一种用于纯电动车辆的锂离子电池充电稳定性测试方法与流程

文档序号:23067126发布日期:2020-11-25 17:53阅读:134来源:国知局
一种用于纯电动车辆的锂离子电池充电稳定性测试方法与流程

本发明涉及锂离子电池充电稳定性测试方法技术领域,具体涉及一种用于纯电动车辆的锂离子电池充电稳定性测试方法。



背景技术:

随着新能源产业的发展,诸如新能源汽车等也面临着因锂离子电池稳定性不足的问题,由于锂的化学特性使其不论是在充放电过程中,还是静止状态下,锂离子电池都可能因内部温度升高,单体电池之间的温度不均匀等原因,引发自燃或爆炸事件;亦或锂离子电池在充电时,由于如负极嵌锂空间不足、锂离子嵌入负极阻力太大、锂离子过快的从正极脱嵌但无法等量的嵌入负极等异常发生时,无法嵌入负极的锂离子只能在负极表面得电子,从而形成银白色的金属锂单质,从而产生的“析锂”现象,基于上述种种可能,使锂离子电池在纯电动车辆的领域存在稳定性的问题。

因此,从多角度多维度去监测锂离子电池的监测数据进而对锂离子电池在纯电动车辆领域的安全稳定广泛使用也是研究热点。



技术实现要素:

有鉴于此,本发明的目的是提供一种用于纯电动车辆的锂离子电池充电稳定性测试方法,通过全面采集锂离子电池的测试数据并根据上述测试数据获得采样周期过程中的锂离子电池充电稳定性测试参数,能够对锂离子电池充电稳定性做出合理的评估和预测。

本发明所采用的技术方案是一种用于纯电动车辆的锂离子电池充电稳定性测试方法,包括以下步骤:

s1、采集确定测试环境温度,对电池进行恒流充电至截止电压后,再使用所述截止电压进行恒压充电;

s2、设置采样周期,采集恒压充电过程中的充电电流数据和锂电池温度数据后,确定采样周期过程中的锂离子电池充电稳定性测试参数;

其中,所述锂离子电池充电稳定性测试参数包括:基于权重调整的锂离子电池析锂系数和基于权重调整的充电电流变化率的相对变化率;

s3、根据所述锂离子电池充电稳定性测试参数得到锂离子电池充电稳定性能指数,根据所述锂离子电池充电稳定性能指数对所述锂离子电池充电稳定性进行判定。

优选地,在所述s2中,所述基于权重调整的锂离子电池析锂系数的确定过程包括以下步骤:

s2.1、根据采样周期,分别采集采样周期内第i个测试时间点的充电电流ii,确定采样周期内第i个测试时间点的充电电流变化率ei和第i个测试时间点的充电电流变化率的相对变化率δei;

其中,ei为采样周期内第i个测试时间点的充电电流变化率,ei-1为采样周期内第i-1个测试时间点的充电电流变化率,δei为第i个测试时间点的充电电流变化率的相对变化率,δt为第i个测试时间点与第i-1个测试时间点之间的时间间隔,ii为采样周期内第i个测试时间点的充电电流,ii-1为采样周期内第i-1个测试时间点的充电电流;

s2.2、将第i个测试时间点的充电电流变化率ei进行规格化处理,得到第i个测试时间点的充电电流变化率的规格化处理值ei′;

其中,

其中,ti为环境温度,tlii为采样周期内第i个测试时间点的锂电池温度,tlis为采样周期内锂电池期望温度,tlii_min为采样周期内第i个测试时间点的锂电池最小测试温度,tlii_max为采样周期内第i个测试时间点的锂电池最大测试温度,ei_min为采样周期内第i个测试时间点的锂电池最小测试充电电流变化率,ei_max为采样周期内第i个测试时间点的锂电池最大测试充电电流变化率,ii为采样周期内第i个测试时间点的充电电流,ii_min为采样周期内第i个测试时间点的最小测试充电电流,ii_max为采样周期内第i个测试时间点的最大测试充电电流;

s2.3、将第i个测试时间点的充电电流变化率的规格化处理值ei′、第i个测试时间点的充电电流变化率的相对变化率δei和第i个测试时间点的锂离子电池析锂系数φi转换为模糊论域中的量化等级;

将第i个测试时间点的充电电流变化率的规格化处理值ei′、第i个测试时间点的充电电流变化率的相对变化率δei输入模糊控制模型,均分为7个等级,模糊控制模型输出为第i个测试时间点的锂离子电池析锂系数φi,均分为7个等级;

其中,第i个测试时间点的充电电流变化率的规格化处理值ei′的论域为[-1,1],第i个测试时间点的充电电流变化率的相对变化率δei的论域为[-1,1],第i个测试时间点的锂离子电池析锂系数φi的论域为[-1,1],设量化因子都为1;

s2.4、分别将所述第i个测试时间点的锂离子电池析锂系数φi进行绝对值化处理,得到第i个测试时间点的锂离子电池析锂系数的绝对值|φi|后进行权重赋值调整,得到基于权重调整的锂离子电池析锂系数|φ|′;

其中,|φ|′为基于权重调整的锂离子电池析锂系数,|φi|为第i个测试时间点的锂离子电池析锂系数的绝对值,w|φ|i为采样周期内第i个测试时间点的锂离子电池析锂系数的绝对值的经验赋予权值,且满足条件n为采样周期内采样个数。

优选地,在所述s2.3中,所述第i个测试时间点的充电电流变化率的规格化处理值ei′的模糊集为{nb,nm,ns,zo,ps,pm,pb},所述第i个测试时间点的充电电流变化率的相对变化率δei的模糊集为{nb,nm,ns,zo,ps,pm,pb},所述第i个测试时间点的锂离子电池析锂系数φi的模糊集为{nb,nm,ns,zo,ps,pm,pb};隶属函数均选用三角函数。

优选地,在所述s2.4中,使n=3n,此时,w|φ|i满足条件为:

w|φ|1=w|φ|2=…=w|φ|n=1.2;

w|φ|n+1=w|φ|n+2=…=w|φ|2n=1;

w|φ|2n+1=w|φ|2n+2=…=w|φ|3n=0.8。

优选地,在所述s3中,根据所述锂离子电池充电稳定性测试参数得到锂离子电池充电稳定性能指数,根据所述锂离子电池充电稳定性能指数对所述锂离子电池充电稳定性进行判定,具体包括以下步骤:

s3.1、分别将所述第i个测试时间点的充电电流变化率的相对变化率δei进行绝对值化处理,得到所述第i个测试时间点的充电电流变化率的相对变化率的绝对值|δei|,然后进行权重赋值调整,得到基于权重调整的充电电流变化率的相对变化率;

其中,|δe|′为基于权重调整的充电电流变化率的相对变化率,|δei|为第i个测试时间点的充电电流变化率的相对变化率的绝对值,w|δe|i为采样周期内第i个测试时间点的充电电流变化率的相对变化率的绝对值的经验赋予权值,且满足条件n为采样周期内采样个数;

s3.2、分别将基于权重调整的锂离子电池析锂系数|φ|′、基于权重调整的充电电流变化率的相对变化率|δe|′和锂离子电池充电稳定性能指数ψ转换为模糊论域中的量化等级;

将基于权重调整的锂离子电池析锂系数|φ|′以及基于权重调整的充电电流变化率的相对变化率|δe|′输入模糊控制模型,均分为5个等级;

模糊控制模型输出为锂离子电池充电稳定性能指数ψ,分别为5个等级;

其中,基于权重调整的锂离子电池析锂系数|φ|′的论域为[0,1],基于权重调整的充电电流变化率的相对变化率|δe|′的论域为[0,1],锂离子电池充电稳定性能指数ψ的论域为[0,1],设量化因子都为1;

s3.3、根据模糊控制输出的离子电池充电稳定性能指数ψ对锂离子电池充电稳定性进行判断:

当0.78≤ψ<1时,表示锂离子电池充电稳定性优秀;

当0.48≤ψ<0.78时,表示锂离子电池充电稳定性良好;

当0.35≤ψ<0.48时,表示锂离子电池充电稳定性及格;

当ψ<0.35时,表示锂离子电池充电稳定性差,需要停止对锂离子电池的继续循环充放电。

优选地,在所述s3.1中,使n=3n,此时,w|δe|i满足条件为

w|δe|1=w|δe|2=…=w|δe|n=1.5;

w|δe|n+1=w|δe|n+2=…=w|δe|2n=1;

w|δe|2n+1=w|δe|2n+2=…=w|δe|3n=0.5。

优选地,在所述s3.2中,所述基于权重调整的锂离子电池析锂系数|φ|′的模糊集为{zo,ps,pm,pb,pvb},所述基于权重调整的充电电流变化率的相对变化率|δe|′的模糊集为{zo,ps,pm,pb,pvb},所述锂离子电池充电稳定性能指数ψ的模糊集为{s,sm,m,mb,b};隶属函数均选用三角函数。

与现有技术相比,本发明的有益效果是:

本发明通过全面采集锂离子电池的测试数据并根据上述测试数据获得采样周期过程中的锂离子电池充电稳定性测试参数并建立基于模糊控制模型的用于纯电动车辆的锂离子电池充电稳定性测试模型,通过该模糊控制模型对所述锂离子电池充电稳定性进行判定,使驾驶员或者测试人员能够对锂离子电池充电稳定性做出合理的评估和预测,进而能够对电动汽车用锂离子电池进行保护进而更加合理的使用,延长使用寿命。

附图说明

图1为本发明提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法的流程图;

图2为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中第i个测试时间点的充电电流变化率的规格化处理值ei′的隶属函数;

图3为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中第i个测试时间点的充电电流变化率的隶属函数;

图4为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中第i个测试时间点的锂离子电池析锂系数φi的隶属函数;

图5为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中基于权重调整的锂离子电池析锂系数|φ|′的隶属函数;

图6为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中基于权重调整的充电电流变化率的相对变化率|δe|′的隶属函数;

图7为本发明实施例提供的一种用于纯电动车辆的锂离子电池充电稳定性测试方法中锂离子电池充电稳定性能指数ψ的隶属函数。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本发明提供一种用于纯电动车辆的锂离子电池充电稳定性测试方法,如图1所示,包括以下步骤:

s1、确定测试环境温度,对电池进行恒流充电至截止电压后,再使用所述截止电压进行恒压充电;

s2、设置采样周期,采集恒压充电过程中的充电电流数据和锂电池温度数据后,确定采样周期过程中的锂离子电池充电稳定性测试参数;

其中,所述锂离子电池充电稳定性测试参数包括:基于权重调整的锂离子电池析锂系数和基于权重调整的充电电流变化率的相对变化率;

具体实施中,所述s2中基于权重调整的锂离子电池析锂系数的确定过程包括以下步骤:

s2.1、根据采样周期,分别采集采样周期内第i个测试时间点的充电电流ii后,确定采样周期内第i个测试时间点的充电电流变化率ei和第i个测试时间点的充电电流变化率的相对变化率δei;

其中,ei为采样周期内第i个测试时间点的充电电流变化率,ei-1为采样周期内第i-1个测试时间点的充电电流变化率,δei为第i个测试时间点的充电电流变化率的相对变化率,δt为第i个测试时间点与第i-1个测试时间点之间的时间间隔,ii为采样周期内第i个测试时间点的充电电流,ii-1为采样周期内第i-1个测试时间点的充电电流;

s2.2、将第i个测试时间点的充电电流变化率ei进行规格化处理,得到第i个测试时间点的充电电流变化率的规格化处理值ei′;

其中,

式中,ti为环境温度,tlii为采样周期内第i个测试时间点的锂电池温度,tlis为采样周期内锂电池期望温度,tlii_min为采样周期内第i个测试时间点的锂电池最小测试温度,tlii_max为采样周期内第i个测试时间点的锂电池最大测试温度,ei_min为采样周期内第i个测试时间点的锂电池最小测试充电电流变化率,ei_max为采样周期内第i个测试时间点的锂电池最大测试充电电流变化率,ii为采样周期内第i个测试时间点的充电电流,ii_min为采样周期内第i个测试时间点的最小测试充电电流,ii_max为采样周期内第i个测试时间点的最大测试充电电流;

s2.3、用模糊控制模型输出第i个测试时间点的锂离子电池析锂系数φi,包括如下步骤:

分别将第i个测试时间点的充电电流变化率的规格化处理值ei′、第i个测试时间点的充电电流变化率的相对变化率δei以及第i个测试时间点的锂离子电池析锂系数φi转换为模糊论域中的量化等级;

将第i个测试时间点的充电电流变化率的规格化处理值ei′以及第i个测试时间点的充电电流变化率的相对变化率δei输入模糊控制模型,模糊控制模型输出为第i个测试时间点的锂离子电池析锂系数φi;

第i个测试时间点的充电电流变化率的规格化处理值ei′的变化范围为[-1,1],第i个测试时间点的充电电流变化率的相对变化率δei的变化范围为[-1,1],设定量化因子都为1;因此,第i个测试时间点的充电电流变化率的规格化处理值ei′以及第i个测试时间点的充电电流变化率的相对变化率δei的论域分别为[-1,1]和[-1,1],第i个测试时间点的锂离子电池析锂系数φi的论域为[-1,1];

为了保证控制的精度,使其在不同的环境下都能够很好地进行控制,根据反复试验,最终将第i个测试时间点的充电电流变化率的规格化处理值ei′的变化范围分为7个等级,模糊集为{nb,nm,ns,zo,ps,pm,pb},nb表示负大,nm表示负中等,ns表示负小,zo表示零,ps表示正小,pm表示正中等,pb表示正大;第i个测试时间点的充电电流变化率的相对变化率δei的变化范围分为7个等级,模糊集为{nb,nm,ns,zo,ps,pm,pb},nb表示负大,nm表示负中等,ns表示负小,zo表示零,ps表示正小,pm表示正中等,pb表示正大;第i个测试时间点的锂离子电池析锂系数φi分为7个等级,模糊集为{nb,nm,ns,zo,ps,pm,pb},nb表示负大,nm表示负中等,ns表示负小,zo表示零,ps表示正小,pm表示正中等,pb表示正大;隶属函数均选用三角形隶属函数,如图2、3、4所示。

模糊控制模型的控制规则选取经验为:

如果第i个测试时间点的充电电流变化率的规格化处理值ei′为正大或者正中等,第i个测试时间点的充电电流变化率的相对变化率δei为正大,则第i个测试时间点的锂离子电池析锂系数φi为正大;

如果第i个测试时间点的充电电流变化率的规格化处理值ei′为负大、负中等或者负小,第i个测试时间点的充电电流变化率的相对变化率δei为负大,则第i个测试时间点的锂离子电池析锂系数φi为负大;

具体的模糊控制规则如表1所示;

表1模糊控制规则

s2.4、分别将所述第i个测试时间点的锂离子电池析锂系数φi进行绝对值化处理,得到第i个测试时间点的锂离子电池析锂系数的绝对值|φi|后进行权重赋值调整,得到基于权重调整的锂离子电池析锂系数|φ|′;

式中,|φ|′为基于权重调整的锂离子电池析锂系数,|φi|为第i个测试时间点的锂离子电池析锂系数的绝对值,w|φ|i为采样周期内第i个测试时间点的锂离子电池析锂系数的绝对值的经验赋予权值,且满足条件n为采样周期内采样个数;

分别将所述第i个测试时间点的充电电流变化率的相对变化率δei进行绝对值化处理,得到所述第i个测试时间点的充电电流变化率的相对变化率的绝对值|δei|后进行权重赋值调整,得到基于权重调整的充电电流变化率的相对变化率|δe|′;

式中,|δe|′为基于权重调整的充电电流变化率的相对变化率,|δei|为第i个测试时间点的充电电流变化率的相对变化率的绝对值,w|δe|i为采样周期内第i个测试时间点的充电电流变化率的相对变化率的绝对值的经验赋予权值,且满足条件n为采样周期内采样个数;

s3、根据所述锂离子电池充电稳定性测试参数得到锂离子电池充电稳定性能指数,根据所述锂离子电池充电稳定性能指数对所述锂离子电池充电稳定性进行判定;

具体为:

s3.1、分别将所述第i个测试时间点的充电电流变化率的相对变化率δei进行绝对值化处理,得到所述第i个测试时间点的充电电流变化率的相对变化率的绝对值|δei|,然后进行权重赋值调整,得到基于权重调整的充电电流变化率的相对变化率;

其中,|δe|′为基于权重调整的充电电流变化率的相对变化率,|δei|为第i个测试时间点的充电电流变化率的相对变化率的绝对值,w|δe|i为采样周期内第i个测试时间点的充电电流变化率的相对变化率的绝对值的经验赋予权值,且满足条件n为采样周期内采样个数;

s3.2、用模糊控制模型输出锂离子电池充电稳定性能指数ψ,包括如下步骤:

分别将基于权重调整的锂离子电池析锂系数|φ|′、基于权重调整的充电电流变化率的相对变化率|δe|′以及锂离子电池充电稳定性能指数ψ转换为模糊论域中的量化等级;将基于权重调整的锂离子电池析锂系数|φ|′以及基于权重调整的充电电流变化率的相对变化率|δe|′输入模糊控制模型,模糊控制模型输出为锂离子电池充电稳定性能指数ψ。

基于权重调整的锂离子电池析锂系数|φ|′的变化范围为[0,1],基于权重调整的充电电流变化率的相对变化率|δe|′的变化范围为[0,1],设定量化因子都为1,因此,基于权重调整的锂离子电池析锂系数|φ|′以及基于权重调整的充电电流变化率的相对变化率|δe|′的论域分别为[0,1]和[0,1],锂离子电池充电稳定性能指数ψ的论域为[0,1];

为了保证控制的精度,使其在不同的环境下都能够很好地进行控制,根据反复试验,最终将基于权重调整的锂离子电池析锂系数|φ|′的变化范围分为5个等级,模糊集为{zo,ps,pm,pb,pvb},zo表示零,ps表示小,pm表示中等,pb表示大,pvb表示极大;基于权重调整的充电电流变化率的相对变化率|δe|′的变化范围分为5个等级,模糊集为{zo,ps,pm,pb,pvb},zo表示零,ps表示小,pm表示中等,pb表示大,pvb表示极大;输出的锂离子电池充电稳定性能指数ψ分为5个等级,模糊集为{s,sm,m,mb,b},s表示小,sm表示较小,m表示中等,mb表示较大,b表示大;隶属函数均选用三角形隶属函数,如图5、6、7所示。

模糊控制模型的控制规则选取经验为:

如果基于权重调整的锂离子电池析锂系数|φ|′为极大,基于权重调整的充电电流变化率的相对变化率|δe|′为极大或者大,则锂离子电池充电稳定性能指数ψ为大;

如果基于权重调整的锂离子电池析锂系数|φ|′为零或者小,基于权重调整的充电电流变化率的相对变化率|δe|′为零,则锂离子电池充电稳定性能指数ψ为小;

具体的模糊控制规则如表2所示;

表2模糊控制规则

步骤3.3、根据模糊控制输出的离子电池充电稳定性能指数ψ对锂离子电池充电稳定性进行判断:

当0.78≤ψ<1时,表示锂离子电池充电稳定性优秀;

当0.48≤ψ<0.78时,表示锂离子电池充电稳定性良好;

当0.35≤ψ<0.48时,表示锂离子电池充电稳定性及格;

当ψ<0.35时,表示锂离子电池充电稳定性差,需要停止对锂离子电池的继续循环充放电。

在另一种实施例中,在步骤2.4中,使n=3n,

此时,w|φ|i满足条件为

w|φ|1=w|φ|2=…=w|φ|n=1.2;

w|φ|n+1=w|φ|n+2=…=w|φ|2n=1;

w|φ|2n+1=w|φ|2n+2=…=w|φ|3n=0.8;

w|δe|i满足条件为

w|δe|1=w|δe|2=…=w|δe|n=1.5;

w|δe|n+1=w|δe|n+2=…=w|δe|2n=1;

w|δe|2n+1=w|δe|2n+2=…=w|δe|3n=0.5

本发明通过全面采集锂离子电池的测试数据并根据上述测试数据获得采样周期过程中的锂离子电池充电稳定性测试参数并建立基于模糊控制模型的用于纯电动车辆的锂离子电池充电稳定性测试模型,通过该模糊控制模型对所述锂离子电池充电稳定性进行判定,使驾驶员或者测试人员能够对锂离子电池充电稳定性做出合理的评估和预测,进而能够对电动汽车用锂离子电池进行保护进而更加合理的使用,延长使用寿命。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,它完全可以被适用于各种适合本发明的领域;同时任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准,在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和具体的实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1