一种功能沙发疲劳检测装置及其检测方法与流程

文档序号:17434592发布日期:2019-04-17 03:57阅读:337来源:国知局
一种功能沙发疲劳检测装置及其检测方法与流程

本发明属于沙发检测与评定技术领域,具体涉及一种功能沙发疲劳检测装置及其检测方法。



背景技术:

设计不合理的坐具,不仅无法使人解除疲劳,并可能导致腰背疼痛、累积性创伤疾患等健康问题。因此,座具越来越倾向于基于人体工程学的坐姿健康功能设计。目前,多功能沙发在该领域拥有广阔的发展前景。功能沙发设计的主要功能是基于人体工程学的多位姿多角度调节,简单的重物冲击检测已无法满足其疲劳检测要求。因此,设计一种功能沙发疲劳检测装置及其方法可以为功能沙发的设计改进提供反馈参考。且目前国内尚未有相关专利公开,该领域拥有广阔的发展空间。



技术实现要素:

本发明的目的在于提供一种功能沙发疲劳检测装置及其检测方法。

本发明一种功能沙发疲劳检测装置,包括电磁吸盘和检测机器人。所述的检测机器人包括头部基板、背部基板、臀部基板、腿部基板、靠头驱动组件、背臀腿联动组件、手部模拟机构。所述的背部基板的顶端和头部基板的底端铰接,底端与臀部基板的一端铰接。臀部基板的另一端与腿部基板的内端铰接。腿部基板的外端设置有脚板。脚板采用磁性材料。所述的头部基板通过靠头驱动组件驱动。

所述的背臀腿联动组件包括第一直线运动驱动件、第三连杆和第四连杆。所述的第一直线运动驱动件固定在腿部基板上。第一直线运动驱动件的推拉杆与第三连杆的一端铰接。第三连杆的另一端与臀部基板的中部铰接。第三连杆的中部与第四连杆的一端铰接。第四连杆的另一端与背部基板的中部铰接。

所述的手部模拟机构包括第二直线运动驱动件、托架和机械手爪。第二直线运动驱动件固定在背部基板的安装侧面上。第二直线运动驱动件的推拉杆与托架固定。托架的两侧均安装有机械手爪。

进一步地,所述臀部基板的工作侧面嵌有第一压力传感器。背部基板的工作侧面嵌有第二压力传感器。

进一步地,所述臀部基板的工作侧面呈凹凸不平状。

进一步地,所述的机械手爪包括第三直线运动驱动件、固定架、第二滑块、第一半爪、第二半爪、第三压力传感器、第五连杆和第六连杆。所述的固定架与托架固定。第一半爪及第二半爪均与固定架构成滑动方向相同的滑动副。第二滑块与固定架构成滑动副。第二滑块、固定架所成滑动副的滑动方向垂直于第一半爪、固定架所成滑动副的滑动方向。第五连杆、第六连杆一端均与第二滑块铰接,另一端与第一半爪、第二半爪分别铰接。第三直线运动驱动件与固定架固定。第三直线运动驱动件的推拉杆与第一半爪固定。第三压力传感器与固定架的中部固定,且检测面背离托架。

进一步地,所述的靠头驱动组件包括导轨、舵机、第一连杆、第二连杆和第一滑块。所述的导轨固定在头部基板的安装侧面上。舵机固定在背部基板的安装侧面上;第一连杆的一端和舵机的输出轴固定,另一端与第二连杆的一端铰接;第二连杆的另一端与第一滑块固定;第一滑块与导轨构成滑动副。

进一步地,本发明一种功能沙发疲劳检测装置还包括控制模块。所述控制模块的四个控制接口与第二直线运动驱动件、第一直线运动驱动件、两个第三直线运动驱动件分别通过电磁换向阀相连。控制模块的两个信号接收接口与第一压力传感器、第二压力传感器分别相连。控制模块的信号接收接口为数模转换接口。

进一步地,所述的电磁吸盘为圆饼状电磁吸附装置。

该功能沙发疲劳检测装置的检测方法具体如下:

步骤一、电磁吸盘通电,将脚板吸附在电磁吸盘上。将功能沙发放置在腿部基板远离第一直线运动驱动件的一侧。

步骤二、第一直线运动驱动件推出,使得臀部基板向功能沙发翻转,直到臀部基板与功能沙发接触后,第一直线运动驱动件停止运动。以此时第一直线运动驱动件的状态作为测试初始状态。之后,电磁吸盘断电,使得脚板与电磁吸盘分离。

步骤三、第一直线运动驱动件继续推出,使得背部基板与腿部基板同步发生翻转,直达背部基板与臀部基板的夹角达到100~120°角后;第一直线运动驱动件停止运动;在背部基板翻转的过程中,背部基板与功能沙发的靠背接触后,功能沙发的靠背同步翻转。

步骤四、两个机械手爪张开至极限位置。第二直线运动驱动件推出,使得两个机械手爪分别放置到功能沙发的两个扶手上。之后,两个机械手爪分别抓住功能沙发的两个扶手。

步骤五、靠头驱动组件运动,使得头部基板绕背部基板往复转动a次,1≤a≤50;头部基板处于转动过程中的第一个极限位置时,头部基板与背部基板平齐;头部基板处于转动过程中的第二个极限位置时,头部基板与背部基板呈30~60°角,且头部基板的外端朝向背离手部模拟机构的一侧。

步骤六、两个机械手爪均松开对应的扶手。第二直线运动驱动件缩回复位。第一直线运动驱动件继续推出,使得背部基板与腿部基板同步发生翻转,直至背部基板与臀部基板的夹角达到160~180°角后;第一直线运动驱动件停止运动;在背部基板翻转的过程中,功能沙发的靠背与背部基板保持同步运动。

步骤七、第一直线运动驱动件缩回至测试初始状态。在背部基板翻转的过程中,功能沙发的靠背与背部基板保持同步运动。

步骤八、电磁吸盘通电,将两块脚板的底端吸附在电磁吸盘上,同时,第一直线运动驱动件缩回至极限位置。之后进入步骤九。

步骤九、若需继续检测实验,则重复步骤二到八;若已经完成检测实验,则将检测机器人移开,并对功能沙发的疲劳状态进行检测。

进一步地,步骤二中,当第一压力传感器检测到压力时,视为臀部基板与功能沙发已经接触。

进一步地,步骤三中,当第二压力传感器检测到的压力大于阈值时,视为背部基板与功能沙发的靠背已经接触。

本发明具有的有益效果是:

1、本发明直接对功能沙发产品进行疲劳测试,相比已有的只是测试沙发骨架的方法,还对沙发表皮材料进行测试。

2、本发明应用人体工程学的检测方法,更能模拟人的使用情况。

3、本发明的检测装置在检测过程中自动化程度很高,节省人力。

附图说明

图1为本发明的整体结构示意图;

图2为本发明中检测机器人的结构示意图;

图3为图2中a部分的局部放大图;

图4为本发明中头部基板与靠头驱动组件的运动简图;

图5为图2中b部分的局部放大图;

图6为本发明中的检测机器人在开始检测前的运动简图;

图7为本发明中的检测机器人在坐姿状态下的运动简图;

图8为本发明中的检测机器人在躺姿状态下的运动简图;

图9为本发明中机械手爪的立体图;

图10为本发明中机械手爪的运动简图。

具体实施方式

以下结合附图对本发明作进一步说明。

如图1和2所示,一种功能沙发疲劳检测装置,包括电磁吸盘2和检测机器人3。电磁吸盘2为圆饼状电磁吸附装置,直径为500mm。检测机器人3包括头部基板10、背部基板9、臀部基板5、腿部基板4、靠头驱动组件6、背臀腿联动组件8、手部模拟机构7和控制模块。头部基板10的尺寸为200mm×150mm×30mm。背部基板9尺寸为700mm×300mm×30mm。背部基板9的顶端和头部基板10的底端铰接,底端与臀部基板5的一端铰接。臀部基板5的另一端与腿部基板4的内端铰接。腿部基板4的外端设置有两块脚板。脚板采用磁性材料(本实施例中采用铁合金)。臀部基板5的工作侧面呈凹凸不平状,且嵌有第一压力传感器。背部基板的工作侧面嵌有第二压力传感器。臀部基板5凹凸不平状的工作侧面有益于增大自身与功能沙发的摩擦力,避免在测试过程臀部基板5与功能沙发发生相对位移。

如图2、3和4所示,靠头驱动组件6包括导轨11、舵机12、第一连杆13、第二连杆14和第一滑块15。导轨11固定在头部基板10的安装侧面上。舵机12固定在背部基板9安装侧面的顶端;第一连杆13的一端和舵机12的输出轴固定,另一端与第二连杆14的一端铰接;第二连杆14的另一端与第一滑块15固定;第一滑块15与导轨11构成滑动副。通过舵机的转动,能够驱动头部基板10绕背部基板9转动。

如图2、5、6、7和8所示,背臀腿联动组件8包括第一直线运动驱动件28、第三连杆29和第四连杆30。第一直线运动驱动件28固定在腿部基板4上。第一直线运动驱动件28的推拉杆外端与第三连杆29的一端铰接。第三连杆29的另一端与臀部基板5的中部铰接。第三连杆29的中部与第四连杆30的一端铰接。第四连杆30的另一端与背部基板9的中部铰接。

当背部基板9、臀部基板5、腿部基板4中的任意一块与被测沙发固定后,背部基板9、臀部基板5、腿部基板4、背臀腿联动组件8能够形成自由度为1且动力元件数量为1的确定运动系统,即自由度=5×3-7×2(五个运动元件分别为推拉杆、第三连杆29、第四连杆30以及两块基板,七个运动底副为六个转动副和一个滑动副)。因此,本发明能够通过调整背部基板9、臀部基板5、腿部基板4中的一块与沙发固连,即可在仅依靠第一直线运动驱动件28这一个动力源的情况下,分别实现检测机器人3的背臀(大腿)同步运动、背腿(小腿)同步运动、臀(大腿)腿(小腿)同步运动。

如图2、9和10所示,手部模拟机构7包括第二直线运动驱动件26、托架27和机械手爪。第二直线运动驱动件26固定在背部基板9的安装侧面上。第二直线运动驱动件26的推拉杆外端与托架27固定。托架27的两侧均安装有机械手爪。

机械手爪包括第三直线运动驱动件22、固定架24、第二滑块19、第三滑块17、第四滑块21、第一半爪16、第二半爪23、第三压力传感器25、第五连杆18和第六连杆20。固定架24与托架27固定。第三滑块17及第四滑块21均与固定架24构成滑动方向相同的滑动副。第二滑块19与固定架构成滑动副。第二滑块19、固定架24所成滑动副的滑动方向垂直于第三滑块17、固定架24所成滑动副的滑动方向。第一半爪16、第二半爪23与第三滑块17、第四滑块21分别固定。第五连杆18、第六连杆20一端均与第二滑块铰接,另一端与第一半爪16、第二半爪23分别铰接。第五连杆与第六连杆的对称面与第一半爪16、第二半爪23的对称面重合。第三直线运动驱动件22与固定架固定。第三直线运动驱动件22的推拉杆与第三滑块17固定。第三压力传感器25与固定架24的中部固定,且检测面背离托架27。第三压力传感器25用于检测机械手爪是否抵住扶手。本实施例中,被进行疲劳检测的功能沙发的空间尺寸为800mm×1240mm×600mm,其中搁脚长度为440mm未计入功能沙发1的总长。

所述的控制模块采用单片机。控制模块的四个控制接口与第二直线运动驱动件、第一直线运动驱动件、两个第三直线运动驱动件分别通过电磁换向阀相连。控制模块的两个信号接收接口与第一压力传感器、第二压力传感器分别相连。控制模块的信号接收接口为数模转换接口。

第一直线运动驱动件、第二直线运动驱动件及第三直线运动驱动件均采用气缸、电缸或液压缸。

该功能沙发疲劳检测装置的检测方法具体如下:

步骤一、电磁吸盘2通电,将两块脚板吸附在电磁吸盘上,使得该功能沙发疲劳检测装置呈现出“站立”在电磁吸盘上的状态。将功能沙发放置在腿部基板4远离第一直线运动驱动件28的一侧,使得功能沙发的靠背内侧朝向腿部基板4。

步骤二、第一直线运动驱动件28推出,使得臀部基板5绕着腿部基板4向功能沙发翻转,直到臀部基板5与功能沙发接触(当第一压力传感器检测到压力时,视为臀部基板5与功能沙发已经接触)后,第一直线运动驱动件28停止运动。以此时第一直线运动驱动件28的状态作为测试初始状态。该过程为图6至图7的过程。

之后,电磁吸盘断电,使得两块脚板与电磁吸盘分离;此时,完成了对人坐上沙发的模拟;检测机器人3近似于一个坐在功能沙发上的人;由于检测机器人3上的所有构件均未与地面及功能沙发固定,且检测机器人3的重心此时位于臀部基板5的范围内;故此时若第一直线运动驱动件28发生运动,则臀部基板5保持静止的状态,背部基板及腿部基板4分别发生翻转。

步骤三、第一直线运动驱动件28继续推出,使得背部基板与腿部基板4同步发生翻转,直达背部基板与臀部基板5的夹角达到110°角后;第一直线运动驱动件28停止运动;在背部基板翻转的过程中,背部基板与功能沙发的靠背接触后,功能沙发的靠背向后翻转,使得功能沙发的靠背与背部基板保持同步运动。当第二压力传感器检测到的压力大于阈值时,视为背部基板与功能沙发的靠背已经接触,以实现功能沙发的靠背针对背部基板的随动。功能沙发的靠背翻转为功能沙发自身的功能。

步骤四、两个机械手爪内的第三直线运动驱动件均推出至极限位置,使得两个机械手爪张开至极限位置。第二直线运动驱动件26推出,使得两个机械手爪分别放置到功能沙发的两个扶手上,使得手部模拟机构内的两个单爪块位于对应扶手的两侧(第三压力传感器检测到压力时第二直线运动驱动件26停止运动)。之后,两个手部模拟机构内的第三直线运动驱动件缩回,使得机械手爪抓住功能沙发的扶手,实现对功能沙发扶手的疲劳检测。

步骤五、舵机12往复转动a次,使得头部基板10绕背部基板往复转动a次,a=5;头部基板10处于转动过程中的第一个极限位置时,头部基板10与背部基板平齐;头部基板10处于转动过程中的第二个极限位置时,头部基板10与背部基板呈45°角,且头部基板10的外端朝向背离手部模拟机构的一侧。此时,完成对人体头部后仰的模拟,实现对功能沙发头枕的测试。

步骤六、两个机械手爪内的第三直线运动驱动件均推出至极限位置,使得两个机械手爪松开对应的扶手。第二直线运动驱动件26缩回复位。第一直线运动驱动件28继续推出,使得背部基板与腿部基板4同步发生翻转,直至背部基板与臀部基板5的夹角达到170°角后;第一直线运动驱动件28停止运动;在背部基板翻转的过程中,功能沙发的靠背与背部基板保持同步运动。该过程为图7至图8的过程。

步骤七、第一直线运动驱动件28缩回至步骤二中的测试初始状态。在背部基板翻转的过程中,功能沙发的靠背与背部基板保持同步运动。

步骤八、电磁吸盘通电,将两块脚板的底端吸附在电磁吸盘上,同时,第一直线运动驱动件28缩回至极限位置,使得检测机器人站起。之后进入步骤九。

步骤九、若检测次数未到达目标(即需继续检测实验),则重复步骤二到八;若检测次数到达目标(即已经完成检测实验),则将检测机器人移开,并对功能沙发的疲劳状态进行检测。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1