d为混频元件常数,Vp、Vm为翻转点电压。
2.根据权利要求1所述的一种激光振动检测方法,其特征是,所述的信号处理单元(14)包括下列工作步骤对输入信号进行A/D转换,送入处理器中,通过快速傅立叶变换得到振动频谱,在其多个谱峰中,认定相互间整数倍关系的频率成分为有效,认定其中的最低频率为被测振动频率。
3.一种激光振动检测装置,包括激光器(1)、激光器电源(2)、聚焦透镜(3)、透射光栅(4)、光阑(5)、λ/4波片(6)、反射棱镜(7)、聚焦透镜(8)、透镜(9)、渥拉斯顿棱镜(10)、两个光电接收器(11,12)、放大电路单元(13)、信号处理单元(14),其特征是,还包括混频元件(20),激光器(1)发出的激光束经透镜(3)聚焦后,到达透射光栅(4)发生衍射,生成的衍射光再经光阑(5)后,其中的一束(15)经λ/4波片(6)后与经过光阑(5)的其余光束(16)通过聚焦透镜(8)汇聚于混频元件(20)发生衍射,光束(15)与所述其余光束(16)产生的重合的衍射光,再回射到透镜(8),经由反射棱镜(7)、透镜(9)聚焦到分束器(10)发生双折射现象,产生的光束,分别对应地由光电接收器(11)、光电接收器(12)接收转变为电流信号经放大电路单元(13)送入信号处理单元(14)。
4.根据权利要求3所述的一种激光振动检测装置,其特征是,激光器(1)是He-Ne激光器、半导体激光器或者其它类型的激光器中的一种。
5.根据权利要求3所述的一种激光振动检测装置,其特征是,分束器(10)为棱镜、光栅或者光劈。
6.根据权利要求3所述的一种激光振动检测装置,其特征是,混频元件(20)为反射光栅。
7.根据权利要求3所述的一种激光振动检测装置,其特征是,信号处理单元(14)是单片机、数字信号处理器或者计算机。
全文摘要
本发明激光振动检测装置涉及一种对物体的振动进行精确测量和分析的设备,尤其涉及采用光测量方法对振动进行精确测量和分析的设备。为提供一种激光振动检测方法及其实施装置,其测量精度不受激光波长漂移的影响,本发明采用的技术方案是,一种激光振动检测方法及其实施装置包括激光器、激光器电源、聚焦透镜、透射光栅、光阑、λ/4波片、反射棱镜、聚焦透镜、透镜、渥拉斯顿棱镜、两个光电接收器、放大电路单元、信号处理单元组成,还包括混频元件。本发明适用于测量物体振动及测量的振动小于计数当量值的场合。
文档编号G01H9/00GK1477379SQ03130390
公开日2004年2月25日 申请日期2003年7月11日 优先权日2003年7月11日
发明者蒋诚志, 杜振辉, 高华, 谢艳, 贺顺忠, 陶知非, 李淑清 申请人:天津大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1