用于对气体样本进行气体色谱分析法分析的方法和装置的制作方法

文档序号:6002219阅读:190来源:国知局
专利名称:用于对气体样本进行气体色谱分析法分析的方法和装置的制作方法
技术领域
本发明涉及ー种用于对气体样本进行气体色谱分析法分析的方法,该气体样本借助于载体气体引导通过具有布置在下游的可导热探測器的分离装置,该可导热探测器提供作为测量信号的、具有用于不同被分析物的波峰的色谱。本发明还涉及ー种用于对气体样本进行气体色谱分析法分析的相应的装置。
背景技术
在色谱分析法中,待分析的混合物借助于载体气体引导通过色谱分析法的分离装置。基于不同的运动速度,通过分离装置使得被分析物、即混合物的单个物质在不同时刻到 达分离装置的输出端,并且在那里借助于合适的探測器依次对其进行探測。探測器生成作为测量信号的色谱,其由ー个基准线和数量相应于分离物质的波峰组成。在实践中,色谱被平息(verrauscht),其中单个的波峰或多或少显著地从信号噪声中显露出。在被良好分辨出的波峰中,在无噪声的基准线上的波峰面积与被分析物的浓度成比例,其中与波峰高度相反,波峰面积在波峰非対称时也提供准确结果。在气体色谱分析法中,优选地应用可导热探測器根据其材料方面典型的导热性来检测分离的被分析物。为此,例如由EP 1381854B1所示,分离的被分析物依次在通道中被引导经过布置在那里并且电加热的白热丝处,其中,根据流过的被分析物的导热能力,和载体气体相比或多或少地将热量从白热丝导出到通道壁上,并且相应地对白热丝或多或少地进行冷却或加热。被探測到的是,白热丝的电阻由此改变。此外,白热丝通常布置在测量桥中,该测量桥包含了另ー个在另ー个被參考气体流过的通道中的白热丝。在白热丝和通道壁之间的温度差越大,则可导热探測器的探测灵敏度也就越高,其中,高温损害了白热丝的使用寿命。灵敏度也取决于白热丝的电阻率,这是因为由此在白热丝的预设几何结构中,其总电阻被给定。该总电阻越大,则探测灵敏度也就越高。最后,化学腐蚀性的气体可能侵入并破坏白热丝。在由EP 1381854B1中已知的可导热探测器中,白热丝由金和/或钼制成。可利用金实现的白热丝电阻较低,大约为15至25 Ω,并且限定了探测灵敏度。为了获得典型地为20 Ω的白热丝电阻,金丝在其尺寸方面必须在长度为Imm时非常薄(< O. 3 μ m)并且细长(典型地为6 μ m)地实现。这种金银丝细エ的尺寸导致热容非常小并且进而导致反应时间非常短,但也导致了低坚固性。此外,含硫化氢的气体会损坏金丝。钼的熔解温度比金高得多,并且在电阻的温度系数几乎相同时具有五倍的电阻率。钼的优点在于其化学惰性,然而由此证明为非常难的是利用薄膜技术进行制造。另ー个缺点是钼在包含氢气和碳氢化合物的气体混合物中具有催化作用。由DE 3906405A1已知了ー种用于气体分析器的可导热探測器,其中加热元件不是暴露的白热丝,而是设计在载体板上的电阻层。为了针对腐蚀性气体进行保护,电阻层涂有PECVD层。由 W 2007/106689A2、WO 2008/098820A1 和 E. Meng 以及 Y.-C. Tai 的“AParylene MEMS Flow Sensing Array,,in Transducers 2003, 2003, Boston,MA 相应地已知了一种热质量流量传感器,其中,暴露的加热元件和/或传感器元件具有由聚对ニ甲苯制成的保护层。聚对ニ甲苯是聚合涂层材料的集合名词,其中特别是聚对ニ甲苯类的聚对ニ甲苯 N (Poly-para-XyIyIen),聚对ニ 甲苯 C (Chloro-poly-para-xylylen),聚对ニ 甲苯 D(Di-cnloro-poiy-para—xylyien)不ロ聚对ニ甲朱 F (Poly (Tetrafluoro-para—xylylen))在エ业中被应用。聚对ニ甲苯N的熔点为410°C,虽然非常高,但是机械性能在温度升高时发生变化。特别是在氧气环境中,该温度稳定性在所有聚对ニ甲苯类中最低。聚对ニ甲苯C虽然具有非常良好的阻拦-性能(Barriere-Eigenschaften)、即非常低的气体通过性,然而熔点是在此所述的聚对ニ甲苯类中最低的,为290°C。聚对ニ甲苯D具有相对较高的、直到380°C的热稳定性。机械和电性能在温度升高时相对于聚对ニ甲苯N和聚对ニ甲苯C保持最佳。聚对ニ甲苯F的熔点超过500°C,远高于其它三种聚对ニ甲苯类。聚对ニ甲苯F具有相对于其它三种聚对ニ甲苯类最高的熔点和最高的温度稳定性,该熔点超过500°C的熔点。聚对ニ甲苯F和聚对ニ甲苯N在化学性质方面非常类似,因此两者中的气体渗透性大约相同,也就是说是氧气可透过的并且在很大程度上也是硫化氢可透过的。

发明内容
本发明的目的在于,在应用具有涂覆聚对ニ甲苯的金丝和在考虑到聚对ニ甲苯性能的情况下提出ー种用于对气体样本进行气体色谱分析法分析的方法。该目的根据本发明由此实现,即在开头所述类型的方法中,将氢气用作为载体气体并且应用了一种可导热探测器,其具有电加热的且涂覆聚对ニ甲苯F的金丝,并且通过在被分析物硫化氢的位置上对色谱求微分来产生该被分析物的波峰。由至今对于具有未被涂覆的金丝的可导热探測器的观察中证实的是,即被加热的金丝在其表面上通过硫化氢进行调整(konditioniert)、即改变。由此特别在金丝非常细且狭长时,其电阻发生变化。金丝上的变化是可逆的并且在氧气-或氢气环境中被重新逆向处理。至今在需要检测硫化氢时在气体色谱分析法中不应用具有金丝的可导热探測器。同样地也适用的是,当氢气被作为载体气体时对氧气进行检测,这是因为在金丝的表面上的交替的氧化通过氧气以及由于氢气造成的減少而导致色谱中的基准线的漂移。聚对ニ甲苯F,对于大多数分子来说、即例如也对于氧气是不可透过的。然而对于ー些分子、如氦、氢气和硫化氢来说,这种聚对ニ甲苯是可透过的。因此不可能通过氧气、但是可以通过氢气減少由硫化氢引起的、对加热的金丝的调整。但也证明了,即在被分析物硫化氢出现时,由可导热探測器提供的測量信号基本上取决于电阻变化,作为由硫化氢引起的、对加热的金丝调整的结果,并且并不或者几乎不被硫化氢的导热能力和氢气的导热能カ之间的区别影响。直接获得的、用于硫化氢的测量信号也就形成波峰的积分曲线,因此通过形成一阶导数而对色谱在被分析物硫化氢的位置上求微分,并且因此产生对于该被分析物的波峰。在直接跟随在硫化氢后面的被分析物中,色谱的基准线因此这样一直提高,直到由硫化氢引起的、对金丝的调整通过氢气再次減少。然而由基准线出发来进行对波峰的分析、例如波峰面积的确定,从而基准线的高度不妨碍測量。最后,由于聚对ニ甲苯对于氧气具有不可透过性,因此具有涂覆聚对ニ甲苯的金、丝的可导热探測器可以不受限制地将氢气用作为载体气体,即使在被分析物是氧气时也是这样。在过程色谱分析法中,通过相应地改变或补充存在的分析软件来实现对色谱求微分导致了在时间和经济上极大的研发消耗。为了将这种消耗減少到最低水平,可以以有利的方式借助于RC组件来对测量信号求微分,通过将导热探测器经过至少ー个电容器和分析装置的输入端连接来构成该组件。在具有 至少两个输入端的分析装置中,其中的一个输入端对测量信号求微分并且另ー个输入端保持不变。利用仅仅ー个电容器或者利用两个输入端支路中每个的ー个相应的电容器就足以实现对色谱求微分的硬件,并且因此非常节省费用。


为了进ー步说明本发明,下面參考了附图;图中详细示出图I示出了气体色谱分析法的一个简化的实施例;图2示出了对于获得的和经过处理的色谱的ー个实施例;和图3示出了对色谱求微分的硬件实现方案的一个简化的实施例。
具体实施例方式图I示出了ー种气体色谱分析法,其中将氢气作为载体气体I输送给喷射器2,在那里加载了待分析的混合物的样本3,并且随后导入分离装置4中,其具有分离毛细管或分离毛细管的线路的形式。从分离装置4中依次溢出的分离的样本成份(被分析物)到达可导热探测器5。在那里,分离的被分析物在通道6中,被引导经过布置在那里并且电加热的白热丝7处,白热丝由金制成并且和通道壁ー样涂覆聚对ニ甲苯F。根据相应流过的被分析物的导热能力,和载体气体的导热能力相比,将或多或少的热量从白热丝导出到通道壁上,从而相应地冷却或加热白热丝7。作为其結果,白热丝7的电阻改变,这在分析装置8中被探測。此外,白热丝通常布置在这里未示出的测量桥中,该测量桥具有另ー个在另ー个被參考气体、例如载体气体I流过的通道中的白热丝。可导热探測器5提供作为测量信号9的、具有用于不同被分析物的波峰的色谱,该色谱在图2的上部中非常简化地示出。在分析装置8中数字化地以这种方式分析色谱9,即由不同的被分析物引起的波峰、例如10,在通常现存的信号噪声中被识别并且确定了其在基准线11上的面积,该面积相应于被分析物的浓度。由于聚对ニ甲苯F对于硫化氢(H2S)而言是可透过的,因此在这种被分析物出现时,可导热探測器5的加热的金丝7以这种方式被调整,即电阻提高。该效应较大,从而使它覆盖了本身的导热能力測量。对金丝7的调整随后通过载体气体氢气而重新減少。色谱9因此在被分析物硫化氢的位置上具有跳跃式的变化曲线,其中跳跃高度取决于硫化氢的浓度。如在图2的下部可以看到地,通过形成ー阶导数而对色谱9在被分析物硫化氢的区域中求微分,由此产生了该被分析物的波峰12。这样大地选择该区域,即为了分析波峰12而充分地在波峰12的前方和后方产生基准线11'。对于直接跟随在硫化氢后面的被分析物,色谱9的基准线11因此这样一直提高(偏移),直到由硫化氢引起的、对金丝7的调整通过氢气再次减少。然而由基准线11出发来进行对波峰的分析、例如波峰面积的确定,从而基准线的高度不妨碍测量。在图2的下部中,从色谱9中算出基准线11的偏移量,即跟随在通过微分产生的波峰12后面的波峰被向下拉到波峰12的基准线水平I广上。图3示出具有四个电阻Rt的可导热探测器5的电路图,这些电阻布置在桥电路中。每个电阻Rt相应于一个金丝7(图1),其中,两个在桥电路中成对角线相对布置的金丝7被利用气体色谱分析法分离的样本3环流,并且另外两个金丝7被载体气体I环流。分析装置8具有两个或多个通道,并且与此相应地具有至少两个模拟输入端13和14。可导热探测器5的测量信号9被无变化地输送到输入端14并且被求微分地输送到输入端13。此外,在输入端13的两个输入端支路中的每个中分别插入一个电容器C,其和输入端电阻R1形成微分RC组件。在观察的测量信号变化曲线中fu是最小频率,并且f。是最大频率。随后在带宽中得出了 C,该带宽在I/ [2nfo (Ri+Ri) ] < C < I/[Znfll- (Ri- U ]之间,
也就是说例如为32μF < C < 160μ F,其中f,;l = 0,1 Hz,fri = 5 Hz并且Ri+RT 兑 IOCO Ω ο
权利要求
1.ー种用于对气体样本进行气体色谱分析法分析的方法,所述气体样本借助于载体气体(I)引导通过具有布置在下游的可导热探測器(5 )的分离装置(4),可所述导热探测器提供作为测量信号(9)的、具有用于不同被分析物的波峰的色谱,其中,将氢气用作所述载体气体(1),并且应用了具有电加热的并涂覆聚对ニ甲苯F的金丝(7)的可导热探測器(5),并且其中通过在所述被分析物硫化氢的位置上对色谱求微分来产生用于所述被分析物的波峰。
2.根据权利要求I所述的方法,其特征在于,所述测量信号(9)借助于RC组件求微分,通过将所述可导热探测器(5)经过至少ー个电容器(C)和分析装置(8)的输入端(13)连接来构成所述组件。
3.根据权利要求I或2所述的方法,其特征在于,在所述载体气体(I)氢气中检测所述被分析物氧气。
4.ー种用于对气体样本进行气体色谱分析法分析的装置,所述气体样本借助于载体气体(I)引导通过具有布置在下游的可导热探測器(5 )的分离装置(4),所述可导热探测器提供作为测量信号(9)的、具有用于不同被分析物的波峰的色谱,其中将氢气用作所述载体气体(1),并且应用了具有电加热的并涂覆聚对ニ甲苯F的金丝(7)的可导热探測器(5),其中通过在所述被分析物硫化氢的位置上对色谱求微分来产生所述被分析物的波峰,并且其中所述可导热探测器(5)经过至少ー个电容器(C)和分析装置(8)的输入端(13)连接,用于实现对所述测量信号(9)求微分的RC组件。
5.根据权利要求4所述的装置,其特征在于,所述分析装置(8)具有至少两个输入端(13,14),所述输入端中的一个输入端(13)对所述測量信号(9)求微分并且另一个输入端(14)保持不变。
全文摘要
本发明涉及一种待分析的气体样本,其中,该气体样本借助于载体气体引导通过具有布置在下游的可导热探测器的分离装置,该可导热探测器提供作为测量信号的、具有用于不同被分析物的波峰的色谱。在应用具有涂覆聚对二甲苯F的加热的金丝的可导热探测器时,将氢气用作载体气体,并且通过在被分析物硫化氢的位置上对色谱(9)求微分来产生用于该被分析物的波峰(12)。本发明实现了,即使当被分析物是氧气时,也能不受限制地应用氢气作为载体气体。
文档编号G01N27/18GK102667465SQ201080052145
公开日2012年9月12日 申请日期2010年11月25日 优先权日2009年11月25日
发明者乌多·格勒特, 弗兰克·普罗布斯特 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1