一种纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法与流程

文档序号:18226556发布日期:2019-07-19 23:30阅读:359来源:国知局
一种纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法与流程

本发明属于表面增强拉曼基底的制备领域,一种纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法。



背景技术:

表面增强拉曼光谱是fleischmann等人在1974年粗糙银电极表面上发现的,其作为一种新颖的检测技术克服了拉曼光谱信号弱的特点,同时可提供分析物独特的振动指纹信息,适用于无损检测与原位检测,可在分子水平上提供待测物分子的结构信息。表面增强拉曼光谱技术不仅已用于多种生物、化合物的痕量检测与监控,而且在环境监测、表面科学、分析科学、材料科学等领域也有广泛的应用。目前对于表面增强拉曼光谱的研究集中于基底制备和机理研究。基底方面:制备具有高灵敏、高增强因子的表面增强拉曼活性基底对于分析物检测是必要的。机理方面表面增强拉曼的增强机理研究仍没有定论,但物理增强机理和化学增强机理是学术界普遍认同的两种拉曼增强机制。

物理增强机制是从光电磁场角度分析,即一束光入射粗糙金属表面时,会引起金属基底局域电场的增强,从而使金属表面吸附分子拉曼信号增强。以金、银贵金属纳米粒子为例,它们在可见光频段内能发生表面等离子体共振从而增强表面吸附分子的拉曼信号。因此金属纳米结构修饰的表面增强拉曼活性基底引起了广泛的关注。近期,不少工作者将贵金属纳米结构与碳纳米材料复合,制备具有优良表面增强拉曼活性的杂化材料,复合碳纳米结构一方面可稳定金属纳米粒子,另一方面可制造更多的电磁“热点”以增强拉曼信号。化学增强虽相比物理增强效果更弱,但是亦不可忽视,化学增强机制更多的是由于吸附物与基底之间相互作用导致。目前各研究人员着眼于制备既具有物理增强又具有化学增强效果的表面增强拉曼基底材料,多数为在半导体表面沉积贵金属纳米粒子或用半导体包裹贵金属纳米粒子以得到复合材料用于表面增强拉曼研究,但用半导体材料包裹贵金属纳米粒子会削弱材料电磁增强效果,而贵金属纳米粒子在半导体上的沉积亦会影响其化学增强效果。因此合成一种优良的贵金属/半导体纳米复合材料,并通过二者的协同作用使待测物得到更灵敏的拉曼信号是研究的重点。本发明制备的纳米二氧化锡/碳基点具有电荷转移性质从而有一定的表面增强拉曼活性,而纳米银具有优良的电磁增强效应。本发明将纳米二氧化锡/碳基点材料与银纳米粒子复合可制备同时具有物理增强和化学增强的高灵敏表面增强拉曼活性基底,这是因为纳米二氧化锡和纳米银中间存在薄层碳基点,吸附待测物分子实现纳米二氧化锡和纳米银拉曼增强的协同作用。此高灵敏表面增强拉曼活性基底对于分析物的痕量检测和拉曼机理研究均有一定的意义。



技术实现要素:

本发明的目的在于针对现有材料的不足,提供一种纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法,该方法操作简单、成本低廉、反应迅速、条件温和。所获得的纳米二氧化锡/碳基点/纳米银复合材料相比单独银纳米粒子、单独纳米二氧化锡纳米粒子、纳米二氧化锡/碳基点复合材料具有更为优良的拉曼信号,可用于待测物的痕量检测。

为实现上述目的,本发明采用如下技术方案:

一种纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法,包括以下步骤:

(1)纳米二氧化锡/碳基点材料的合成:用碱调节碳基点溶液ph≥7,再向其中加入纳米二氧化锡,得混合溶液,然后将混合溶液超声剥离后以小转速离心收集上清液,再将上清液以大转速反复离心至上清液澄清,收集沉淀,将沉淀重新分散于水中即得到纳米二氧化锡/碳基点材料;

(2)复合材料的合成:将合成的纳米二氧化锡/碳基点材料与银离子溶解于水中,搅拌状态下加入稀氨水调节溶液ph至8,溶液加热稳定后加入葡萄糖继续搅拌反应一段时间后停止反应,溶液离心洗涤后将沉淀分散于二次蒸馏水中,即得纳米二氧化锡/碳基点/纳米银复合材料。

步骤(1)中碳基点溶液的浓度为0.01~5mg/ml,所述碳基点为表面具有10%~70%含氧官能团且直径小于100nm的单层石墨烯纳米片;加入纳米二氧化锡得到的混合溶液中纳米二氧化锡的浓度为0.01~30mg/ml。

步骤(1)中所用碱包括氢氧化钠、氢氧化钾、氨水、氢氧化锂中的任意一种。

步骤(1)中超声剥离的功率为300w~700w,时间为0.5~24h。

步骤(1)中小转速离心转速为1000~3000rpm,离心时间为5~60min;大转速离心转速为9000~20000rpm,每次离心时间为5~60min。

步骤(2)中所述的银离子由可溶性银盐提供,反应体系中银离子的初始浓度为0.2~2mg/ml。

步骤(2)反应体系中纳米二氧化锡/碳基点材料的初始浓度为0.03~30mg/ml。

步骤(2)反应体系中葡萄糖的用量为0.1~10mg每毫克银离子。

步骤(2)中,加热温度为60~80℃;继续搅拌反应的时间为5min~5h。

步骤(2)中,离心洗涤的转速为12000~20000rpm,离心时间为1~30min。

应用:纳米二氧化锡/碳基点/纳米银复合材料在制备表面增强拉曼基底中的应用。

本发明的显著优点在于:

1)本发明利用单层碳基点的超薄结构,将其作为插层剂把二氧化锡纳米颗粒剥离成纳米片,并利用单层碳基点表面丰富的含氧官能团,使其与二氧化锡纳米片结合,从而得到碳基点包裹的二氧化锡纳米片,其制备方法操作简单,无需复杂的合成步骤,使用试剂少,无污染,产品稳定性好;碳基点包裹二氧化锡纳米片材料厚度均一,尺寸也较为均一,其在水中具有良好的稳定性,可通过碳材料表面静电吸附作用和π-π作用吸附苯系物,而且材料所具有的表面增强拉曼活性要求探针分子具有与其导带相匹配的能级结构,可选择性吸附探针分子,故可用于某些环境污染物的选择性检测;

2)本发明所采用的纳米二氧化锡/碳基点/纳米银表面增强拉曼基底的制备方法操作简单,无需复杂的合成步骤,使用试剂少,无污染,且反应迅速,反应条件温和,由于复合材料表面碳基点具有大量含氧官能团从而使复合材料在水中具有良好的分散性;

3)本发明所制得的纳米二氧化锡/碳基点/纳米银复合材料厚度均一,尺寸也较为均一,易于吸附待测分子,同时拓宽了表面增强拉曼基底的使用材料范围,将半导体纳米材料和贵金属纳米材料复合制备新型的具有高灵敏度的表面增强拉曼基底,以罗丹明6g为探针分子,其具有相比单独银纳米粒子更强的拉曼信号。

4)本发明制备的纳米二氧化锡/碳基点具有电荷转移性质从而有一定的表面增强拉曼活性,而纳米银具有优良的电磁增强效应。本发明将纳米二氧化锡/碳基点材料与银纳米粒子复合可制备同时具有物理增强和化学增强的高灵敏表面增强拉曼活性基底,这是因为纳米二氧化锡和纳米银中间存在薄层碳基点,吸附待测物分子实现纳米二氧化锡和纳米银拉曼增强的协同作用,此高灵敏表面增强拉曼活性基底对于分析物的痕量检测和拉曼机理研究均有一定的意义。

附图说明

图1为实施例3制备的碳基点包裹二氧化锡纳米片复合材料的的原子力显微镜图;

图2为实施例1制备的纳米二氧化锡/碳基点/纳米银复合材料的透射电镜图;

图3为碳基点的紫外-可见吸收光谱(曲线a),碳基点/纳米二氧化锡复合材料的紫外-可见吸收光谱(曲线b),纳米二氧化锡/碳基点/纳米银复合材料的紫外吸收光谱(曲线c);

图4为不同活性基底检测罗丹明6g的拉曼信号强度,a曲线为单纯罗丹明固体的拉曼信号;b曲线为单纯纳米二氧化锡基底;c曲线为碳基点/纳米二氧化锡复合材料基底;d曲线为纳米二氧化锡/碳基点/纳米银复合材料基底;

图5为在无纳米二氧化锡/碳基点存在下,以葡萄糖还原法制备的纳米银作为表面增强拉曼基底时罗丹明6g的拉曼信号强度(曲线a)和单纯罗丹明6g的拉曼信号(曲线b)。

具体实施方式

为了更好的理解本发明,通过实例进一步说明,但是本发明不仅限于此。

所用单层石墨烯纳米片的制备:取30g碳黑、150ml去离子水和150ml浓hno3于三口烧瓶中,搅拌升温至130℃,回流36h,然后冷却到室温,漏斗真空过滤后取上清液蒸馏多次除酸,再加水收集烧瓶中单层石墨烯纳米片,并在100~120℃条件下烘干,得到直径<5nm的单层石墨烯纳米片粉末,其表面含氧官能团含量为50%。

实施例1

称取1.8g、直径<5nm的单层石墨烯纳米片溶于30ml水中,用氢氧化钠调节ph至8,再将0.6g纳米二氧化锡固体加入上述溶液中混合,所得混合溶液300w~700w超声3~4h后先3000rpm离心10min,收集上清液,再将所收集的上清液在12000rpm下离心10min,反复离心清洗5次,直至上清液澄清为止,所得沉淀溶于10ml二次水中,即为碳基点包裹二氧化锡纳米片复合材料,存于4℃冰箱保存。

取1ml5.5mg/ml的纳米二氧化锡/碳基点复合材料溶液和50mg硝酸银搅拌溶解于50ml去离子水中,加入稀氨水调节溶液ph至8,然后溶液加热至60℃后加入100mg葡萄糖,溶液瞬间变成乳绿色,继续搅拌反应20min。停止反应后取出烧杯中的溶液,在12000g的转速下离心10min,并重复离心洗涤5次,所得沉淀重新溶解于二次水中即为纳米二氧化锡/碳基点/纳米银复合材料,存于冰箱4℃、避光保存。

实施例2

称取1.2g、直径<5nm的单层石墨烯纳米片溶于30ml水中,用氢氧化钠调节ph至8,再将0.6g纳米二氧化锡固体加入上述溶液中混合,所得混合溶液300w~700w超声3~4h后先3000rpm离心10min,收集上清液,再将所收集的上清液在12000rpm下离心10min,反复离心清洗5次,直至上清液澄清为止,所得沉淀溶于10ml二次水中,即为碳基点包裹二氧化锡纳米片复合材料,存于4℃冰箱保存。

取1ml5.5mg/ml的纳米二氧化锡/碳基点复合材料溶液和10mg硝酸银搅拌溶解于50ml去离子水中,加入稀氨水调节溶液ph至8,然后溶液加热至70℃后加入30mg葡萄糖,溶液瞬间变成乳绿色,继续搅拌反应20min。停止反应后取出烧杯中的溶液,在12000g的转速下离心10min,并重复离心洗涤5次,所得沉淀重新溶解于二次水中即为纳米二氧化锡/碳基点/纳米银复合材料,存于冰箱4℃、避光保存。

实施例3

称取0.6g、直径为<5nm的单层石墨烯纳米片溶于30ml水中,用氢氧化钠调节ph至8,再将0.6g纳米二氧化锡固体加入上述溶液中混合,所得混合溶液300w~700w超声3~4h后先3000rpm离心10min,收集上清液,再将所收集的上清液在12000rpm下离心10min,反复离心清洗5次,直至上清液澄清为止,所得沉淀溶于10ml二次水中,即为碳基点包裹二氧化锡纳米片复合材料,存于4℃冰箱保存。

取1ml5.5mg/ml的纳米二氧化锡/碳基点复合材料溶液和30mg硝酸银搅拌溶解于50ml去离子水中,加入稀氨水调节溶液ph至8,然后溶液加热至80℃后加入80mg葡萄糖,溶液瞬间变成乳绿色,继续搅拌反应20min。停止反应后取出烧杯中的溶液,在12000g的转速下离心10min,并重复离心洗涤5次,所得沉淀重新溶解于二次水中即为纳米二氧化锡/碳基点/纳米银复合材料,存于冰箱4℃、避光保存。

图1为实施例3制备的碳基点包裹二氧化锡纳米片复合材料的的原子力显微镜图。图1说明成功剥离出薄层二氧化锡纳米片,其表面覆盖着一层很薄的碳基点。

图2为实施例1制备的纳米二氧化锡/碳基点/纳米银复合材料的透射电镜图;图2表明:该方法制备的银纳米颗粒为尺寸约30~80nm,纳米二氧化锡/碳基点尺寸约20~50nm且外围均包裹着一层厚度约为1nm左右的碳基点。

图3为碳基点的紫外-可见吸收光谱,碳基点/纳米二氧化锡复合材料的紫外-可见吸收光谱,纳米二氧化锡/碳基点/纳米银复合材料的紫外吸收光谱;从图3中可看出,相比碳基点/纳米二氧化锡复合材料的紫外-可见吸收光谱,加入银离子后在320nm到700nm之间有一个宽的紫外吸收峰。结合透射电镜图亦可确定纳米二氧化锡/碳基点/纳米银复合材料的成功合成。

图4为不同活性基底检测罗丹明6g的拉曼信号强度,a曲线为单纯罗丹明固体的拉曼信号;b曲线为单纯纳米二氧化锡基底;c曲线为碳基点/纳米二氧化锡复合材料基底;d曲线为纳米二氧化锡/碳基点/纳米银复合材料基底。从图4可看出,与其他基底相比,罗丹明6g在纳米二氧化锡/碳基点/纳米银复合材料基底上可产生最强的拉曼信号,通过计算可得对罗丹明6g的拉曼增强可达1015

图5为在无纳米二氧化锡/碳基点存在下,以葡萄糖还原法制备的纳米银作为表面增强拉曼基底时罗丹明6g(1×10-9m)的拉曼信号强度(曲线a)和单纯罗丹明6g的拉曼信号(曲线b),图中可得罗丹明6g在单纯纳米银上的拉曼增强为109,低于二氧化锡/碳基点/纳米银复合材料基底上所得到的拉曼增强。因此可说明本发明将半导体和金属纳米材料复合形成了一种更为灵敏的拉曼增强基底材料。

本发明采用的原料廉价易得,实验操作简单便捷,无需特别的实验仪器,反应迅速,条件温和,且成品分散性良好。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1