烧结立方卤化物闪烁体材料及其制造方法

文档序号:5830488阅读:152来源:国知局

专利名称::烧结立方卤化物闪烁体材料及其制造方法
技术领域
:本发明涉及烧结立方囟化物闪烁探测器例如碘化钠闪烁体材料及其制造方法。
背景技术
:无机闪烁晶体探测器例如掺铊碘化钠(NaI:Tl)闪烁体已广泛用于包括医疗、地质(例如钻井)、废物处理、食品(包括肉类、水果、蔬菜)辐射探测和国家安全在内的许多应用领域。核医疗学涉及探测辐射源例如包含一定剂量放射性药剂化合物的患者内脏器官发出的光子例如Y射线。闪烁伽玛照相机使用碘化钠闪烁体作为探测器以吸收所研究物体发出的入射y射线光子并与所吸收的Y射线相互作用以产生光现象(lightevent)。闪烁体将Y光子的能量转变为闪光,该闪光由检视闪烁晶体远离患者一侧的光电倍增管阵列探测。在资源深井钻探例如石油钻探中,需要大量有关地质构造和钻井状况的信息用于分析。NaI:Tl闪烁体作为快中子源可在产生Y射线的井筒环境中被散射和吸收,从而获得井筒环境的物理特性。使用NaI:Tl晶体的闪烁计数器还用于以快速有效的方式定量确定含有放射性核素污染物的废物站点的污染物以便建立补救方案。使用NaI:Tl闪烁体的Y分光计用于检测陆地植被、土壤、牛奶、谷物、蔬菜、狩猎动物样本、甚至公路猎获物例如鹿,以探测放射性核素的存在。为应对夹带包括脏弹在内的放射性物质越境或进入公共建筑和设施对国家安全构成的威胁,便携式和/或手持式放射探测器的使用日益增多,作为边境和国家综合安全系统的一部分用以扫描包裹、集装箱、机动车、船舶等。这些装置记录Y射线或中子与闪烁探测器例如碘化钠晶体之间的碰撞,从而产生由光电倍增器获取并由计数器记录的闪光。用于上述应用的碘化钠闪烁体包括铊活化的碘化钠晶体,这一技术可追溯到1948年。在现有技术中,大尺寸Nal晶体可通过Bridgman-Stockbarger方法、Czochralski方法或其他单晶方法生长。上述一些方法早在20世纪50年代就已经使用。然而,所有这些方法均需要使用高能耗窑炉以生长晶体,一些方法具有复杂的产率临界控制参数及品质临界控制参数,例如温度和晶体中的热应变场、生长界面的形状以及熔体中的对流模式。已有一些出版物大体披露了碘化钠晶体和其他碱金属卣化物晶体的制造方法。例如,美国专利No.5,178,719披露了沿晶体纵向维度控制残留杂质和掺杂物浓度的方法。然而,大多数制造闪烁体晶体的质量控制方案保守为商业秘密。在20世纪50年代尝试了由粉末制造闪烁体。英国专利No.792,071披露了透明闪烁晶体的制造方法,该方法首先在约120,000psi的压力下压制活化粉末,然后在最高为所述晶体的熔点例如对;哄化钠而言为200。C-650。C的温度下热处理该压制坯体。日本专利公开No.S48-9272披露了一种将"数吨每平方厘米"(1000kg/cm^l4,223psi)的压力施加在含有粒状Nal晶体的坯体上以制造厚约0.5mm的闪烁体的方法。Kashyuk等披露了于120°C和3000-12,000kg/cm、42,670-170,680psi)下压制碱土金属氯化物粉末10分钟以获得透明圆片的方法。现有方法制造的晶体品质不足以用于商业应用。本发明提供迫切需要的具有适宜品质的立方卣化物闪烁体的制造方法。
发明内容本发明提供烧结立方卣化物闪烁体的制造方法。该方法包括在有效提供662keV时脉沖高度分辨率为约7%-约20%的多晶烧结立方囟化物闪烁体的压力、温度、停留时间和颗粒尺寸条件下,压制立方面化物和至少一种活化剂的粉末混合物,其中处理温度以摄氏度计从约为环境温度至最高为所述立方卣化物熔点的约90%,压力为约30,000psi-约200,000psi,压制停留时间为约5分钟-约120分钟以及立方卣化物平均颗粒尺寸为约60微米-约2000微米。本发明的另一方面提供高能辐射探测器,该高能辐射探测器包括烧结金属卣化物闪烁体和光电探测器,该光电探测器与闪烁体光学连接,从而光脉沖产生电信号。本发明有利地提供更高的产量、更好的产率、减少的废料、改进的机械性能、更均匀的活化剂分布和更好的化学计量控制。以下参考附图对各种实施方式进行描述,其中图1为使用本发明的闪烁材料的闪烁探测器的示意图;和图2-图7为通过实施例中所述的方法制造的闪烁体的照片。具体实施方式如本申请所用,可使用近似语(包括术语例如"约"和"基本上")修饰任意定量表达,允许该定量表达可以在不改变其所涉及的基本功能的情况下变化。如本申请所用,"闪烁体材料"可与"闪烁材料"以单数或复数形式互换使用,以表示用于放射性同位素鉴定和核应用的包括但不限于碘化钠的立方卣化物材料。闪烁体为通过压制闪烁体材料制得的致密的机械稳定片。如本申请所用,术语"足量,,或"有效量"是指足以达到所需效果的量,例如足以使本发明的烧结立方卣化物坯体具有可测量透光度的压力或温度。本申请所用的所有百分比和比率均为总组成的重量百分比以及所有测量均在室温下进行,除非另作规定。除非另有指出,本申请所用的成分百分比、比率和含量均基于成分的实际量,而不包括商购产品中可与所述成分组合的溶剂、填充物及其他材料。本发明的方法包括在有效提供662keV时脉沖高度分辨率为约7%-约20%,优选为约7%-约12%和更优选为约7%-约10%的多晶烧结立方卣化物闪烁体的压力、温度、停留时间和颗粒尺寸条件下,压制立方卣化物和至少一种活化剂的粉末混合物,其中处理温度以摄氏度计从约为环境温度至最高为所述立方卣化物熔点的约90%,压力为约30,000psi-约200,000psi,压制停留时间为约5分钟-约120分钟以及立方卣化物平均颗粒尺寸为约60微米-约2000微米。压制在足以形成自生结合多晶块状(autogenouslybondedpolycrystallinemass)闪烁体的条件下进行。所述条件之间相互依存,使得优选颗粒压力和/或温度和/或停留时间依赖于粒度分布和/或相互依赖。因此,在本发明的一种实施方式中,处理温度为约90。C-约150°C,压力为约1OO,OOOpsi-约150,000psi,停留时间为约5分钟-约10分钟以及平均颗粒尺寸为约90微米-约120微米。在本发明的另一实施方式中,温度为约250。C-约450°C,压力为约30,000psi-约60,000psi,停留时间为约50分钟-约60分钟以及平均颗粒尺寸为约150微米-约275微米。在本发明的再一实施方式中,温度为约20。C-约30°C,压力为约120,000psi-约180,000psi,停留时间为约5分钟-约10分钟以及平均颗粒尺寸为约60微米-约100微米。可通过加热烧结或不通过加热烧结所述粉末混性杂质以及进行后处理例如对生成的烧结闪烁体进行退火。可通过以下将更充分描述的包括单轴压制、等静压在内的多种方法中的一种制造闪烁体,以提供密度为理论密度(即单晶的密度)的至少约90%的烧结体。在另一种实施方式中,密度为理论密度的至少约95%。在再一实施方式中,烧结体的密度为理论密度的至少约99%。可通过适于实现本申请所述目的的任意方式实现加热,例如感应加热、微波加热、火花等离子体烧结(SPS)、脉沖电流烧结(PECS)、对流炉、辐射加热器等。制成的闪烁体包括化学成分的立方固溶体。原料:制造烧结闪烁体的初始步骤包括提供含有所需闪烁体材料成分的适宜粉末。在一种实施方式中,所述粉末包括特征在于具有高度结构对称性的立方囟化物材料。在一种实施方式中,立方卣化物材料为二元立方卤化物材料。立方材料是光学各向同性的。即立方材料沿所有方向具有相同的折射率。在非立方陶瓷中,闪烁光由于穿越晶界而折射数百次,从而造成长光程和并发吸收(concurrentabsorption)。所述闪烁光在被光电二极管探测到之前频繁碰撞在非理想反射通道壁(reflectivechannelwall)上(约95%)且每碰撞一次降低约5%。适用于本发明的立方卣化物材料的非限制性实例包括碱金属二元立方卣化物,例如NaI、NaBr、KBr、KI、KC1、Csl、CsBr、CsCl、Rbl、RbBr、RbCl和RbF。在一种实施方式中,立方面化物材料包括Nal。适用于本发明的立方卣化物可通过多种来源(包括Merck、Chemetall、Aldrich、GRIMN、Cerac、Franmar、FoxChmicals等)商购,通常为尺寸为10目或2000微米(pm)的微球。将立方卣化物与活化剂混合以在通过电离辐射激发时产生荧光。优选的活化剂为例如铊卣化物形式的铊。认为晶格中的铊起着杂质中心的作用,该杂质中心可通过吸收光子、捕获激子(定义为晶格中的电子空穴)或相继捕获电子和空穴而跃迁至激发态。铊作为活化剂中心的重要性在于铊允许激发能越过晶体的其他禁阻能级到达容许能级,从而有利于能量衰减到基态过程中经由光子发射的闪烁过程。适用于本发明的其他活化剂包括铯和钠。在一种实施方式中,对立方卣化物粉末例如Nal进行提纯来除去铀、钍和钾的放射性同位素,以达到99.99%-99.9999%的纯度。在第二种实施方式中,Nal粉末的纯度为99.999%(5N)。在第三种实施方式中,Nal粉末与最多占总重量O.l重量%的作为活化剂的碘化铊混合。在第四种实施方式中,铊的量为0.005%-1%。在第五种实施方式中,铊的量为0.005%-5%。在本发明方法的第一步中,制备含有适量所需成分的粉末。这可简单通过采用本领域已知的方法粉碎、混合或研磨含有所述成分的粉末混合物来实现。干磨法也可同时用于混合和破碎粉末团聚体。研磨后,可使用筛子或其他工具分选粉末前体。在一种实施方式中,立方卤化物粉末是比重为3.67g/cm3,平均初级颗粒尺寸从小于1微米(pm)至最高50(Him(美国35目)的NaI。在第二种实施方式中,Nal粉末的平均初级颗粒尺寸为S0pm(美国270目)-300iim(美国50目)。在第三种实施方式中,Nal粉末的平均初级颗粒尺寸为75(im(美国200目)-200pm(美国70目)。在第四种实施方式中,使用具有不同平均颗粒尺寸的粒子的最佳混合物以最大化堆积密度并使待热处理的压制坯块的孔容、孔径尺寸以及分布最小化。本发明的一个特征在于能够根据活化剂浓度和粒度分布定制闪烁体材料。如需要,闪烁体可具有整体上基本均匀的活化剂浓度,从而在所述闪烁体的任意维度上活化剂浓度的变化不超过约200%,优选不超过100%,更优选不超过约50%。或者,可制造沿闪烁体的一个维度或多个维度具有受控的活化剂浓度梯度的闪烁体。此外,可使用具有不同粒度分布的混合物以提供在不同位置具有不同晶体性质的闪烁体压制坯体。可按照预先选定的顺序将具有预定的不同组成(例如活化剂百分比组成)和/或不同粒度分布的粉末混合物放置在模具中的不同位置,以用于如下所述的后续烧结。以这种方式定制闪烁体是本发明的一个特征,而该特征不能通过单晶制造实现。此外,立方卣化物和活化剂的混合物可由两种或更多种具有不同平均颗粒尺寸的立方卣化物和活化剂共混物组成,例如,该混合物可包括约25%-约75%具有较大的第一立方卣化物平均颗粒尺寸的立方卣化物与活化剂的第一共混物和约25%-约75%具有较小的第二立方卣化物平均颗粒尺寸的立方卤化物与活化剂的第二共混物,该第二立方卣化物平均颗粒尺寸至多为第一立方囟化物平均颗粒尺寸的约30%。在一种实施方式中,较大的第一立方卣化物平均颗粒尺寸为约200-约250微米,较小的第二立方卣化物平均颗粒尺寸为约30微米-约50微米。以这种方式组合共混物的优点在于小颗粒趋于填充大颗粒的间隙,从而减小最终烧结闪烁体中空位的概率。由于一些起始材料(特别是NaI)具有吸湿性,在一种实施方式中,起始材料的混合在惰性气氛中进行以避免暴露于空气。在另一种实施方式中,在如下所述制造陶瓷闪烁体前,可首先对含有任选添加剂的粉末进行预处理。任选预处理:在一种实施方式中,可通过加热对粉末混合物进行预处理以除去湿气和/或其他挥发性杂质。预处理可在惰性气氛例如氮气或稀有气体(氦、氖、氩、氪或氙)或真空中进行。特别地,Nal具有吸湿性且应当于约100°C-约200°C进行干燥预处理。立方卣化物(例如碘化钠)与活化剂(例如》典化铊)的混合、机械共混和掺合以及所有进一步的加工处理也必须在惰性气氛或真空中进行。单轴压制法OJP):单轴压制是用于将粉末压实为坚实部件的标准陶资制造技术,其中通常利用液压机沿一个方向施加压力。单轴压制可为单轴冷压(CUP)或单轴暖压(WUP)或热压。在WUP中,在施加压力前和施加压力过程中加热CUP模具。在一种实施方式中,可使用暖液或热空气作为加压介质,在约10,000-100,000psi的压力下,将粉末封装或放置于密封容器中,以将密度提高为至少为理论密度93%的闭孔态密度(closedporestatedensity)。在第二种实施方式中,压力为30,000-60,000psi。在第三种实施方式中,闪烁体的密度为理论密度的至少98%。如果使用了任意研磨助剂或压制助剂(润滑剂,例如蜡类物质),则在烧结前可通过氧化处理除去所有有机添加剂。在WUP法的一种实施方式中,在真空下或还原气氛例如湿氬气氛下,在炉中例如石墨炉或鴒炉中,将压制坯体加热到40°C-200°C。在另一种实施方式中,在15-25,000psi足以使烧结晶体深度致密化并产生光学透明度的压力下,将压制坯体加热到450°C-650。C。在第三种实施方式中,在150°C-300°C的温度下和150,000psi的压力下进4亍WUP。热压法:可替换性地或结合前述任意工艺步骤,在高温下通过外加压力对粉末进行热压。热压是在高温下例如大于200。C的温度下向粉末或预成型体施加单轴力的压实过程。压力通常比单轴冷压时^f氐,这是因为加热允许使用较小的力达到相同的致密度。在一种实施方式中,将粉末放置于适宜的模具中例如石墨模具中,通过感应加热在100-600°C的温度下加热才莫具的同时,在该才莫具上施加10-45,000psi的单轴压力并经过足够的停留时间直至获得具有所需密度和光学透明度的烧结体,即直至密度达到理论密度的至少93%。在一种实施方式中,经过另一种工艺步骤例如HIP工艺对烧结体进行进一步地处理,以使密度达到理论密度的至少99.90%。在一种实施方式中,在30-45,000psi下,于300-500。C,热压粉末压制坯体V2-6小时。在一种实施方式中,可在100°C至最高为立方卣化物熔点90%的温度下,将粉末真空热压至密度至少为理论密度95%的闭孔状态。在一种实施方式中,将粉末封装于或放置于密封容器中,并在约20微米的真空下于100。C-600。C在涂覆有氮化硼的石墨模具中以1200psi的压力热压约1小时。然后可在低于100微米的真空下将温度升至500。C-600。C(或升至闪烁体材料熔点的约卯%),以及将压力增至约5,000-25,000psi。保持所述条件约1-4小时,随后释放压力并使所得闪烁体随炉冷却。等静压法(IP):在等静压工艺中,将预成型体浸没在压力容器所含液体中的柔性护套中。增大施加于上述液体的压力,从而增大同时从各个方向施加于产品上的压力。压力施加于所有部件表面,从而允许制成复杂的形状并降低部件内的压力梯度。在该步骤中,可将粉末压制坯体或将粉末封装于或放置于密封容器中并在约50,000至100,000psi之间进行等静压以使密度提高到大于理论密度的93%。该方法可为冷、暖或热等静压(CIP、WIP或HIP)。在WIP法的一种实施方式中,可将粉末封装于或放置于密封容器中并使用暖液或热空气作为加压介质在约10,000至100,000psi之间进行等静压,以将密度提高到相应于闭孔态密度的值(例如理论密度的至少93%)。在第二种实施方式中,压力为30,000-60,000psi。在第三种实施方式中,密度为理论密度的至少98%。如果使用了任意研磨助剂或压制助剂(润滑剂,例如蜡类物质),则在烧结前可通过氧化处理除去所有有机添加剂。用于WIP法的适宜容器包括由硅橡胶、金属等制成的柔性气密容器。在一种实施方式中,可在真空下或还原气氛例如湿氢气氛下在炉中例如石墨炉或钨炉中将压制坯体加热至40。C-200。C并持续足够的时间以使烧结晶体深度致密化并产生光学透明度。在一种实施方式中,压力介质包括暖液例如热油或油/水混合物,并且闪烁体试样容纳在橡胶袋中。在第二种实施方式中,使用干燥的等静压袋容纳闪烁体试样,并使用热空气作为压力介质。在一种实施方式中,暖等静压进行1-约30小时。在第二种实施方式中,暖等静压在炉温为100°C、压力为45,000psi下进行15小时。在一种实施方式中,进行WIP后,通过另一工艺步骤例如HIP工艺对烧结体进行进一步地处理,以使密度达到理论密度的至少99.90%。在一种实施方式中,热等静压在300至600。C之间持续足够的停留时间以获得所需的光学透明度和大于理论密度99%的密度。任选后处理:在该步骤中,烧结多晶闪烁体具有所需的光学透明度,并将其加热至约为压制或烧结温度(以摄氏度计)约60%-约80%的温度,并持续约为压制或烧结停留时间约25%-约50%的时间,以对闪烁体进行退火,从而释放加压过程中形成的机械内应力。然后允许经过约2-约6小时将闪烁体坯体冷却至环境温度。由于环境湿度,碘化钠闪烁体坯体会在短时间暴露于标准空气后变得不透明。作为预防性措施,可利用液体石蜡薄层包覆闪烁体坯体以防止湿气接触碘化钠表面。无论何种情况,烧结体均应存放于气密环境中以防止暴露于大气时由于吸水而造成劣化。烧结立方卣化物闪烁体的性质:制成的烧结立方闪烁体为密度为理论密度的至少99.9%的近终形坯体(nearnetshapeblank)。在本发明的一种实施方式中,烧结NaI闪烁体为近终形坯体(4x4x16)。在一种实施方式中,闪烁体的密度为3.67g/cm3,最大发射为415nm,衰减常数为0.23ms,折射率为1.85,转化效率为100。与现有的Nal单晶闪烁体相比,本发明的烧结Nal闪烁体不存在活化剂偏析且基本上具有较好的物理同质性。闪烁体材料将辐射光子的能量转换为随后被光电探测器探测到的可见光子。能够测量能量的探测器将来自光电探测器的信号放大并整形,从而以电压脉冲的形式记录每次辐射相互作用的情况,所述电压脉沖的幅度("脉冲高度"或"PH,,)与闪烁体中相互作用产生的能量成比例。各探测器通过能量校准过程确定脉冲高度和入射Y射线能量之间的对应关系。多次探测的脉冲幅度统计离散即脉沖高度分辨率(PHR)由探测器测量并决定分辨不同能量Y光子的能力。PHR取决于探测器系统的特征元件(闪烁体+光电探测器+电子组件)以及取决于入射辐射光子的能量。Y辐射探测器广泛采用的惯例是测量并报告用662keV的光子(源于137Cs/137Ba衰减)激发以总吸收峰半值宽度(FWHM)与y射线能量之比形式的PHR。本发明的烧结Nal闪烁体的脉沖高度分辨率(PHR)为约7%-约20%,优选为约7%-约12%,更优选为约7%-约10%。在一种实施方式中,本发明的烧结石典化钠闪烁体在100keV-3MeV的能量范围内工作。烧结闪烁体的精制/抛光:本发明的方法还可包括研磨、机械抛光及通品质。抛光前,先将烧结体切为坯体或片体。在研磨操作中,为得到最佳的研磨效果,须考虑许多因素,例如处理时间、表面光洁度、生产成本,并可使用磨料、颗粒尺寸、研磨速度和晶片压力的多种组合。为降低烧结体开裂的可能性,采用低于5psi,优选低于2psi的压力。在各种磨料例如金刚石、碳化硅、碳化硼和氧化铝中,优选金刚石浆,因为其具有高的材料去除速度并能够产生较好的表面光洁度。在一种实施方式中,研磨后,可对烧结体进行机械抛光以获得光滑的表面形貌。在机械抛光过程中,将烧结体压向带有研磨颗粒的抛光垫。即使使用相同尺寸的金刚石浆,与研磨相比,抛光工艺通常产生更好的表面光洁度。抛光可通过一步或多步完成,后续各抛光步骤顺次采用颗粒尺寸逐渐减小的磨料。机械抛光后,可采用本领域已知的技术清洁并干燥烧结闪烁体。还可通过轻微腐蚀除去最终抛光晶片上的任意残留表面损伤和亚表面损伤。选择轻微腐蚀的条件,以除去最终抛光晶片上的一些残留表面损伤,同时不本发明的烧结立方卣化物例如Nal闪烁体可用于通常使用现有Nal闪烁体晶体的应用。本发明方法的适应性允许所述烧结立方卣化物闪烁体用于要求尺寸和形状优于现有闪烁体材料的应用。在一种实施方式中,使用本发明的烧结NaI闪烁体制造剥离辐射探测器(strippeddownradiationdetector),其中密封容器中的涂覆闪烁体通过导光管与光电倍增管连接。根据终端应用,可将该辐射探测器连接在多种工具和设备上。本发明的烧结Nal闪烁体的终端应用实例包括允许改进SPECT探测器的尺寸和形状的医疗器械,例如用于放射性免疫测定的NaI(Tl)探测器、用于骨质测量的NaI(Tl)探测器、用于核医疗的闪烁伽玛照相机(Anger照相板);用于船运港口、火车站、边检站等以探测放射性材料非法运输的便携式探测器;用于车站、机场、大使馆、公共场所例如法院以及公共聚集场所例如运动场的便携式手持辐射探测器;其中闪烁体用作激光介质的可调反斯托克斯拉曼激光器;用于筛选/报告垃圾堆和填埋场中放射性废物的闪烁仪;深井钻探应用中的NaI(Tl)闪烁体;以及用于测量包括野味肉(gamemeat)在内的食品、々欠料中污染物的Y计^t器。现参考图1,示例了辐射探测器l,该辐射探测器包括含有本发明的闪烁材料的闪烁体IO,该闪烁体IO封装在该辐射探测器的外壳12内。使闪烁体10的一个表面14与光电探测器例如光电倍增管16的表面光学接触。或者,可经由光导管或光导纤维、透镜和/或反射镜等使闪烁材料产生的光脉沖与光电倍增器连接。光电倍增管16可由任何适宜的光电探测器例如光电二极管、微通道板等取代。为了将每次闪光尽可能多地导向光电探测器16,闪烁体10的另一表面18可优选被反射材料例如铝箔或氧化镁涂层或二氧化钛涂层包围或覆盖。在工作时,闪烁体IO在被电离辐射照射时产生闪光。光电探测器将所述闪光转换为电信号,随后将所述电信号输送至放大器以进一步进行信号处理。通过下述非限制性实施例进一步说明本发明实施例1-5在这些实施例中,对20克从SigmaAldrich获得的纯度为99.999%的硤化钠粉末试样进行干燥预处理以除去湿气和任何挥发性杂质,并且在下述工艺步骤中始终置于干燥的气氛中。下表1给出了所述试样的粒度分布。所述试样不含铊。将试样装入模具,在真空热压机中热压,在符合下述规定的压力下烧结。以6.6。C/分钟的加热緩变率(ramprate)将起始处于环境温度的试样加热至300°C的第一处理温度且在该第一温度下保持如表1所示的第一停留时间。然后允许试样以4。C/分钟的冷却緩变率冷却至240°C的第二温度以进行退火并在该第二温度下保持15分钟的第二停留时间。最终,允许试样以6.6。C/分钟的冷却緩变率重新冷却至环境温度。在起始加热过程的后15分钟内施加如表1所示最高为烧结压力的压力并在所述第一温度和第一停留时间条件下保持该压力,此后,将压力降至环境压力。对所得闪烁体的光学透明度和颜色进行视觉评估,结果示于以下表l。如表1所示,实施例1-5中所得闪烁体的照片分别示于图2-6中。表1<table>tableseeoriginaldocumentpage14</column></row><table>实施例6在该实施例中,将20克含有0.2%碘化铊且颗粒尺寸为约10微米-约592微米的碘化钠在环境温度和110,000psi下冷压5分钟。所得闪烁体示于图7且为半透明的黄色。这些实施例显示,使用-60/+70目之间所收集的颗粒并采用实施例1中所述处理条件的烧结试样透明且为黄色,而不是纯碘化钠透明纯白的表观特征。通过比较实施例2和3(即相同的粒度分布、压力和停留温度)可知,通过将停留时间由60分钟(试样为半透明的纯白色)减少到22分钟(试样为透明的纯白色),光学透明度发生明显改善。比较实施例4和5是在相同的处理条件和不同的粒度分布下合成的,-60/+60目范围内收集的粉末所烧结的试样是不透明的,而-60/+70目范围内收集的粉末所烧结的样品是透明的。数据显示有必要适当组合处理条件(粒度分布、停留温度、停留时间和施加的压力)以获得所需的透明纯白闪烁体。尽管以上说明包括多个实施例,但是这些实施例不应解释为对本发明的限制,而仅仅是其优选实施方式的示例。本领域技术人员可预想到本发明所附权利要求限定的范围和构思内的多种其他实施方式。在此引入本申请提及的所有引证用于参考。权利要求1.一种制造烧结立方卤化物闪烁体的方法,包括在有效提供662keV时脉冲高度分辨率为约7%-约20%的多晶烧结立方卤化物闪烁体的压力、温度、停留时间和颗粒尺寸的处理条件下,压制立方卤化物和至少一种活化剂的粉末混合物,其中处理温度以摄氏度计从约为环境温度至最高为所述立方卤化物熔点的约90%,压力为约30,000psi-约200,000psi,压制停留时间为约5分钟-约120分钟以及立方卤化物平均颗粒尺寸为约60微米-约2000微米。2.权利要求l的方法,其中所述立方卤化物为选自钠、钾、铯和铷的卣化物中的二元立方卣化物。3.权利要求l的方法,其中所述立方卣化物为碘化钠。4.权利要求l的方法,其中所述活化剂选自铊、铯和钠的卤化物。5.权利要求l的方法,其中所述活化剂为碘化铊。6.权利要求1的方法,其中所述活化剂浓度为约0.005重量%-5.0重量%。7.权利要求1的方法,其中所述处理温度为约20。C-约30°C,所述压力为约100,000psi-约200,000psi,所述停留时间为约5分钟-约10分钟以及所述平均颗粒尺寸为约60微米-约90微米。8.权利要求1的方法,其中所述温度为约90。C-约150°C,所述压力为约100,000psi-约150,000psi,所述停留时间为约5分钟-约10分钟以及所述平均颗粒尺寸为约90微米-约120微米。9.权利要求1的方法,其中所述温度为约250。C-约450°C,所述压力为约30,000psi-约60,000psi,所述停留时间为约50分钟-约60分钟以及所述平均颗粒尺寸为约200微米-约275微米。10.权利要求l的方法,其中所述压制通过冷、暖或热单轴压制实现。11.权利要求10的方法,其中所述单轴压制为热压。12.权利要求l的方法,其中所述压制通过冷、暖或热等静压实现。13.权利要求1的方法,其中所述活化剂基本均匀地分布于所述混合物中。14.权利要求1的方法,其中所述活化剂在所述混合物中的浓度百分比按照受控梯度变化。15.权利要求1的方法,其中所述混合物至少包括具有不同的第一和第二活化剂浓度和/或不同的第一和第二颗粒尺寸范围分布的第一和第二共混物,并将所述第一和第二共混物以预先选定的顺序装入压模用于随后的烧结,以提供沿闪烁体的一个维度具有受控的活化剂浓度梯度和/或晶体尺寸的闪烁体。16.权利要求1的方法,其中所述混合物可包括25%-约75%具有较大的第一立方卣化物平均颗粒尺寸的立方卣化物和活化剂的第一共混物;和约25%-约75%具有较小的第二立方卣化物平均颗粒尺寸的立方卣化物和活化剂的第二共混物,所述较小的第二立方卣化物平均颗粒尺寸最高为所述第一立方囟化物平均颗粒尺寸的约30%。17.权利要求16的方法,其中所述较大的第一立方卣化物平均颗粒尺寸为约200微米-约250微米,以及所述较小的第二立方卣化物平均颗粒尺寸为约30微米-约50微米。18.权利要求1的方法,还包括在压制前预处理所述混合物以除去湿气和/或其他挥发性杂质。19.权利要求18的方法,其中所述预处理通过在惰性气氛或真空下预热所述混合物来完成。20.权利要求1的方法,还包括在足以降低所述闪烁体机械内应力的温度下对所述多晶烧结立方卣化物闪烁体进行退火。21.根据权利要求1的方法制造的闪烁体。22.权利要求21的闪烁体,其脉冲高度分辨率为7%-约20%。23.—种辐射探测器,其包括根据权利要求1的方法制造并光学连接在光电探测器上的闪烁体。24.权利要求23的辐射探测器,其中所述闪烁体包括捵化钠以及所述活化剂包括碘化铊。全文摘要一种制造立方卤化物闪烁体材料的方法。该方法包括在有效提供脉冲高度分辨率为约7%-约20%的多晶烧结立方卤化物闪烁体的压力、温度、停留时间和颗粒尺寸条件下,压制立方卤化物和至少一种活化剂的粉末混合物。所述条件包括从约为环境温度至最高为立方卤化物熔点的约90%的温度,约30,000psi-约200,000psi的压力、约5分钟-约120分钟的压制停留时间以及约60微米-约275微米的立方卤化物平均颗粒尺寸。文档编号G01T1/00GK101410346SQ200780010451公开日2009年4月15日申请日期2007年1月29日优先权日2006年1月30日发明者凯文·P·麦克沃伊,卡尔·J·维斯,卢卡斯·克拉克,帕特里夏·A·哈伯德,托马斯·麦克纳尔蒂,文卡特·S·文卡塔拉马尼,斯蒂文·J·达克洛斯,瑟吉奥·P·马丁斯劳里罗,阿德里安·伊凡申请人:莫门蒂夫性能材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1