磁隧道效应型磁头及其制造方法

文档序号:6784455阅读:203来源:国知局
专利名称:磁隧道效应型磁头及其制造方法
技术领域
本发明涉及用于硬盘驱动器、磁带驱动器等之中依靠磁隧道效应作用从磁记录介质读取信号的磁隧道效应型磁头及其制造方法。
背景技术
一对磁性层之间夹有薄绝缘层的层叠结构之中的磁隧道效应是众所周知的,当在一对磁性层之间施加预定电压时,所谓隧道电流的电导系数随两个磁性层之间的相对磁化角而改变。即,一对磁性层之间夹有薄绝缘层的层叠结构对流过绝缘层的隧道电流呈现磁电阻效应。
对于磁隧道效应,可以从理论上计算出当受磁化时由于磁性层的极化性而产生的一对磁性层之间的磁电阻系数或比率,特别地,当一对磁性层由Fe构成时磁电阻系数或比率大约为40%。
因此,作为磁电阻效应元件,由一对磁性层之间夹有薄绝缘层的层叠结构构成的磁通道结元件(此后称为‘TMR元件’)在该领域引起注意。特别地,在磁头领域,注意力集中在使用TMR元件作为磁敏感元件从磁记录介质上检测磁信号的所谓磁隧道效应型磁头(此后称为‘TMR磁头’)。
上述TMR磁头是屏蔽TMR磁头,例如其中TMR元件夹在一对磁性屏蔽层之间并以间隙层间隔。通过将两个磁性屏蔽层作为电极,可以减小一对屏蔽层和TMR元件之间的间隙。
即,常规屏蔽MR头包括将成为下屏蔽层的软磁性层、在软磁性层上形成的将成为下间隙层的非磁性非导电层、在非磁性非导电层上形成的MR(磁电阻)元件、分别在MR元件的两端形成的一对导电层、将成为上间隙层的一对导电层在MR元件上形成的非磁性非导电层、在非磁性非导电层上形成的将成为上屏蔽层的软磁性层。
在屏蔽MR磁头中,由于对于更高的记录密度需要减小间隙,于是将成为间隙层的非磁性非导电层变地更薄。更具体地,由于在MR元件的两端形成一对导电层的工艺步骤,很难在MR元件上形成厚度均匀的上非磁性非导电层。倘若一对磁性层和MR元件之间的距离即所谓间隙长度减小以重放磁记录介质中记录的高密度信号时,很难保证一对磁屏蔽层和MR元件之间绝缘。
相反地,在TMR磁头中,一对磁屏蔽层作为电极,因此间隙层可以变薄从而一对磁屏蔽层和TMR元件之间的距离可以减小。因而,在TMR磁头中,间隙可以制造地很窄而使得磁记录介质具有高记录密度。
在常规屏蔽TMR磁头中,中间夹有TMR元件并以间隙层间隔的一对磁屏蔽层作为磁防护罩以防止磁记录介质发出的不需要被读取的信号磁场进入TMR元件。为此,一对磁屏蔽层由具有导电性的软磁性层如NiFe和FeAlSi等材料构成。
对于屏蔽TMR磁头中一对磁屏蔽层的磁屏蔽功能,将成为一对磁屏蔽层的软磁性层厚度为大约几微米,而将作为TMR元件中的磁隧道结层的、夹在一对磁性层之间的如氧化铝绝缘层的厚度为大约1纳米。
在此屏蔽TMR磁头中,由于用于一对磁屏蔽层的软磁性层非常厚,软磁性层表面非常粗糙。因为这个原因,在屏蔽TMR磁头的制造过程中,软磁性层形成之后需要采用所谓化学和机械抛光(CMP)法进行抛光,因此将在其上面形成磁隧道结层的作为下屏蔽层的软磁性层需要光滑。
然而,一般经过化学和机械抛光后,软磁性层的表面粗糙度Ra(中心线平均高度)大约为0.3纳米。因此,在屏蔽TMR磁头中,由于将成为TMR元件的磁隧道结中的绝缘层厚度为1纳米,当位于作为下屏蔽层的软磁性层的表面粗糙度Ra(中心线平均高度)为0.3纳米时,磁隧道结层中的绝缘层在一对磁性层之间破裂从而互相接触,因而在此情况下导致电短路。
在此情况下,由于流经TMR磁头中TMR元件的绝缘层的隧道电流减小,因此TMR元件的磁电阻系数也减小,从而导致重放输出相当小。

发明内容
因此本发明的一个目的在于通过提供磁隧道效应型磁头及其制造方法以克服现有技术的上述缺点,其中作为磁隧道结元件的磁隧道结层在非常光滑的表面上形成,从而质量和可靠性都有相当大提高。
上述目的通过根据本发明提供的磁隧道效应型磁头实现,该磁头包含作为下屏蔽层的第一软磁性导电层、在第一软磁性导电层上形成的作为下间隙层的金属氧化物层和第一非磁性导电层、在第一非磁性导电层上形成的作为磁隧道结元件的磁隧道结层、在磁隧道结层上形成的作为上间隙层的第二非磁性导电层以及在第二非磁性导电层上形成的作为上屏蔽层的第二软磁性导电层。下间隙层中的金属氧化物层至少在磁隧道结层的下面形成。
在上述磁隧道效应型磁头中,由于在第一软磁性导电层上形成的作为下屏蔽层的金属氧化物层具有良好的表面粗糙度,从而作为磁隧道结元件的磁隧道结层在光滑度很高的金属氧化物层上形成,因此磁隧道结元件具有良好的磁电阻系数从而可以提供稳定的重放输出。
根据本发明,能够实现上述目的的磁隧道效应型磁头的制造方法,包括如下步骤形成作为下屏蔽层的第一软磁性导电层、形成位于第一软磁性层上的作为下间隙层的金属氧化物层和第一非磁性导电层、形成位于第一非磁性导电层上的作为磁隧道结元件的磁隧道结层、形成位于磁隧道结层上的作为上间隙层的第二非磁性导电层以及形成位于第二非磁性导电层上的作为上屏蔽层的第二软磁性导电层。下间隙层中的金属氧化物层至少在隧道结层下面形成。
在上述制造磁隧道结效应型磁头的方法中,由于在第一软磁性层上形成的作为下屏蔽层的金属氧化物层具有良好表面粗糙度,并且作为磁隧道结元件的磁隧道结层在光滑度很高的金属氧化物层上形成,从而可以防止磁隧道结元件不至于太低并且容易制造生产率提高的高质量磁隧道效应型磁头。
附图简述本发明的这些目标及其他目标、特征和优点将通过对下面本发明优选实施例结合附图的详细描述而得到显示。


图1是一个硬盘驱动器实例的示意透视图;图2是如图1所示硬盘驱动器中磁头滑块的示意透视图;图3是本发明中磁头的主要部分沿与记录介质相对的表面方向的端视图;图4是磁头滑块制造过程中在衬底上形成的第一软磁性层的示意平面图;图5是沿图4中X1-X1’线的示意横截面图;图6是磁头滑块制造过程中在第一软磁性层上形成的第一光刻胶图案的示意平面图;图7是沿图6中X2-X2’线的示意横截面图;图8是磁头滑块制造过程中在衬底上形成的下屏蔽层的示意平面图;图9是沿图8中X3-X3’线的示意横截面图;图10是磁头滑块制造过程中在衬底上形成第一非磁性非导电层并进行抛光直到露出下屏蔽层的表面时的示意平面图;图11是沿图11中X4-X4’线的示意横截面图;图12是磁头滑块制造过程中在平整过的衬底上形成的非磁性非导电层的示意平面图;图13是沿图12中X5-X5’线的示意横截面图;图14是磁头滑块制造过程中在衬底上形成的第一非磁性导电层的示意平面图;图15是沿图14中X6-X6’线的示意横截面图;图16是磁头滑块制造过程中在第一非磁性导电层上形成的磁隧道结层的示意平面层;图17是沿图16中X7-X7’线的示意横截面图;图18是磁头滑块制造过程中在磁隧道结层上形成的第二光刻胶图案的示意平面图;图19是图18中X8-X8’线的示意横截面图;图20是磁头滑块制造过程中在下屏蔽层上形成的下非磁性导电层和磁隧道结层的示意平面图;图21是沿图20中X9-X9’线的示意横截面图;图22是磁头滑块制造过程中在衬底上形成第二非磁性非导电层并进行抛光直到露出磁隧道结层时的示意平面图;图23是沿图22中X10-X10’线的示意横截面图;图24是磁头滑块制造过程中在磁隧道结层一部分附近形成的作为TMR元件中磁传感器的凹进部位的示意平面图;图25是沿图24中X11-X11’线的示意横截面图;图26是磁头滑块制造过程中在TMR元件的磁传感器正上面形成的第三光刻胶图案的示意平面图;图27是沿图26中X12-X12’线的示意横截面图;图28是磁头滑块制造过程中在TMR元件的磁传感器上面形成的具有接触孔的第三非磁性非导电层的示意平面图;图29是沿图28中X13-X13’线的示意横截面图;图30是磁头滑块制造过程中在第三非磁性非导电层上形成的第四光刻胶图案的示意平面图;图31是沿图30中X14-X14’线的示意横截面图;图32是磁头滑块制造过程中在第三非磁性导电层上形成的上非磁性导电层和上屏蔽层的示意平面图;图33是沿图32中X15-X15’线的示意横截面图;图34是磁头滑块制造过程中在衬底上形成第四非磁性非导电层并进行抛光直到露出上屏蔽层表面时的示意平面图;图35是沿图34中X16-X16’线的示意横截面图;图36是磁头滑块制造过程中在平整后的衬底上形成第五非磁性非导电层的示意平面图;图37是沿图36中X17-X17’线的示意横截面图;
图38是磁头滑块制造过程中在第五非磁性非导电层上形成上磁芯层的示意平面图;图39是沿图38中X18-X18’线的示意横截面图;图40是磁头滑块制造过程中在衬底上形成第六非磁性非导电层并进行抛光直到露出上磁芯层表面时的示意平面图;图41是沿图40中X19-X19’线的示意横截面图;图42是磁头滑块制造过程中在平整后的衬底上形成的薄膜线圈、后磁轭和导线的示意平面图;图43是磁头滑块制造过程中在导线端部形成的外部连接端子;图44是磁头滑块制造过程中在衬底上形成保护层并进行抛光直到露出外部连接端子的表面时的示意横截面图;图45是磁头滑块制造过程中将衬底切割成条而形成多个条形磁头块的示意平面图;图46是磁头滑块制造过程中将磁头块分割形成单个磁头片而产生多个磁头滑块的示意透视图;图47所示为表面粗糙度和磁电阻系数的关系图;图48所示为抛光层厚度与表面粗糙度Ra的关系图;图49所示为层厚度与表面粗糙度Ra的关系图;图50为一个磁轭型TMR磁头实例的示意透视图;具体实施方式
需要注意,对于下面描述中引用的图,为了易于理解而将磁头的特征部位放大,因此磁头各部件之间的尺寸比例并不都与本发明的实际磁头相同。
如图1所示,以示意透视图的形式示意说明本发明硬盘驱动器的一个实施例。硬盘驱动器主体一般用标号1表示。通常,硬盘驱动器主体1装在一个外壳(没有画出)中。如图所示,硬盘驱动器1包含安装有由轴马达(没画出)驱动旋转的磁盘3的底盘2以及端部具有磁头滑块的磁头传动装置5,其中磁头滑块4上安装有从磁盘3写入/读出信息信号的磁头。
在安装磁盘3和磁头传动机构5等底盘2的面的背面,硬盘驱动器还具有在信息写入或读出时处理信息信号的信号处理电路、包含对磁头进行伺服控制的伺服控制电路的控制电路6、控制整个系统的系统控制器以及其他控制电路。
磁盘3是所谓的硬盘,并且包含具有中心孔的一般为盘状的衬底以及在衬底上依次逐层形成的磁性层和保护层等。在该硬盘驱动器中,多个磁盘3在其中心孔处安装在轴马达的转动轴7上并用钳位器8固定。当由控制电路控制的主轴马达转动时,磁盘3沿图1中箭头A所示方向以预定速度旋转。
磁头传动装置5包含能够相对锭子9进行枢轴转动的支撑臂10、安装在支撑臂10一端的音圈马达11、固定在支撑臂10另一端的具有预定弹性的悬架12以及安装在悬架12的自由端的磁头滑块。
音圈马达11具有安装在支撑臂10上的线圈13以及安装在底盘2上与线圈13相对的磁铁14。当通电时线圈13产生的磁场与放置在线圈13对立面的磁铁14之间的磁力将使得支撑臂10沿图1中箭头B所示方向即磁盘3的径向相对锭子9旋转预定角度。
进一步,悬架12具有安装在其自由端的磁头滑块4。它在支撑磁头滑块4的同时弹性地驱动磁头滑块4向磁盘3靠近。
正如图1和2中所示,磁头滑块4一般做成矩形形状并安装在为每个磁盘3提供的每个支撑臂10中悬架12的自由端而与磁盘3的信号记录层相对。同样,磁头滑块有一个表面4a与磁盘3相对(该表面此后称为‘介质相对面’),通过磁盘3旋转时形成的气流在该面上形成一个空气支撑面(ABS)产生悬浮力。
更具体地,由于安装在悬架12自由端的磁头滑块4利用磁盘3旋转时产生的气流悬浮在磁盘3上方预定距离处,安装在磁头滑块4上的磁头20从磁盘3的信号记录层读出或写入信号。需要说明,磁头滑块4的ABS表面的形状不限于特定一种而是可以采用任意形状。
磁头一般用标号20表示。如图1所示,磁头20放置在磁头滑块4的尾部,其中磁头滑块4与沿图1中箭头A所示方向旋转的磁盘3相对悬浮而进行运动。
例如如图2和3所示,包含作为读头的磁隧道效应型磁头21(此后称为‘TMR磁头’)和作为写头的感应型薄膜头22之结合体的磁头20是合成型薄膜磁头。需要说明,图3为从介质相对面4a方向的示意端视图。
在磁头20中,组成元件如读/写头等由薄膜形成技术如电镀、溅射等制造而成。因而,可以很方便容易地减小尺寸磁道和磁隙从而可以进行高分辨率读/写操作。
更具体地,磁头20采用薄膜层叠工艺制造,这将在后面进一步介绍。在磁头20中,作为读头依靠磁隧道效应从磁盘3中读取信号的TMR磁头21在硬非磁性材料如碳化钛氧化铝(Al2O3-TiC)构成的衬底23上形成,而感应型薄膜头22作为写头通过电磁感应作用向磁盘3中写入信号。在磁头20中,构成读和写头的组成元件从介质相对面4a上露出并且一般互相紧靠在一起。
下面将进一步介绍TMR磁头21和感应型薄膜头22。首先,上述TMR磁头21是所谓屏蔽TMR磁头,该屏蔽TMR磁头包含夹一对上和下磁屏蔽层之间得屏蔽间隙层构成的磁隧道结元件(此后称为‘TMR元件’)。更具体地,TMR磁头21包含在衬底23上形成的下屏蔽层24、在下屏蔽层24上形成的非磁性非导电层25、在下非磁性非导电层25上形成的下非磁性导电层26、在非磁性导电层26上形成的TMR元件27、在TMR元件上形成的上非磁性导电层28和在上非磁性导电层28上形成的上屏蔽层29。非磁性非导电材料30如Al2O3填充在从衬底23到上屏蔽层29的各个层之间的空隙内。
TMR元件27依靠所谓磁隧道效应从磁盘3中检测信号的磁传感器。磁隧道效应就是根据磁盘3发出的磁场所引起得磁化方向的不同,流经TMR元件27的隧道电流的电导系数将改变。磁隧道效应被用于检测隧道电流产生的电压的变化从而读取记录在磁盘3中的信号。
更具体地,将只能在预定的固定方向可磁化的固定磁化强度层31和在随外部磁场变化的方向上可磁化的自由磁化层32层叠在一起形成TMR元件中的磁隧道结层34,在层30和31之间放有隧道阻挡层33。
在磁隧道结层34中,例如固定磁化层31具有三层结构,其中3纳米厚的NiFe层、10纳米厚的IrMn层和4纳米厚的CoFe层被逐层层叠在作为下屏蔽层的、形成在下非磁性导电层26上的3nm厚的Ta层上。上述IrMn层是与CoFe层交换耦合的抗铁磁性层,因此CoFe层可以在预定方向上被磁化的。
同样,例如作为绝缘层的隧道阻挡层33是在固定磁化层31中的CoFe层上形成的1.3nm厚的氧化铝(Al2O3)层。
自由磁化层32为两层结构,例如其中在隧道阻挡层33上形成的4nm厚的CoFe层和在CoFe层上形成的5nm厚的NiFe层。进一步,在自由磁化层32上形成如5nm厚的Ta层作为上层。上述CoFe层用于增加旋转极化性。NiFe层具有小的矫顽力从而可以在随外部磁场变化的方向上被磁化。这些NiFe层和CoFe层一起形成TMR元件27的磁传感器27a。
采用该螺旋阀层叠结构制造磁隧道结层34,TMR元件27可以具有大的磁电阻系数或比率。注意,构成磁隧道结层34的各层的厚度和材料不仅限于上面所述而是可以根据使用TMR元件27的目的不同分别选择适当材料和合适厚度。
对TMR元件27从自由磁化层32到固定磁化层31的中间进行蚀刻而不蚀刻磁隧道结层34的将作为TMR元件27中磁传感器27a的部分,因此相对于磁盘3得轨道宽度Tw1受到限制。注意,在这个实施例中,轨道宽度Tw1为大约5微米,但是根据系统需要等可以设置为合适数值。
在TMR磁头21中,下屏蔽层24和下非磁性导电层26作为TMR元件27中固定磁化层31的电极,而上屏蔽层29和上非磁性导电层28作为自由磁化层32的电极,因此隧道电流将流经隧道阻挡层33进入TMR元件27。
更具体地,上、下非磁性导电层28和26由非磁性导电材料如铜构成。在下非磁性导电层26中,TMR元件27中的固定磁化层31与下屏蔽层24导电连接。另一方面,上非磁性导电层28有凸起28a与TMR元件27中作为磁传感器27a的部分邻接,因此TMR元件27的自由磁化层32与上屏蔽层29通过凸起28a互相导电连接。
下非磁性导电层26和上非磁性导电层28连同非磁性非导电层25及放置在TMR元件27与上、下屏蔽层29和24之间的间隔中的非磁性非导电材料30一起形成屏蔽间隙层,将TMR元件与上下屏蔽层29和24之间互相磁隔离。
非磁性非导电层25由位于TMR元件27下面的金属氧化物层如氧化铝(Al2O3)或氧化硅(SiO2)构成。在此后将进一步介绍的TMR磁头21的制造过程中,采用CMP(化学和机械抛光)法在非磁性非导电层25表面进行抛光使得中心线平均高度Ra小于0.2纳米以保证TMR元件27下面的表面非常光滑。注意,在该实施例中金属氧化物层为氧化铝(Al2O3)但并不限于氧化铝。例如可以是氧化硅,只要保证表面粗糙度Ra(中心线平均高度)小于0.2纳米。
例如,上、下屏蔽层29和24都是由CoZrNbTa构成厚度为2.3微米的非晶态层叠结构。上、下屏蔽层29和24将通过上、下非磁性导电层28和26为TMR元件27提供电流。
上、下屏蔽层29和24足够宽以磁屏蔽TMR元件27,从而形成一对磁屏蔽层将TMR元件27夹在位于其中间的上、下非磁性导电层28和26之间,从而防止从磁盘3上发出的不需要被读取的信号磁场部分进入TMR元件27。即,在TMR元件27中,不被TMR元件27读取的信号磁场被引入上、下屏蔽层26和24中,而只有需要被读取的信号磁场进入TMR元件27。因此,在TMR磁头21中,TMR元件27具有增强的频率特性和读取分辨率。
在TMR磁头21中,下和上屏蔽层24和29与TMR元件27之间的距离为所谓间隙长度。
在TMR磁头21中,有导线35a和35b与上、下屏蔽层29和24分别导电连接,如图2所示。外部连接端子36a和36b位于导线35a和35b的端部以从磁头滑块4的尾端面上露出。
导线35a和35b用导电材料如铜(Cu)制造成比较薄。同样,外部连接端子36a和36b由导电材料如金(Au)构成,当同样由金(Cu)制造的导体与通过引线接合法等方法安装在悬架12上的导线端子导电连接时,外部连接端子36a和36b可以与外部电路接通。
另一方面,如图2和3所示,感应型薄膜头22包含用与上屏蔽层29相同的材料制造的下磁芯层29、在下磁芯层29上形成的两者之间存在磁间隙37的上磁芯层38、与上磁芯层38结合在一起的后磁轭39以及在与介质相对面4a隔开的另一端与下磁芯层29一起形成的后间隙。在上、下磁芯层39和29之间也用非磁性非导电材料30如Al2O3填充。
在感应型薄膜头22中,在下磁芯层29和后磁轭39之间有薄膜线圈40沿后间隙缠绕,并且导线41a和41b与薄膜线圈40的内圆周末端和外圆周末端导电连接。外部连接端子42a和42b位于导线41a和41b末端而从磁头滑块4的尾端露出。
上、下磁芯层38和29以及后磁轭39一起构成闭合磁路的磁芯。上磁芯层38用导电软磁材料如非晶态层叠结构层制造并具有预定宽度。上磁芯层38与下磁芯层29相对放置并且中间有非磁性非导电材料30以形成轨道宽度为Tw2的磁间隙37。注意,根据系统需要等轨道宽度Tw2可以为适当数值。
需要说明,在感应型薄膜头22中,可以面对宽度与轨道宽度Tw2相对应的上磁芯层38在下磁芯层29中形成凹面,从而使磁间隙37处产生的边缘效应场变薄,由此,即使微弱的磁信号也能够高精确度地记录到磁盘3中。
薄膜线圈40由导电材料如铜螺旋状形成。
类似于上述导线35,导线41a和41b用导电材料如铜制造的比较薄。
同样,类似于上述外部连接端子36(36a和36b),外部连接端子42a和42b由导电材料如金制造而成,当同样由金(Cu)制造的导体与通过引线接合法等类似方法安装在悬架12上的导线端子导电连接时,外部端子36可以与外部电路接通。
在磁头20中,磁头滑块4在其尾端面除了露出外部连接端子36和42的部分上面形成由非磁性非导电材料如氧化铝制造的保护以保护薄膜线圈40和导线35及41。
当具有上述结构的磁头20中的TMR磁头从磁盘3中读出信号时,在TMR元件27的固定磁化层31和自由磁化层32之间施加预定电压。此时,流经TMR元件27的隧道阻挡层33中的隧道电流的电导系数相应地随磁盘3发出的信号磁场变化。因此,在TMR磁头21中,流过TMR元件27中的隧道电流的电压值改变。通过检测TMR元件电压值的变化,可以从磁盘3中读取信号。
另一方面,当用感应型薄膜头22将信号写入磁盘3中时,根据待写入的信号为薄膜线圈40提供电流。此时,在感应型薄膜头22中,薄膜线圈40发出的磁场将为磁芯提供磁通量从而引起磁间隙37产生边缘效应场。因此,利用上述感应型薄膜头22,可以将边缘效应场施加到磁盘3上从而将信号写入磁盘3中。
根据本发明,在磁头20中,作为读头的TMR磁头21是磁隧道效应型磁头,在下屏蔽层24上形成的作为非磁性非导电层25的金属氧化物层位于TMR元件27下面。
更具体地,TMR磁头21中作为非磁性非导电层25的金属氧化物层在形成之后用CMP法抛光,从而形成粗糙度中心线平均高度Ra为0.2纳米的非常光滑的表面。作为TMR元件27的磁隧道结层34在这个非常光滑的金属氧化物层上面形成。
因此,利用该TMR元件21可以防止磁隧道结层34中位于固定和自由磁化层31及32之间的、制造地非常薄的隧道阻挡层33破裂,而造成层31和32互相接触从而导致它们之间电短路。因而,在TMR磁头21中,能够防止TMR元件27的磁电阻系数减小,从而产生稳定的重放输出。
下面,介绍用于安装上述磁头20的磁头滑块4的制造方法。
需要说明,在下面介绍所引用的附图中,为了易于理解,磁头的特征部分尺寸如图1到3一样被放大,因此不是所有组成元件之间的尺寸比例都和本发明实际磁头中的尺寸比例相同。同样,在下面的介绍中,将详细介绍磁头20中组成元件的材料、尺寸和层厚度等。然而,本发明并不仅限于下面将介绍的实施例。例如,下面将通过举例方式介绍与实际使用的硬盘驱动器具有类似结构的所谓屏蔽TMR磁头,但它也可以是使用软磁材料作为磁路的一部分的所谓磁轭型磁头。即,本发明并不仅限于该实例。
如图4和5所示是磁头滑块的制造过程中在衬底上形成的第一软磁性层的平面图。图4为第一磁性层的示意平面图,图5为沿图4中的X1-X1’线的横截面图。首先,在磁头20的制造过程中,例如准备直径为大约4英寸的盘状衬底50,如图4和5所示。衬底50的表面经过镜面精加工处理。然后,通过溅射等类似方法在衬底上形成将作为下屏蔽层24的第一软磁性层51。
衬底50最终将成为上述磁头20的衬底23。在通过薄膜制造工艺将磁头20的各个组成元件逐一在衬底50的主面上形成之后,将衬底50切割为单个磁头片,由此,可以集中制造每个上面安装有磁头20的多个磁头滑块4。
注意,衬底50最好由氧化铝-碳化钛(Al2O3-TiC)等类似材料制造。另一方面,例如第一软磁性导电层51由2.3微米厚的CoZrNbTa非晶态层叠结构层构成。
随后,是磁头滑块制造过程中在第一软磁性导电层51上形成第一光刻胶图案,如图6和7所示。图6为第一光刻胶图案的示意平面图,图7为沿图6中X2-X2’线的示意横截面图。在第一软磁性导电层51上施加光刻胶然后固化处理形成光刻胶层。采用光刻法术将光刻胶层形成预定图案,从而形成第一光刻胶图案52,如图6和7所示。更具体地,为了使光刻胶层具有预定图案,第一光刻胶层相应地显露成所需图案。然后,光刻胶层的暴露部分在展开液中被溶解而消除,随后进行后烘干。因此,形成具有预定形式的光刻胶图案。
下一步,为磁头滑块制造过程中在衬底50上形成下屏蔽层24,如图8和9所示。图8为在衬底50上形成下屏蔽层24的示意平面图,图9为沿图8中X3-X3’线的示意横截面图。使用第一光刻胶图案52作为掩模,采用干蚀刻法对第一软磁性导电层51进行蚀刻,然后将第一光刻胶图案52从第一软磁性导电层51上去除。因此,形成具有预定形状的多个下屏蔽层24,如图8和9所示。注意,形成的下屏蔽层24应该充分大,从而能够对随后工艺中制造的TMR元件27进行磁屏蔽。
随后是磁头滑块的制造过程中,在衬底50上形成第一非磁性非导电层53并进行抛光直到露出下屏蔽层24的表面,如图10和11所示。图10为在衬底50上形成的第一非磁性非导电层53的示意平面图,图11为沿图10中X4-X4’线的示意横截面图。如图所示,第一非磁性非导电层53在衬底50上用溅射方法由例如氧化铝形成,然后对层53进行抛光直到露出在衬底50上形成的下屏蔽层24。因此,第一非磁性非导电层53嵌在衬底50和下屏蔽层24之间形成平坦表面,其中下屏蔽层24在衬底50上形成。
下一步,是磁头滑块的制造过程中在平整过的衬底50上形成非磁性非导电层25,如图12和13所示。图12为在平整过的衬底50上形成的非磁性非导电层25的示意平面图,图13为沿图12中X5-X5’线的示意横截面图。对平整过的衬底50施加光刻胶并处理形成光刻胶层。采用光刻法术将光刻胶层制成预定形状。制成的光刻胶层用于形成作为非磁性非导电层25的由如氧化铝层(Al2O3)构成的金属氧化物层。然后,去除光刻胶层以及在光刻胶层上形成的金属氧化物层。因此,如图12和13所示,在位于TMR元件27(随后介绍)下面的下屏蔽层24上形成非磁性非导电层25并具有预定形状。
进一步,对已形成的金属氧化物层用CMP(化学和机械抛光)法进行抛光。因此,金属氧化物层经过抛光或光滑处理后粗糙度中心线平均高度Ra为0.2纳米。注意,在这个实施例中,金属氧化物为氧化铝(Al2O3)但并不仅限于氧化铝。例如,可以为氧化硅,只要它能保证表面粗糙度中心线平均高度Ra不小于0.2纳米。
然后,为磁头滑块的制造过程中在衬底50上形成第一非磁性非导电层54,如图14和15所示。图14为第一非磁性非导电层54的示意平面图,图15为沿图14中X6-X6’的示意横截面图。如图所示,作为下非磁性导电层26的第一非磁性部导电层54在衬底50上用溅射等类似方法形成。第一非磁性导电层54最好用铜或类似材料制造。层54根据磁记录介质中记录的信号的频率等相应具有适当厚度。例如厚度为大约100纳米。
随后,为磁头滑块的制造过程中在第一非磁性导电层54上形成磁隧道结层55,如图16和17所示。图16为在第一非磁性导电层54上形成的磁隧道结层55的示意平面图,图17为沿图16中X7-X7’线的示意横截面图。如图所示,将成为上述磁隧道结层34的磁隧道结层55用溅射或类似方法在第一非磁性导电层54上形成。
正如将看到的,通过溅射等类似方法形成的磁隧道结层55是由作为下层的3纳米厚的Ta层、作为固定磁化层31的3纳米厚的NiFe层、作为隧道阻挡层33的10纳米厚的IrMn层和4纳米厚的CoFe层及1.3纳米厚的氧化铝层、作为自由磁化层32的4纳米厚的CoFe和5纳米厚的NiFe以及作为上层的大约5纳米厚的Ta层逐层层叠在一起而形成层叠结构。
注意,一起组成上述磁隧道结层55的各层的厚度和材料并不仅限于上面所述,可以根据使用TMR元件27的目的相应地选择合适材料和厚度。
随后,为磁头滑块的制造过程中在磁隧道结层55上形成第二光刻胶图案56,如图18和19所示。图18为在磁隧道结层55上形成的第二光刻胶图案56的示意平面图,图19为沿图18中X8-X8’线的示意横截面图。对磁隧道结层55施加光刻胶并处理形成光刻胶层。然后,用光刻法术将光刻胶层制成预定形状,从而形成如图所示第二光刻胶图案56。
然后,为磁头滑块的制造过程中在下屏蔽层24上形成下非磁性导电层26和磁隧道结层34,如图20和21所示。图20为在下屏蔽层24上形成的下非磁性导电层26和磁隧道结层34的示意平面图,图21为沿图20中X9-X9’线的示意横截面图。如图所示,用第二光刻胶图案56作为掩膜对磁隧道结层34和第一非磁性导电层54进行蚀刻,然后去除第二光刻胶图案56。因此,在下屏蔽层24上形成具有预定形状的下非磁性导电层26和磁性结层34。
在作为上述非磁性非导电层25的金属氧化物层的正上方形成磁隧道结层34。即,金属氧化物在形成以后通过CMP法进行抛光而具有的表面粗糙度Ra(中心线平均高度)小于0.2纳米,磁隧道结层34在具有极高光滑度的金属氧化物正上方形成。
因此,利用该磁隧道结层34,可以避免固定和自由磁化层31和32之间非常薄的隧道阻挡层33破裂导致相互之间导电接触而引起TMR元件27的磁电阻系数减小。
下一步,为磁头滑块的制造过程中在衬底50上形成第二非磁性非导电层57和磁隧道结层34并且进行抛光直到露出磁隧道结层34的表面,如图22和23所示。图22为在衬底50上形成的第二非磁性非导电层57和磁隧道结层34的示意平面图,图23为沿图22中X10-X10’线的示意横截面图。如图所示,采用溅射等方法在衬底50上形成如用Al2O3构成的第二非磁性非导电层57,然后对第二非磁性非导电层57进行抛光直到露出在衬底上形成的多个磁隧道结层34。因此,第二非磁性非导电层57镶嵌在衬底50及下非磁性导电层26和磁性结层34之间,在衬底50上没有形成下非磁性导电层26和磁隧道结层34的部位形成平整表面。
然后,为磁头滑块的制造过程中围绕磁隧道结层34中作为TMR元件的磁传感器的部位形成凹槽,如图24和25所示。图24为图22中所示部位C放大后的示意平面图,图25是沿图24中X11-X11’线的示意横截面图。如图所示,对平整过的衬底50施加光刻胶并处理形成光刻胶层。采用光刻法术将光刻胶层形成预定形状。然后,将光刻胶层形作为掩膜采用离子蚀刻对磁隧道结层34从自由磁化层32到固定磁化层31的中间进行蚀刻,层34中作为TMR元件27中磁传感器27a的部位不进行蚀刻。然后,从衬底50上去除光刻胶层。因此,TMR元件相对于磁盘3的轨道宽度Tw1如图24和25所示。注意,在本实施例中轨道宽度Tw1为大约5微米,但并不仅限于此数值。根据系统要求等轨道宽度Tw1可以为合适数值。
下一步,为磁头滑块的制造过程中在TMR元件27中磁传感器27a正上面形成第三光刻胶图案58,如图26和27所示。图26为图22中所示部位C放大后的示意平面图,图27是沿图26中X12-X12’线的示意横截面图。对衬底50施加光刻胶并处理形成光刻胶层。采用光刻法术将光刻胶层形成预定形状,从而如图26和27所示在TMR元件27的磁传感器27a的正上面形成第三光刻胶图案58。
随后,为磁头滑块的制造过程中在TMR元件27中磁传感器27a的正上方形成具有接触孔的第三非磁性部导电59,如图28和29所示。图28为图22中所示部位C放大后的示意平面图,图29为沿图28中X13-X13’线的示意横截面图。第三光刻胶图案58用于采用溅射等类似方法形成如由Al2O3构成的非磁性非导电层59,然后将第三光刻胶图案58连同第三光刻胶图案58上面的第三非磁性非导电层59去除,由此形成非磁性非导电层59,它具有在TMR元件27中磁传感器27a正上方开口的接触孔60。
然后,为磁头滑块的制造过程中在第三非磁性非导电层59上形成第四光刻胶图案,如图30和31所示。图30为图22中所示部位C放大后的示意平面图,图31为沿图30中X14-X14’线的示意横截面图。如图所示,对第三非磁性非导电层59施加光刻胶图案并处理形成光刻胶层。采用光刻法术将光刻胶层形成预定形状,从而如图31和32所示形成具有预定形状开口61a的第四光刻胶图案61。
下一步,为磁头滑块的制造过程中在第三非磁性非导电层59上形成上非磁性导电层28和上屏蔽层29,如图32和33所示。图32为图22中所示部位C放大后的示意平面图,图33为沿图32中X15-X15’线的示意横截面图。如图所示,第四光刻胶图案61用于采用溅射等类似方法形成将成为上非磁性导电层28的第二非磁性导电层62。此时,第二非磁性导电层62嵌入第三非磁性非导电层59中的接触孔60。因此,形成与TMR元件27中磁传感器27a邻接在一起的上非磁性非导电层28中的凸起28a。第二非磁性导电层62最好由Cu等类似材料制造。注意,第二非磁性导电层62可以根据记录在磁介质中信号的频率等相应地设置为适当厚度。
然后,采用溅射等类似方法在第二非磁性导电层62上形成上屏蔽层29和作为下磁芯层29的第二软磁性导电层63。第二软磁性导电层63由如2.3微米的CoZrNbTa构成的非晶态层叠结构制造而成。注意,第二软磁性层63可以不采用非晶态层叠结构,也可以采用除溅射法之外的其他方法如电镀或蒸镀等制造。
随后,将第四光刻胶图案61连同在其上面形成的第二非磁性导电层62和软磁性层一起去除。因此,在第三非磁性非导电层59上形成上非磁性导电层28和上屏蔽层29。
下一步,为磁头滑块的制造过程中在衬底50上形成第四非磁性非导电层64并进行抛光直到露出上屏蔽层29的表面,如图34和35所示。图34为图22中所示部位C放大后的示意平面图,图35为沿图34中X16-X16’线的示意横截面图。采用溅射等类似方法在衬底50上形成如由Al2O3构成的第四非磁性非导电层64,然后进行抛光直到显露出在衬底50上形成的多个上屏蔽层29。因此,第四非磁性非导电层64嵌在衬底50和上屏蔽层29之间形成平整平面,其中上屏蔽层29不形成在衬底50上。
然后,为磁头滑块的制造过程中在平整过的衬底50上形成第五非磁性非导电层65,如图36和37所示。图36为图22中所示部位C放大后的示意平面图,图37为沿图36中X17-X17’线的示意横截面图。如图所示,采用溅射等类似方法在平整过的衬底50上形成将成为磁间隙37的第五非磁性非导电层65。第五非磁性非导电层65最好由氧化铝等类似材料制造。
随后,为磁头滑块的制造过程中在第五非磁性非导电层65上形成上磁芯层38,如图38和39所示。图38为图22中所示部位C放大后的示意平面图,图39为沿图38中X18-X18’线的示意横截面图。如图所示,对第五非磁性非导电层65施加光刻胶并处理形成光刻胶层。采用光刻法术将光刻胶层制成预定形状。制成的光刻胶层用于采用溅射等类似方法形成如由不定形层叠层构成的第三软磁性层66,然后将光刻胶层及其上面形成的第三软磁性层66去除。因此,在第五非磁性非导电层65上形成具有预定宽度的上磁芯层38。同样,上屏蔽层29相对上磁芯层38放置并且第五非磁性非导电层65放置在它们之间形成宽度为轨道宽度Tw2的磁间隙层37。注意,轨道宽度Tw2可以根据系统要求相应地具有合适宽度。
下一步,为磁头滑块的制造过程中在衬底50上形成第六非磁性非导电层67并且抛光直到显露出上磁芯层的表面,如图40和41所示。图40为图22中所示部位C放大后的示意平面图,图41为沿图40中X19-X19’线的示意横截面图。如由氧化铝构成的第六非磁性非导电层通过溅射等类似方法在衬底50上形成,然后抛光直到露出在衬底50上形成的多个上磁芯层38的表面。因此,第六非磁性非导电层67镶嵌在衬底50和上磁芯层38之间形成平整的表面,其中上磁芯层38不在衬底50上形成。
然后,薄膜线圈40、后磁轭和导线35及41在衬底50上形成,如图42所示。
利用溅射法围绕下磁芯层29和后磁轭39邻接的部位成螺旋状形成薄膜线圈40,然后形成非磁性非导电层以覆盖在薄膜线圈40上。薄膜线圈40由导电材料如铜构成。
后磁轭39与上磁芯层38结合在一起形成并且一般在螺旋状的薄膜线圈40的中间部位与下磁芯层相邻接。因此,上磁芯层38、下磁芯层29和后磁轭39一起形成感应型薄膜头22。
对于导线35和41,具有分别与上下屏蔽层24和29导电连接的导线35a和35b以及分别与薄膜线圈40的内外圆周末端导电连接的导线41a和41b。更具体地,采用光刻法术形成预定形状的光刻胶层。使用光刻胶层作为掩膜进行蚀刻形成上和下屏蔽层24和29及与薄膜线圈40内外圆周末端的邻接部位露出的终端凹槽。例如,通过电镀法利用硫酸铜溶液形成厚度为大约6微米的铜导电层,然后将光刻胶层及光刻胶层上形成的导电层一起去除。因此,镶嵌在终端凹槽中的下和上屏蔽层24和29、薄膜线圈40的内外圆周末端以及导电层互相导电连接。然后,具有预定形状的铜导电层采用硫酸铜溶液电镀而成,从而与镶嵌在终端凹槽中的导电层结合在一起。由此,形成导电35a、35b、41a和41b,如图42所示。注意,导电层可以通过除电镀以外的其他方法,只要不对其他层构成不利影响。
下一步,分别在导线35和41的端部形成外部连接端子36和42,如图43所示。对于外部连接端子36和42,具有分别与导线35a和35b导电连接的外部连接端子36a和36b,以及分别与导线41a和41b导电连接的外部连接端子42a和42b。更具体地,采用光刻法术形成预定形状的光刻胶层。形成的光刻胶层用于采用如溅射、电镀等类似方法形成铜导电层。因此,如图43所示形成外部导线端子36a、36b、42a和42b。
然后,如图44所示通过溅射等类似方法在衬底50上形成如氧化铝保护层68,并进行抛光直到显露出在衬底50上形成的外部连接端子36和42。更具体地,例如通过溅射方法形成厚度为大约4微米的氧化铝保护层68。注意,保护层68可以用除氧化铝以外的其他材料构成,只要该材料是非磁性非导电的。从环境危害性和抗磨损性考虑,保护层68最好采用氧化铝制造。同样,为了形成保护层68,例如可以采用蒸镀工艺而不是溅射工艺。对外部连接端子36和42进行抛光直到露出其表面。在该抛光过程中,例如采用粒度尺寸为大约2微米的钻石抛光粉对外部连接端子36和42进行抛光直到露出其表面。然后,为了对表面进行镜面精加工,采用硅抛光颗粒对表面进行抛光。因此,获得了在衬底50上形成的最终成为磁头20的多个磁头元件69。
随后,如图45所示,其上具有多个磁头元件69的衬底50被切割成条而形成条状磁头块70,其中将成为磁头20的磁头元件69并排放置。
下一步,在平台上对磁头块70进行抛光以调整磁头元件69的高度,然后使其凹进并且成锥形渐尖以形成磁头滑块4的空气支撑表面(ABS),然后分成单个磁头片。因此形成了每个都具有一个磁头20的多个磁头滑块4。
为了使用制造的上述磁头滑块4,将其安装在悬架12的自由端,并且悬架12上的导线端子通过引线接合法等类似方法用铜导体与外部连接端子36导电连接。因此,磁头20可以与外部电路接通。如图1所示磁头滑块4安装在悬架12上而被安装进硬盘驱动器。
如上所述,本发明的方法可以制造具有良好表面粗糙度的磁性金属层,在提供下屏蔽层24的第一软磁性导电层51上形成非磁性非导电层25,然后在具有良好表面粗糙度的金属氧化物上面形成作为TMR元件27的磁隧道结层34。因此,根据本发明,可以防止TMR元件27的磁电阻系数降低,从而可以制造高产量高质量的TMR磁头。
在本实施例中,用于非磁性非导电层25的金属氧化物层由氧化铝制造。除了氧化铝层,作为实验在TMR元件27下面分别形成铝层、铜层和铂层,然后对经过化学和机械抛光(CMP)的层的粗糙度(下面用‘中心线平均高度Ra’表示)与TMR元件27的磁电阻系数之间的关系进行测量。测量结果如图47所示。注意,TMR元件的结面积为100×100平方微米。
如图47所示,在采用Al层的情况下,当表面粗糙度Ra大于0.5纳米时TMR元件没有磁电阻系数。考虑原因在于,在作为TMR元件的磁隧道结层中,一对磁性层之间的绝缘层破裂从而使它们互相接触而导致电短路。从测量结果可知,在此情况下,铝层的表面粗糙度限于大约0.3纳米并且TMR元件的磁电阻系数比采用其他元素时小。
图47也表明,当使用氧化铝层时,与那些采用铜和铂的层相比,其表面粗糙度可以非常小,因此磁电阻系数相应地很高。
因此,可以理解,用作非磁性非导电层25的氧化铝层金属氧化物层对于在金属氧化物层上形成的TMR元件27具有更高的磁电阻系数而言是非常有效。
同样,当采用氧化铝作为金属氧化物层用于非磁性非导电层25时,观察抛光层厚度与表面粗糙度之间的关系。测量结果如图48所示。在本实施例中,机械和化学抛光采用的抛光粉为Fujimi公司生产的GRANZOX3700。
由图48可以看出,当用CMP法将金属氧化物层抛光到厚度大于10纳米时,表面粗糙度Ra饱和。即,金属氧化物层的厚度应大于10纳米。另一方面,金属氧化物层的厚度上限依赖于实际制造的屏蔽TMR磁头中的读间隙长度,大约为读间隙长度的一半,更具体地,最大为80纳米。
同样,对形成之后经过抛光的各氧化铝层、铝层、铜层和铂层的厚度与各层之间表面粗糙度Ra之间的关系进行测量。测量结果如图49所示。
从图49可以看出,在采用铝层的情况下,随着层的厚度增加,表面粗糙度Ra急剧增加。因此可知,与由其他元素构成的层相比其表面粗糙度Ra很差。
另一方面,由图49可看出,氧化铝层具有稳定的不依赖于层厚度的表面粗糙度Ra。即,氧化铝层具有极好的表面粗糙度Ra。与由其他的铜、铂等金属氧化物构成的层相比,氧化铝的表面粗糙度Ra可以制造的非常小。甚至当氧化铝层厚度为大约80纳米而达到上述金属氧化物层的上限时,其仍然具有良好的表面粗糙度。
注意,从TMR磁头21的介质相对面4a方向看,金属氧化层的宽度最好在从大约上述屏蔽层24宽度的一半到大约比轨道宽度Tw1大三倍的宽度范围。
在上述介绍中,就所谓屏蔽TMR磁头对本发明进行了介绍,该TMR磁头具有夹在一对磁屏蔽层之间并以间隙层间隔的TMR元件。然而,如图50所示,本发明也可以是所谓磁轭型TMR磁头,其中,TMR元件102夹在一对磁屏蔽层100和101之间并以间隙层隔开,从而将从磁记录介质发出的磁通量引入TMR元件102以获得高耐气候性能和较低的噪音。即,TMR元件102不暴露在外面。同样,在这个实施例中,外部连接端子103和104分别连接到一对磁屏蔽层100和101上,这些磁屏蔽层100和101作为电极使得在一对磁屏蔽层100和101及TMR元件102之间可以有很窄的间隙。
注意,在上述介绍中,对复合型薄膜磁头进行了介绍,其中该磁头包含作为读头的TMR磁头21和作为写头的感应型薄膜磁头22,但是本发明当然可应用于仅由TMR磁头构成的磁头。
同样应注意,本发明的TMR磁头不限于安装在硬盘驱动器中,而是可以广泛应用于磁记录领域。例如,本发明的TMR磁头同样可以应用于用柔性磁盘作为记录介质的磁盘驱动器和用磁带作为记录介质的磁头驱动器等等。
权利要求
1.一种磁隧道效应型磁头,包含作为下屏蔽层的第一软磁性导电层;在第一软磁性层上形成的、作为下间隙层的金属氧化物层和第一非磁性导电层;在第一非磁性导电层上形成的、作为磁隧道结元件的磁隧道结层;在磁隧道结层上形成的、作为上间隙层的第二非磁性导电层;以及在第二非磁性导电层上形成的、作为上屏蔽层的第二软磁性导电层;上述下间隙层的金属氧化物层至少置于磁隧道结层的下面。
2.如权利要求1中所述的磁隧道效应型磁头,其中,金属氧化物层含有氧化铝。
3.如权利要求1中所述的磁隧道效应型磁头,其中,金属氧化物层厚度大于10纳米且小于间隙长度的一半。
4.如权利要求1中所述的磁隧道效应型磁头,其中,其中金属氧化物层宽度大于下屏蔽层的一半且小于轨道宽度的三倍。
5.如权利要求1中所述的磁隧道效应型磁头,其中,该磁头是磁隧道结元件不从介质相对面露出的磁轭型磁隧道效应型磁头。
6.一种制造磁隧道效应型磁头的方法,包括下列步骤在衬底上形成作为下磁性层的第一软磁性导电层;在第一软磁性导电层上形成作为下间隙层的金属氧化物层和第一非磁性导电层;在第一非磁性导电层上形成作为磁隧道结元件的磁隧道结层;在磁隧道结层上形成作为上间隙层的第二非磁性导电层;以及在第二非磁性导电层上形成作为上屏蔽层的第二软磁性导电层;下间隙层中的金属氧化物层至少形成在磁隧道结层的下面。
7.如权利要求6中所述的方法,其中金属氧化物含有氧化铝。
8.如权利要求6中所述的方法,其中金属氧化物层厚度大于10纳米且小于间隙长度的一半。
9.如权利要求6中所述的方法,其中金属氧化物层宽度大于下屏蔽层的一半且小于轨道宽度的三倍。
10.如权利要求6中所述的方法,其中上述磁头是磁隧道结元件不从介质相对面露出的磁轭型磁隧道效应型磁头。
全文摘要
一种磁隧道效应型磁头,包含:作为下屏蔽层24的第一软磁性导电层、在第一软磁性导电层上形成的作为下间隙层26的金属氧化物层25和第一非磁性导电层、在第一非磁性导电层上形成的作为磁隧道结元件27的磁隧道结层34、在磁隧道结层34上形成的作为上间隙层28的第二非磁性导电层以及在第二非磁性导电层上形成的作为上屏蔽层29的第二软磁性导电层。下间隙层26中的金属氧化物层25至少在磁隧道结层27的下面形成。
文档编号G11B5/39GK1337673SQ01121758
公开日2002年2月27日 申请日期2001年7月6日 优先权日2000年7月6日
发明者中盐荣治, 尾上精二, 菅原淳一, 片仓亨 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1