一种用于材料介电常数测试的谐振腔测试装置制造方法

文档序号:6200067阅读:268来源:国知局
一种用于材料介电常数测试的谐振腔测试装置制造方法
【专利摘要】本实用新型公开了一种用于材料介电常数测试的谐振腔测试装置,包括:氧化物陶瓷或氮化物陶瓷材料的谐振腔,谐振腔的腔筒开口处设置有氧化物陶瓷或氮化物陶瓷材料的活塞,在谐振腔的侧壁开设有耦合孔,氧化物陶瓷或氮化物陶瓷材料的波导管对应耦合孔与谐振腔连接;在谐振腔的腔筒内壁、波导管的内壁及活塞的表面均覆盖有导电金属层。本实用新型结构简单,可以在空气气氛中进行高温介电常数测试,能反应材料真实的使用情况,避免测试结果出现误差,并大大简化测试装置;同时,贵金属的用量十分少,大大降低了设备成本。
【专利说明】一种用于材料介电常数测试的谐振腔测试装置
【技术领域】
[0001]本实用新型涉及材料介电常数测试【技术领域】,特别地,涉及一种用于材料介电常数测试的谐振腔测试装置。
【背景技术】
[0002]介质材料在高温下的微波电磁参数测量在某些情况下显得非常重要,比如选择高速飞行器的头部雷达天线罩材料时。高速飞行器由于气动加热,头部天线罩可以达到很高的温度(往往超过1000°c ),要确保天线罩具有足够的微波透射率,必须提前获得各种材料在高温下的电磁参数,从而选择正确的材料建造天线罩。
[0003]测试材料复介电常数的方法主要有传输反射法和谐振腔法。传输反射法通过测试微波入射到材料表面后的反射、传输系数,再解出复介电常数和磁导率。谐振腔法是将样品放入谐振腔中,根据放入样品前后谐振频率和品质因子的变化来解出材料的复介电常数和磁导率。谐振腔法特别适合低损耗材料的电磁参数测试,具有很高的测试精度,低损耗材料广泛用于雷达天线罩。
[0004]文献“《宇航材料工艺》航天材料及工艺研究所主办,2011年第2期,由陈聪慧、何凤梅、李恩与李琦发表的透波材料高温介电性能评价表征”。文献中详细介绍了透波材料高温介电常数测试的研究现状:20世纪70-80年代,美国的NASA LRC(兰利研究中心)测试了透波窗口候选材料1200°C下的介电常数,采用了终端短路法,矩形波导作为微波传输线,文献报道了选用钼铑合金(最高使用温度1800°C)制作微波器件,但未进行测试误差分析。英国采用石墨(升华温度3650°C )制作矩形波导测试了 7.5GHz-40GHz频段材料从室温至2000°C的复介电常数。加拿大R.M.Hutcheon采用圆柱谐振腔对材料室温至1500°C介电常数进行测试研究。俄罗斯在20世纪80年代采用高Q谐振腔建立了 X波段材料介电常数测试系统,测试温度可达1200°C。“九五”期间,国内航天材料及工艺研究所与电子科技大学联合开展了 2GHz-18GHz、室温至1200°C低损耗材料谐振腔测试技术及系统的研究。
[0005]高温微波测试装置中的主要部件是耐高温微波器件,这些器件包括波导管、谐振腔等,从现有技术看,制备耐闻温微波器件的材料主要有石墨、钼错合金等。但米用石墨、钼铑合金制造的耐高温微波器件具有以下不足:
[0006]1、石墨制造的耐高温微波器件不能在氧化气氛下进行高温介电常数测试,需要在真空状态或惰性气体保护的环境下进行高温介电常数测试,导致测试装置复杂、成本高。
[0007]2、石墨制造的耐高温微波器件不能在空气中进行高温介电常数测试,不能反应材料真实的使用情况。
[0008]3、石墨制造的耐高温微波器件在高温气氛中会产生升华,污染测试样品,导致测试结果出现误差。
[0009]4、使用钼铑合金制造耐高温微波器件,钼铑合金的使用量比较多,导致设备成本
曰虫印贝ο
[0010]针对这一现象,专利号为200710050347.7的中国专利公开了 “一种用于高温下微波测试的圆柱形高Q谐振腔”,对现有技术做出了改进,专利中公开了采用薄层耐高温的贵金属材料制作圆柱形高Q谐振腔的腔体,并采用耐高温材料支撑贵金属腔体,支撑材料采用石墨,贵金属采用钼铑合金。此种结构,使用石墨作为支撑材料,谐振腔采用钼铑合金,对于成本有一定的降低,但谐振腔的钼铑合金用量仍旧比较大;同时,石墨材料不能在氧化气氛中使用的问题也没有得到解决。
实用新型内容
[0011]本实用新型目的在于提供一种用于材料介电常数测试的谐振腔测试装置,以解决现有技术中石墨制造的耐高温微波器件不能在氧化气氛下进行高温介电常数测试,导致测试结果出现误差;钼铑合金制造耐高温微波器件成本昂贵的技术问题。
[0012]为实现上述目的,根据本实用新型的一个方面,提供了一种用于材料介电常数测试的谐振腔测试装置,包括:氧化物陶瓷或氮化物陶瓷材料制成的谐振腔,谐振腔的腔筒开口处设置有氧化物陶瓷或氮化物陶瓷材料制成的活塞,在谐振腔的侧壁开设有耦合孔,氧化物陶瓷或氮化物陶瓷材料制成的波导管对应耦合孔与谐振腔连接;在谐振腔的腔筒内壁、波导管的内壁及活塞的表面均覆盖有导电金属层。
[0013]进一步地,谐振腔为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
[0014]进一步地,活塞为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
[0015]进一步地,波导管为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
[0016]进一步地,谐振腔的腔筒内壁、波导管的内壁及活塞表面的导电金属层为钼、铱或钼错合金的导电金属层。
[0017]进一步地,导电金属层的厚度大于I μ m,表面电阻小于0.1欧姆。
[0018]进一步地,谐振腔上设置有螺纹孔,波导管采用氧化物陶瓷或氮化物陶瓷材料制成的螺钉与谐振腔连接。
[0019]进一步地,螺钉为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
[0020]本实用新型具有以下有益效果:
[0021]谐振腔、活塞与波导管采用氧化物陶瓷或氮化物陶瓷材料,可以在空气气氛中进行高温介电常数测试,不需要真空或惰性气体保护,测试条件与使用状况接近,能反应材料真实的使用情况,并大大简化测试装置;同时,也不会在高温气氛中会产生升华,从而避免测试结果出现误差;谐振腔测试装置仅在谐振腔的腔筒内壁、波导管的内壁及活塞的表面均覆盖导电金属层,贵金属的用量十分少,大大降低了设备成本。
[0022]除了上面所描述的目的、特征和优点之外,本实用新型还有其它的目的、特征和优点。下面将参照图,对本实用新型作进一步详细的说明。
【专利附图】

【附图说明】
[0023]构成本申请的一部分的附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
[0024]图1是本实用新型一种用于材料介电常数测试的谐振腔测试装置优选实施例的结构示意图;[0025]图2是本实用新型一种用于材料介电常数测试的谐振腔测试装置优选实施例的剖面结构示意图;以及
[0026]图3是本实用新型一种用于材料介电常数测试的谐振腔测试装置优选实施例中谐振腔的放大示意图。
[0027]附图标记说明:
[0028]1、谐振腔;2、波导管;3、活塞;4、耦合孔;5、螺纹孔;6、腔筒。
【具体实施方式】
[0029]以下结合附图对本实用新型的实施例进行详细说明,但是本实用新型可以由权利要求限定和覆盖的多种不同方式实施。
[0030]请参阅图1至图3,本实用新型的优选实施例提供了一种用于材料介电常数测试的谐振腔测试装置,包括:氧化物陶瓷或氮化物陶瓷材料制成的谐振腔1,谐振腔I的腔筒6开口处设置有氧化物陶瓷或氮化物陶瓷材料制成的活塞3,在谐振腔I的侧壁开设有耦合孔4,氧化物陶瓷或氮化物陶瓷材料制成的波导管2对应耦合孔4与谐振腔I连接;在谐振腔I的腔筒6内壁、波导管2的内壁及活塞3的表面均覆盖有导电金属层。
[0031]使用上述谐振腔测试装置时,将谐振腔I放入高温炉中,两根波导管2的端部分别穿过炉壁的方孔伸出,伸出端与测试仪器(如矢量网络分析仪)相连,被测样品放置在活塞3上,并随活塞3推入到谐振腔I的腔筒6内。在高温炉对谐振腔I进行加热时,当腔筒6内的温度与高温炉内的温度达到平衡时,即对被测样品进行介电常数的测试。测试时,微波信号通过其中一根波导管2进入到谐振腔I的腔筒6内,并与被测样品作用,然后测试信号经另一根波导管2进入测试仪器。
[0032]本实用新型优选实施例所述的谐振腔测试装置,结构简单,且谐振腔1、活塞3与波导管2均采用氧化物陶瓷或氮化物陶瓷材料,氧化物陶瓷或氮化物陶瓷材料具有耐高温,在氧化气氛中性质稳定的特点;本实用新型优选实施例所述的谐振腔测试装置与传统的石墨耐高温微波器件相比,本实用新型优选实施例所述的谐振腔测试装置可以在空气气氛中进行高温介电常数测试,不需要真空或惰性气体保护,测试条件与使用状况接近,能反应材料真实的使用情况,并大大简化测试装置;同时,也不会在高温气氛中会产生升华,从而避免测试结果出现误差。本实用新型优选实施例所述的谐振腔测试装置与传统的钼铑合金耐高温微波器件相比,本实用新型优选实施例所述的谐振腔测试装置仅在谐振腔I的腔筒6内壁、波导管2的内壁及活塞3的表面均覆盖导电金属层,贵金属的用量十分少,大大降低了设备成本。
[0033]优选地,为使谐振腔测试装置具有良好的耐高温效果,谐振腔1、活塞3与波导管2均采用氧化铝、氧化锆、二氧化硅、莫来石或氮化硅的陶瓷材料制成。含量为99.9%的氧化铝,其烧结温度为1650-1990°C ;纯净氧化锆的熔点高达2715°C ;二氧化硅的熔点高达1650±75°C ;莫来石的耐火度高达1800°C ;氮化硅在1900°C时,才会发生分解;因此,谐振腔1、活塞3与波导管2采用氧化铝、氧化锆、二氧化硅、莫来石或氮化硅的陶瓷材料,可以使谐振腔测试装置具有良好的耐高温效果。
[0034]优选地,为保证谐振腔测试装置具有良好的测试精度,谐振腔I的腔筒6内壁、波导管2的内壁及活塞3表面的导电金属层为钼、铱或钼错合金的导电金属层。导电金属层的厚度大于iym,表面电阻小于0.1欧姆。
[0035]优选地,为降低谐振腔1、活塞3与波导管2的制备难度;氧化物或氮化物陶瓷材料的谐振腔1、氧化物或氮化物陶瓷材料的活塞3与氧化物或氮化物陶瓷材料的波导管2均通过干压成型机压制成型。导电金属层可以采用电镀或化学镀与电镀结合的方式生成至谐振腔I的腔筒6内壁、波导管2的内壁及活塞3的表面。
[0036]优选的,为进一步简化谐振腔测试装置的结构,谐振腔I上设置有螺纹孔5,波导管2采用氧化物或氮化物陶瓷材料制成的螺钉与谐振腔I连接。氧化物或氮化物陶瓷材料的螺钉为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料的螺钉。
[0037]从以上的描述中,可以看出,本实用新型上述的实施例实现了如下技术效果:
[0038]谐振腔1、活塞3与波导管2采用氧化物陶瓷或氮化物陶瓷材料,可以在空气气氛中进行高温介电常数测试,不需要真空或惰性气体保护,测试条件与使用状况接近,能反应材料真实的使用情况,并大大简化测试装置;同时,也不会在高温气氛中会产生升华,从而避免测试结果出现误差;谐振腔测试装置仅在谐振腔I的腔筒6内壁、波导管2的内壁及活塞3的表面均覆盖导电金属层,贵金属的用量十分少,大大降低了设备成本。
[0039]以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型;对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
【权利要求】
1.一种用于材料介电常数测试的谐振腔测试装置,其特征在于,包括: 氧化物陶瓷或氮化物陶瓷材料制成的谐振腔(I),所述谐振腔(I)的腔筒(6)开口处设置有氧化物陶瓷或氮化物陶瓷材料制成的活塞(3),在所述谐振腔(I)的侧壁开设有耦合孔(4),氧化物陶瓷或氮化物陶瓷材料制成的波导管(2)对应所述耦合孔(4)与所述谐振腔(I)连接;在所述谐振腔(I)的腔筒(6)内壁、所述波导管(2)的内壁及所述活塞(3)的表面均覆盖有导电金属层。
2.根据权利要求1所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述谐振腔(I)为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
3.根据权利要求1所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述活塞(3)为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
4.根据权利要求1所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述波导管(2)为氧化 铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
5.根据权利要求1所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述谐振腔(I)的腔筒出)内壁、所述波导管(2)的内壁及所述活塞(3)表面的导电金属层为钼、铱或钼错合金的导电金属层。
6.根据权利要求1或5所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述导电金属层的厚度大于I μ m,表面电阻小于0.1欧姆。
7.根据权利要求1所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述谐振腔(I)上设置有螺纹孔(5),所述波导管(2)采用氧化物陶瓷或氮化物陶瓷材料制成的螺钉与所述谐振腔(I)连接。
8.根据权利要求7所述的一种用于材料介电常数测试的谐振腔测试装置,其特征在于: 所述螺钉为氧化铝、氧化锆、二氧化硅、莫来石或氮化硅陶瓷材料制成。
【文档编号】G01R27/26GK203465355SQ201320594415
【公开日】2014年3月5日 申请日期:2013年9月25日 优先权日:2013年9月25日
【发明者】吴旺南, 曹义 申请人:长沙新图仪器有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1