电加热旋转窑温度检测装置的制作方法

文档序号:17742306发布日期:2019-05-24 20:16阅读:156来源:国知局
电加热旋转窑温度检测装置的制作方法

本发明属于温度控制技术领域,具体涉及一种电加热旋转窑温度检测装置及控制方法。



背景技术:

回转窑设备具有高效的传热能力和良好的混合性能,适用于多种工业原料的锻烧、挥发、离析等过程,在冶金、化工、水泥、纸装、环保等行业被广泛地应用。作为典型的复杂工业设备,回转窑控制方法是研究的热点和难点。由于回转窑具有多变量、非线性和强耦合等特性,回转窑自动控制的发展经历了一段相当缓慢的时期,直到智能控制理论开始融入复杂工业过程控制后,成功地解决了回转窑控制的难题并且频繁地应用于生产实践中,大量的理论成果也随之产生了。所以关于回转窑控制理论的研究大多以智能控制为主要研究方向,常见的有模糊、神经网络、专家系统和混合智能控制等。

回转窑的控制目标是根据生料入窑前预热分解的特点,合理确定回转窑系统的风、煤、料、窑速和系统各部温度、压力等参数,处理好回转窑和预热器、冷却器的相互关系,稳定整个系统的热工制度,维护窑皮,延长无事故、全效率的运转周期,实现优质、稳产和低耗生产,同时还要节省能耗和减少废气中的有害气体含量。其中温度是回转窑控制的关键。回转窑一般可分为三个温度带:预热带、煅烧带和保温带三个温度带有各自不同的作用。物料首先在预热带中预热,然后进入煅烧带。煅烧带是回转窑的主要部分,在这个温度带中进行氧化——还原反应。在煅烧带中没有充分反应的物料在保温带中进一步反应。煅烧带温度直接影响回转窑的性能和产品的质量,是一个重要的工艺参数,因此要求必须保证在工艺要求温度的一定偏差范围之内,并且尽量保持稳定。从控制效果分析就是要求煅烧带温度控制不存在稳态误差,或者稳态误差很小,抗干扰能力强,一旦受到干扰后,能很快地恢复到原来的状态。

然而,尽管已经有大量的理论成果,但在实际控制现场,环境条件十分复杂,因此,控制效果仍不十分理想,分析原因,回转窑煅烧温度的控制难点主要包括以下几点:

(1)回转窑内物理化学反应过程复杂、热量传递过程复杂,运行条件与工况变化大,如窑内衬、窑皮的厚薄、生料浆流量、水分、成分、燃料煤质等变化频繁,存在非线性、大惯性,难以建立精确的数学模型。

(2)关键工艺参数锻烧带温度难以测量,在窑前安装光纤比色测温仪测量煅烧带物料温度存在检测滞后,并且受粉尘烟雾干扰严重。

(3)由于回转窑体积较大,与周围环境接触面积大,很容易受到外界环境的干扰,存在较多不确定性因素,从而增大了准确控制锻烧温度的难度。

(4)到目前为止,大多数回转窑都是以常规的pid控制为主,但是回转窑工况多变,pid控制器往往不能取得满意的控制效果。一方面,实际使用过程中在特定位置的相关传感器的精度难以实时掌握老化程度,不利于精细加工;另一方面,实际应用中多是凭借熟练的操作人员,通过不断的修改控制器参数来获得较满意的结果。这样不仅要耗费许多时间,而且一旦环境、条件发生变化,则必须重新整定参数,否则将无法取得好的控制效果。



技术实现要素:

鉴于以上分析,本发明的主要目的在于提供一种克服上述现有技术中旋转窑电加热设备的自动温度控制存在的诸多缺陷,例如,温度控制效果不好,或者是控制系统结构庞大、成本过高以及控制流程和算法过于复杂,因此本发明提出了一种综合视频检测以及温度感应两者的旋转窑电加热设备的自动温度控制装置及控制方法,综合利用两者的优点,通过较为简单的温度控制系统架构以及控制方法,实现良好的自动温度控制效果。

本发明的目的是通过以下技术方案实现的。

本发明的技术方案涉及一种电加热旋转窑温度检测装置,该装置包括电源、处理器模块、温度感应模块、视频检测模块、模数转换模块,温度感应模块用于感应窑内的温度,其信号输出经过信号处理模块处理后,送至模数转换模块,再由处理器模块进行处理,而视频检测模块同时也对旋转窑进行检测,检测图像信号也送至处理器模块进行处理,处理器模块根据温度感应模块得到的窑内温度数据参照视频检测模块得到的窑内温度数据进行校正。

进一步地,温度感应模块利用放大器将3.3v的基准电压转换为恒定电流,当电流流过热电阻(rt)时就会产生电压降,再通过放大器将该弱压降信号放大,在将放大后的信号送入模数转换模块。

进一步地,视频检测模块包括视频采集处理模块,该模块包括形变机器学习模块、旋转窑窑头图像特征值求取模块,以及延伸图像函数建立及处理模块:

形变机器学习模块,用于在进行视频采集旋转窑窑头图像以获得窑筒体内的加热状况图像以前,首先建立图像中心到图像边缘方向平面形变校正公式,其中由于视频检测模块镜头不完全与成像平面平行,因此会有该不平行方向上的图像形变,即产生形变图像:

其中,(x,y)表示图像的初始位置,(xc,yc)是校正后的位置,r表示距成像中心的形变距离,k1和k2为所述从中心到边缘方向上的形变系数,||rarea(x,y)||为定积分参数的模值;

在视频检测模块正对着的旋转窑的窑头侧设置3个长度为r的1/8、1/16、1/32的标尺,三个标尺的一端设置在窑头侧位于窑筒体末端且分别沿窑头与窑筒体相切形成的圆面上,各个标尺的另一端在窑头侧位于窑筒体外部且分别沿窑头与窑筒体相切形成的圆面的半径方向向外延伸,三个标尺彼此间隔120°设置,通过视频检测模块采集到的图像中长度最小的标尺在形变后的图像,即图像形变中的长度与其实际长度的比值计为初值,以基于meanshift算法的方式对其余两个标尺在图像形变中的长度与其实际长度的比值分别进行迭代,迭代的结果分别作为k1和k2;

旋转窑窑头图像特征值求取模块,用于对图像进行压缩转换,生成彩色图像i,对应的黑白图像即单色图像为i’,单色图像灰度值g由彩色空间线性表示为:

g=αrir+αgig+αbib

其中αr≥0,αg≥0,αb≥0,αr+αg+αb=1

式中αr,αg,αb为可选参数,ir,ig,ib是图像i的颜色通道值;

构建如下函数v:

式中,x,y为像素点,gx,gy分别为x和y两点的单色灰度值,δx,y为图像i转化为色彩模型空间时的x,y像素点的欧式度量,利用gauss滑动平均对上述函数v进行单色图像降维处理,得到不同的单色图像:

建立函数l(x,y,σ,ρ)=ρ·i′(x,y)·g(x,y,σ)

式中,x,y为单色图像坐标值,σ为尺度因子,ρ为缩放因子,单色图像为i′(x,y);

延伸图像函数建立及处理模块,用于对形变图像向窑筒体外部延伸的延伸区域建立延伸图像函数fc(l(x,y,σ,ρ)),其中l(x,y,σ,ρ)被标准化为[0,1],延伸图像函数为:

其中,λ为延伸斜率,利用哈里斯矩阵计算每个像素点的自相关矩阵:

其中x,y为像素点坐标,n为图像大小,则延伸图像函数的特征响应函数为:

r(x,y,c)=deta(x,y,fc)-k(tracea(x,y,fc))2

其中,k为常数因子且其为k1和k2的算术平均值;

利用定积分累加得到:

进一步地,处理器模块根据温度感应模块得到的温度数据以视频检测模块得到的以窑头图像代表的窑内温度数据进行校正,根据校正结果进行温度控制,该处理器模块包括热量设置模块和温度模型建立模块:

热量设置模块,用于在旋转窑的起始温度与环境温度t1相同时,设旋转窑在t时刻的温度为t(t),热量为q(t),则有:

q(t)=q1(t)+q2(t)

式中,q1(t)——旋转窑自身产生的热量;

q2(t)——传输的热量;

式中,c为旋转窑的热容量,s为视频检测模块获得的窑头图像经过校正后与温度为起始温度时窑头图像的色差比值;

则旋转窑的热量表示为:

温度模型建立模块,用于对公式进行拉普拉斯变换,得到:

建立旋转窑的温度模型为:

令k=ar,t=cr,则有:

其中,k为放大系数,t为时间常数,τ为迟滞时间。

本发明的技术方案具有以下优点:

本发明通过创造性地提出视频检测和温度感应复合的温控方式,综合利用两者的优点,并且具体提出了温度感应模块的电路结构以及视频检测中图像处理的具体方式,基于对热成像的机器视觉信息进行了校正,给出了更加可靠和准确的温度控制的模型,经过matlab仿真试验以及现场的实际控制,经过验证,实现了良好的自动温度控制效果。

附图说明

附图1为本发明控制装置的结构原理图;

附图2为本发明温度感应模块的电路图。

具体实施方式

参见图1,为本发明电加热旋转窑温度检测装置的结构原理图,该装置包括电源、处理器模块、温度感应模块、视频检测模块、模数转换模块,温度感应模块用于感应窑内的温度,其信号输出经过信号处理模块处理后,送至模数转换模块,再由处理器模块进行处理,而视频检测模块同时也对旋转窑进行检测,检测图像信号也送至处理器模块进行处理,处理器模块根据温度感应模块得到的窑内温度数据参照视频检测模块得到的窑内温度数据进行校正。

优选地,如图2所示的温度感应模块的电路图,温度感应模块利用放大器将3.3v的基准电压转换为恒定电流,当电流流过热电阻(rt)时就会产生电压降,再通过放大器将该弱压降信号放大,在将放大后的信号送入模数转换模块。

优选地,视频检测模块包括视频采集处理模块,该模块包括形变机器学习模块、旋转窑窑头图像特征值求取模块,以及延伸图像函数建立及处理模块:

形变机器学习模块,用于在进行视频采集旋转窑窑头图像以获得窑筒体内的加热状况图像以前,首先建立图像中心到图像边缘方向平面形变校正公式,其中由于视频检测模块镜头不完全与成像平面平行,因此会有该不平行方向上的图像形变,即产生形变图像:

其中,(x,y)表示图像的初始位置,(xc,yc)是校正后的位置,r表示距成像中心的形变距离,k1和k2为所述从中心到边缘方向上的形变系数,||rarea(x,y)||为定积分参数的模值;

在视频检测模块正对着的旋转窑的窑头侧设置3个长度为r的1/8、1/16、1/32的标尺,三个标尺的一端设置在窑头侧位于窑筒体末端且分别沿窑头与窑筒体相切形成的圆面上,各个标尺的另一端在窑头侧位于窑筒体外部且分别沿窑头与窑筒体相切形成的圆面的半径方向向外延伸,三个标尺彼此间隔120°设置,通过视频检测模块采集到的图像中长度最小的标尺在形变后的图像,即图像形变中的长度与其实际长度的比值计为初值,以基于meanshift算法的方式对其余两个标尺在图像形变中的长度与其实际长度的比值分别进行迭代,迭代的结果分别作为k1和k2;

旋转窑窑头图像特征值求取模块,用于对图像进行压缩转换,生成彩色图像i,对应的黑白图像即单色图像为i’,单色图像灰度值g由彩色空间线性表示为:

g=αrir+αgig+αbib

其中αr≥0,αg≥0,αb≥0,αr+αg+αb=1

式中αr,αg,αb为可选参数,ir,ig,ib是图像i的颜色通道值;

构建如下函数v:

式中,x,y为像素点,gx,gy分别为x和y两点的单色灰度值,δx,y为图像i转化为色彩模型空间时的x,y像素点的欧式度量,利用gauss滑动平均对上述函数v进行单色图像降维处理,得到不同的单色图像:

建立函数l(x,y,σ,ρ)=ρ·i′(x,y)·g(x,y,σ)

式中,x,y为单色图像坐标值,σ为尺度因子,ρ为缩放因子,单色图像为i′(x,y);

延伸图像函数建立及处理模块,用于对形变图像向窑筒体外部延伸的延伸区域建立延伸图像函数fc(l(x,y,σ,ρ)),其中l(x,y,σ,ρ)被标准化为[0,1],延伸图像函数为:

其中,λ为延伸斜率,利用哈里斯矩阵计算每个像素点的自相关矩阵:

其中x,y为像素点坐标,n为图像大小,则延伸图像函数的特征响应函数为:

r(x,y,c)=deta(x,y,fc)-k(tracea(x,y,fc))2

其中,k为常数因子且其为k1和k2的算术平均值;

利用定积分累加得到:

优选地,处理器模块根据温度感应模块得到的温度数据以视频检测模块得到的以窑头图像代表的窑内温度数据进行校正,根据校正结果进行温度控制,该处理器模块包括热量设置模块和温度模型建立模块:

热量设置模块,用于在旋转窑的起始温度与环境温度t1相同时,设旋转窑在t时刻的温度为t(t),热量为q(t),则有:

q(t)=q1(t)+q2(t)

式中,q1(t)——旋转窑自身产生的热量;

q2(t)——传输的热量;

式中,c为旋转窑的热容量,s为视频检测模块获得的窑头图像经过校正后与温度为起始温度时窑头图像的色差比值;

则旋转窑的热量表示为:

温度模型建立模块,用于对公式进行拉普拉斯变换,得到:

建立旋转窑的温度模型为:

令k=ar,t=cr,则有:

其中,k为放大系数,t为时间常数,τ为迟滞时间。

建立模型后,处理器根据该模型实现旋转窑的温度自动控制。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1