一种基于贝叶斯网络的压缩机气阀故障诊断方法与流程

文档序号:11859249阅读:202来源:国知局
本发明涉及压缩机气阀故障诊断技术,具体涉及一种基于贝叶斯网络的压缩机气阀故障诊断方法。
背景技术
:往复压缩机是流程工业企业关键机组,尤其在炼油、化工、输气管道行业中起着至关重要的作用。气阀是往复压缩机重要组件之一,气阀的作用是控制气缸中的气体吸入和排出。气阀的种类有很多,常见的有环状阀、网状阀、碟形阀等。气阀是往复压缩机完成工作循环易损件之一,在长期生产实践中发现气阀故障是压缩机的最常见故障,约占总故障的60%以上。气阀故障可导致压比失调、排温升高、排气量降低等,严重时甚至可以导致机组报废。因此,及时有效地检测气阀故障,对保证往复压缩机正常工作有重要意义。贝叶斯网络理论是不确定知识表达与诊断推理的有效方法之一。贝叶斯网络(Bayesiannetworks,BN)是一种应用有向无环图表示变量间概率依赖关系的图模型,最早由Pearl提出。贝叶斯统计和图论的发展为贝叶斯网络提供了坚实的理论基础,而人工智能、专家系统和机器学习在实践中的广泛应用成为贝叶斯网络产生和发展的催化剂。从统计学的角度来看,贝叶斯网络是图模型的一种,而人工智能学科则把根据数据获得贝叶斯网络的过程视为机器学习的一个特例。叶斯网络的相关理论研究为贝叶斯网络分类器提供了理论支持,因此贝叶斯网络分类器在模式识别和分类问题中得到了广泛的研究。贝叶斯网络分类器的关键是BN结构的学习,现有的BN结构学习方法可分成三类:①基于打分-搜索的学习方法,该方法过程搜索范围大,在结点顺序已知的情况下,对变量比较少的结构比较适合。②基于依赖分析的学习方法,该方法过程比较复杂,且很难准确地确定切割集,而大量的高维条件概率计算会产生错误,这就导致难以定向所有的边。③结合上述两种方法的混合搜索算法。目前,基于贝叶斯网络的方法已大量用于模式识别、故障诊断中,取得了非常好的效果。技术实现要素:本发明的目的在于提供一种基于贝叶斯网络的压缩机气阀故障诊断方法,该方法利用低阶CI测试与贪心方法确定贝叶斯网络模型,运用贝叶斯估计方法进行参数学习以获得各结点对应的条件概率表,根据测试样本集,并以条件属性值作为证据,可求得各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。该方法有效地限制了候选父节点的个数,避免了不必要的结构评分,在压缩机气阀故障中具有明显优势。本发明公开了一种基于贝叶斯网络的压缩机气阀故障诊断方法,包括以下步骤:A、对不同故障状态和正常状态的压缩机气阀振动信号进行采样,获取振动信号数据。利用小波阈值去噪方法对振动信号进行去噪。B、利用小波包算法对样本数据进行分解,提取各频带能量作为特征向量的元素,将特征向量进行离散化处理。C、将属性变量和类变量分别作为贝叶斯模型的节点,分别用①、②、③、④、⑤、⑥、⑦、⑧、⑨表示。选择目标节点变量,其余节点组成该节点的初始候选父节点集合,通过低阶CI测试,去除与目标变量独立的变量,更新该节点候选父节点集。对于所有节点,重复上述过程,更新每个节点的候选父节点集。D、通过比较每个节点的BIC得分,利用贪心算法依次确定每个节点的父节点,并更新其余节点的候选父节点,从而构建贝叶斯网络模型。E、利用贝叶斯估计方法获得结点对应的条件概率表,以条件属性值作为待诊断观测证据,结合联合树推理算法,可求得各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。进一步地,所述步骤A具体包括以下分步骤:A1、压缩机气阀运行状态包括正常工作状态和三种故障状态:阀片断裂、阀片有缺口和缺少弹簧,获取气阀四种状态下的振动信号数据。A2、选择db4小波,对振动信号数据进行3层小波分解,选择一个阈值对每一层的高频系数软阈值量化处理。A3、根据小波分解的第3层的低频系数和经过量化处理后的的高频系数,进行一维信号的小波重构,得到去噪后振动信号样本。进一步地,所述步骤A2软阈值法计算公式具体为:其中WT为小波系数,Th为阈值。上式的含义为把信号的小波系数的绝对值和阈值进行比较,小于或等于阈值的点变为0,大于阈值的点变为该点值与阈值的差值,并保持符号不变。进一步地,所述步骤B具体包括以下分步骤:B1、利用小波包算法对样本数据进行3层小波包分解,对第三层所有频带进行重构,提取各频带能量并作归一化处理,将其作为特征向量的元素。特征向量中的元素对应样本的条件属性值,将故障类型分别作为样本的类属性,相应的类属性值可以表示为1、2、3、4。B2、利用等宽区间法将特征向量进行离散化处理,定义“很小”、“小”、“大”、“很大”四种类型,分别用1、2、3、4表示。进一步地,所述步骤B1中能量信息归一化具体为:设小波包分解后第j层第k个频带的重构信号Sjk对应的信号能量为Ejk,则有其中,N表示数据长度;j表示小波包分解层次;k=0,1,2,...,M,表示分解频带的序号,xkm表示重构信号Sjk的离散点的幅值。信号E等于各自频带的能量之和,则利用分解后信号各频带的能量占总能量的百分比作为反映设备运行状态的特征向量。因此,小波包提取的特征向量为Wjk=[Ej0,Ej1,...,EjM]/E进一步地,所述步骤C中低阶CI测试具体包含以下步骤:C1、建立原假设H0和备择假设H1:H0:在给定Xk的条件下,Xi和Xj独立;H1:在给定Xk的条件下,Xi和Xj不独立;C2、计算检验统计量G2和自由度f,并给定显著性水平α=0.01。C3、若则拒绝原假设H0,否则,接受H0。进一步地,所述步骤C2中检验统计量G2具体为:在变量Xk的条件下,变量Xi与Xj之间的检验统计量G2计算公式如下:其中表示在样本中随机变量Xi=a、Xj=b且Xk=c的次数,表示在样本中随机变量Xi=a且Xk=c的次数,表示在样本中随机变量Xj=b且Xk=c的次数,表示在样本中随机变量Xk=c的次数。此时自由度f的计算公式为:f=(ri-1)(rj-1)rk其中ri表示变量Xi的取值空间的大小,其中rj表示变量Xj的取值空间的大小,其中rk表示变量Xk的取值空间的大小。8,进一步地,所述步骤D具体包含以下步骤:D1、选择一个节点,从该节点无父节点的初始状态开始,每次在其当前父节点集的基础上,从剩余的候选父节点集中选择一个节点加入,该加入的节点使得当前BIC评分增量最大。循环进行上述的父节点添加过程,直至加入的节点无法提高当前得分。对于所有节点,重复上述过程,可得到每个节点在其当前候选父节点集合下的父节点集。D2、贝叶斯网络是有向无环图,对于同一个节点而言,不能同时作为某个节点的父节点和子节点。利用贪心算法,选择BIC得分最大的节点,最终确定该节点的父节点集合,并从节点集合中去除该节点,并更新其余节点的候选父节点集,直至找出所有节点的父节点集,即确定了贝叶斯网络模型。9,进一步地,所述步骤D1中BIC评分函数计算公式具体为:其中,Nij是满足属性Ai的双亲的第j个状态的记录数目,即属性Ai有ri个状态,其双亲集合有qi个状态,Nijk是满足属性Ai的第k个状态,且Ai双亲的第j个状态的记录数目。结构的BIC分值越大表明与数据集拟合程度越高,且不容易导致过拟合现象的发生。qi可能取值为4n,n表示Ai的父节点个数,n=0,1,2,...,8,ri取值为4。10,进一步地,所述步骤E具体包含以下步骤:E1、假设参数向量θ以共轭Dirichlet分布作为先验概率分布,结合样本数据,运用贝叶斯估计方法获得结点对应的条件概率表。E2、以条件属性值作为待诊断观测证据,利用联合树推理算法,求得测试样本在各条件属性取值下各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。本发明具有以下优点:本发明通过小波阈值去除噪声,对去噪后的信号提取能量特征,并作离散化处理,生成样本决策表。将低阶CI测试和贪心方法相结合,确定每个节点的父节点,并以此建立贝叶斯网络模型。运用贝叶斯估计方法进行参数学习以获得各结点对应的条件概率表,根据测试样本集,以条件属性值作为证据,可求得各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。该方法有效地限制了候选父节点的个数,避免了不必要的结构评分,在压缩机气阀故障中具有明显优势。附图说明图1:本发明故障诊断框图;图2:原始振动信号与消噪后的信号图3:小波包三层分解图4:贝叶斯网络模型具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。如图1所示,为本发明的一种基于贝叶斯网络的压缩机气阀故障诊断方法流程示意图。,一种基于贝叶斯网络的压缩机气阀故障诊断方法包括以下步骤:A、压缩机气阀运行状态包括一种正常工作状态和三种故障状态:阀片断裂、阀片有缺口和缺少弹簧。信号的采样频率20000HZ,每种状态采样点数80000个。利用小波阈值去噪方法对振动信号进行去噪,具体步骤如下:A1、压缩机气阀运行状态包括正常工作状态和三种故障状态:阀片断裂、阀片有缺口和缺少弹簧,获取气阀四种状态下的振动信号数据。A2、选择db4小波,对振动信号数据进行3层小波分解,选择一个阈值对每一层的高频系数软阈值量化处理。软阈值法计算公式具体为:其中WT为小波系数,Th为阈值。上式的含义为把信号的小波系数的绝对值和阈值进行比较,小于或等于阈值的点变为0,大于阈值的点变为该点值与阈值的差值,并保持符号不变。A3、根据小波分解的第3层的低频系数和经过量化处理后的的高频系数,进行一维信号的小波重构,得到去噪后振动信号样本,原始振动信号与去噪后振动信号如图2所示。B、利用小波包算法对样本数据进行分解,提取各频带能量作为特征向量的元素,将特征向量进行离散化处理。具体步骤如下:B1、选用db5小波包进行3层分解,共得到8个频率段,其分解树结构如图3所示。分别计算每个频带的能量值,对第三层所有频带进行重构,提取各频带能量并作归一化处理,将其作为特征向量的元素,分别用c1、c2、c3、c4、c5、c6、c7、c8表示。特征向量中的元素对应样本的条件属性值,将故障类型分别作为样本的类属性,相应的类属性值可以表示为1、2、3、4。设小波包分解后第j层第k个频带的重构信号Sjk对应的信号能量为Ejk,则有其中,N表示数据长度;j表示小波包分解层次;k=0,1,2,...,M,表示分解频带的序号,xkm表示重构信号Sjk的离散点的幅值。信号E等于各自频带的能量之和,则利用分解后信号各频带的能量占总能量的百分比作为反映设备运行状态的特征向量。因此,小波包提取的特征向量为C=[Ej0,Ej1,...,EjM]/EB2、利用等宽区间法将特征向量进行离散化处理,定义“很小”、“小”、“大”、“很大”四种类型,分别用1、2、3、4表示。表1部分离散化后样本决策表C、将属性变量和类变量分别作为贝叶斯模型的节点,分别用①、②、③、④、⑤、⑥、⑦、⑧、⑨表示。选择目标节点变量,其余节点组成该节点的初始候选父节点集合,通过低阶CI测试,去除与目标变量独立的变量,更新该节点候选父节点集。对于所有节点,重复上述过程,更新每个节点的候选父节点集。低阶CI测试具体包含以下步骤:C1、建立原假设H0和备择假设H1:H0:在给定Xk的条件下,Xi和Xj独立;H1:在给定Xk的条件下,Xi和Xj不独立;C2、计算检验统计量G2和自由度f,并给定显著性水平α=0.01。检验统计量G2具体为:在变量Xk的条件下,变量Xi与Xj之间的检验统计量G2计算公式如下:其中表示在样本中随机变量Xi=a、Xj=b且Xk=c的次数,表示在样本中随机变量Xi=a且Xk=c的次数,表示在样本中随机变量Xj=b且Xk=c的次数,表示在样本中随机变量Xk=c的次数。此时自由度f的计算公式为:f=(ri-1)(rj-1)rk其中ri表示变量Xi的取值空间的大小,其中rj表示变量Xj的取值空间的大小,其中rk表示变量Xk的取值空间的大小。C3、若则拒绝原假设H0,否则,接受H0。表2各节点的候选父节点D、通过比较每个节点的BIC得分,利用贪心算法依次确定每个节点的父节点,并更新其余节点的候选父节点,从而构建贝叶斯网络模型。具体包含以下步骤:D1、选择一个节点,从该节点无父节点的初始状态开始,每次在其当前父节点集的基础上,从剩余的候选父节点集中选择一个节点加入,该加入的节点使得当前BIC评分增量最大。循环进行上述的父节点添加过程,直至加入的节点无法提高当前得分。对于所有节点,重复上述过程,可得到每个节点在其当前候选父节点集合下的父节点集。BIC评分函数计算公式具体为:其中,Nij是满足属性Ai的双亲的第j个状态的记录数目,即属性Ai有ri个状态,其双亲集合有qi个状态,Nijk是满足属性Ai的第k个状态,且Ai双亲的第j个状态的记录数目。结构的BIC分值越大表明与数据集拟合程度越高,且不容易导致过拟合现象的发生。qi可能取值为4n,n表示Ai的父节点个数,n=0,1,2,...,8,ri取值为4。D2、贝叶斯网络是有向无环图,对于同一个节点而言,不能同时作为某个节点的父节点和子节点。利用贪心算法,选择BIC得分最大的节点,最终确定该节点的父节点集合,并从节点集合中去除该节点,并更新其余节点的候选父节点集,直至找出所有节点的父节点集,即确定了贝叶斯网络模型如图4所示。表3各节点的父节点节点名父节点①②④②无③①④②⑤③⑥⑧⑨⑦②⑧②⑨⑨①②④表4贝叶斯网络模型邻接矩阵E、利用贝叶斯估计方法获得结点对应的条件概率表,以条件属性值作为待诊断观测证据,结合联合树推理算法,可求得各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。具体分为以下步骤:E1、假设参数向量θ以共轭Dirichlet分布作为先验概率分布,结合样本数据,运用贝叶斯估计方法获得结点对应的条件概率表。E2、以条件属性值作为待诊断观测证据,利用联合树推理算法,求得测试样本在各条件属性取值下各故障类型的后验概率,最大后验概率所对应的类标签即作为该样本的分类标签。表5故障诊断结果通过以上步骤,能够实现对压缩机气阀故障诊断,并且故障诊断正确率较高。本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1