用于燃料电池的电化学电极的制作方法

文档序号:6847636阅读:219来源:国知局
专利名称:用于燃料电池的电化学电极的制作方法
背景1、本发明的领域本发明涉及电极及其制造工艺,更具体地说,本发明涉及用于电化学电池的电化学空气阴极(air cathode)及其制造工艺。
2、背景信息燃料电池装置是由燃料源例如氢气、天然气、醇类或金属板,与氧化剂例如氧气或空气直接发电。由于这一工艺并非是将燃料燃烧产生热量,因此其效率的热力学极限大大高于通常的发电过程。
金属/空气燃料电池(例如参见S.Faris的美国专利5,250,370,在此全部作为参考文献)和电池组,是通过将电池中反应性金属阳极和空气阴极在适宜的电解质中进行电化学偶联而发电的。在该领域中大家已经熟知,空气阴极一般是类似片状的构件,其两个相对的表面分别暴露于大气中和电池的含水电解液中,在电池工作时,空气中的氧气离解,而阳极金属被氧化,从而为连接阳极和阴极的外部电路提供可利用的电流。空气阴极必须是可渗透空气而基本上疏水的(使得含水的电解液不能通过它渗漏,但又必须包括可电通过的元件),同时必须包括一个用于外部电路的导电部件。例如,可参见Bhaskara M.L.Rao的美国专利5,053,375。
如美国专利4,906,535所述,在当前的商用金属-空气电化学电池中,空气阴极通常由含有细粉状疏水聚合物的活性炭(添加或未添加促进离解的催化剂)构成,并采用金属筛网作为导电元件;所用的阳极金属包括铁、锌、镁、铝、铝合金等。
美国专利4,129,633公开了一种制备电极的方法,采用干粉涂布在移动的织网上(干法)。其缺点是,一般要使用比较复杂的设备,且干粉往往很难均匀分布。
Soloman等人的美国专利4,339,325描述了气体扩散电极及其制备方法。该专利公开和要求保护的是一种孔度(opening)大约在0.1~40μm的多孔、粘结、未烧结、单轴取向的细纤维化聚四氟乙烯背衬层。这种衬层可以作为构成电极的背衬层。但是,对相对苛刻的应用条件下,这种背衬层一般不能提供理想的结构和强度。
美国专利4,615,954公开了一种氧气阴极,其包括一种导电的防湿层,该防湿层是一种基本上由炭黑和主要来自四氟乙烯的疏水聚合粘合剂微粒构成的、致密的、固结的和经高温烧结处理的混合物,其中含有至少一种不等轴的导电增强材料。美国专利4,877,694公开了一种电极,该电极包括一种含有疏水聚合物的多孔供气层,以及一种由含有催化剂的炭粒与亲水性卤化聚合物粘合剂致密掺混物(blend)构成的多孔活性电解质层;在所述活性层中,这种致密掺混物与被疏水聚合物粘合的颗粒物质结合在一起。美国专利4,927,514公开了一种多层电极,它具有增强的层间粘合剂,这种电极包括一种充气、多孔、含聚合物的支撑层,一种含催化剂和聚合物的活性层,以及一种由热塑性疏水聚合物构成的充气、多孔的中间粘合层。这三个专利都要依赖比较复杂的多段工艺来制备电极,其工艺特点是,形成干燥和烧结的疏水支撑层,然后进一步在干燥的支撑层上沉积活性层,其后再干燥和烧结。
美国专利5,312,701公开了一种比较复杂的间歇式或单程式制造工艺,以制备用于金属-空气电池组和燃料电池的气体扩散电极。
美国专利4,885,217公开了一种制备空气阴极的织网(web)连续涂布工艺,该空气阴极包括一种由两个炭层构成的薄片状层合物,其相对的表面分别暴露于所接触的电解液和空气中,且可任选包括疏水微孔膜。这种结构采用炭毡骨架添加其他组分。尽管对某些应用场合来说,这种工艺成本效益较好,但是这种空气阴极的使用电流密度一般只有50~150mA/cm2。
因而,需要一种电化学电池的电极,以及制造这种电极的工艺,它能提供改进的结构特性,能采用成本效益好的连续工艺进行制造,而且使用电流密度可超过200mA/cm2。
本发明概述本发明的实施方案可提供一种用于电化学电池的电极,这种电极包括一种集电极,该集电极中分布着许多内部连接孔,在这些孔内有炭粒和聚合材料构成的混合物;所述聚合材料在这些孔内就地(in-situ)烧结而成。
一方面,在本发明的改进方案中,本发明的电极还包括与集电极叠加的疏水微孔膜;另外,集电极是由金属海绵(metallic foam)制成的。
另一方面,本发明还提供了一种制备用于电化学电池的电极的方法;该方法包括如下步骤提供一种具有许多内部连接孔的集电极;将炭粒/聚合物的掺混物固定在基板(substrate)的孔内;以及在集电极孔内就地烧结炭粒/聚合物掺混物的聚合物粘合剂。
结合所附示意图,阅读下列本发明各种情况的详细说明,将更容易明白本发明的上述和其他的优点。
附图简要说明

图1是包含本发明电极的电路示意图;图2是图1所示电极一种实施方案的放大的立面剖面图;图3是类似于图2的、本发明电极另一种实施方案的示意图;图4是制造图1~3所示电极时所采用步骤的方框图;以及图5是采用本发明电化学电极的电池与采用常规电化学电极的电池之性能比较图。
优选实施方案的详细说明下面参照附图,详细说明图示的本发明实施方案。为了清楚地说明,附图所示的类似部件采用相同的编号表示;在改进的实施方案中类似的部件也用类似的编号表示。
现在参照图1,电路10包括一个金属/空气燃料电池组12,该燃料电池组12含有一个本发明电化学电极(即阴极)14,例如此处所示和所述的是空气阴极。燃料电池组12包括壳体16、阴极14、金属燃料(阳极)18和电解液20,电解液可以为氢氧化钾和/或氯化钠的水溶液等。金属燃料(阳极)18用导体(导线)22连接到负荷体(即灯泡)24上,然后再通过包括开关28的导体26连接到空气阴极14上。接通开关28,通过电解液20,在空气阴极14和金属燃料(阳极)18之间就形成电路,点亮灯泡24。一旦金属燃料(阳极)耗尽,就可以插入新的金属燃料(阳极),继续发电,点亮灯泡。
金属燃料(阳极)18可以由适宜的阳极材料构成,例如锌、铝、镁、合金等。金属燃料(阳极)18与阴极14间隔一定距离且平行放置,其间距足以为电解液20形成间隙。金属/空气燃料电池组12的一般配置基本上与常规多单元电池组的一个单元类似,例如美国专利4,626,482所述,在此,该专利作为本发明的参考文献。
参照图2,其示出了一种实施方案的电化学电极(即阴极)14的结构。阴极14包括一种多孔金属海绵基板30,其内部连接孔形成网络,在其表面34上沉积有一层或多层的活性(也称为反应性)层32。疏水微孔层(也称为气体扩散层)36沉积在金属海绵基板30的另一侧38上。如图所示,作为本实施方案的改进,在表面38和微孔层36之间可以叠加一个任选的反应层33,其与层32结构类似但横向方向上更薄,。
金属海绵基板30可以起到阴极14集电极的作用,它由适宜的金属材料构成,如镍、不锈钢等等。例如,适宜的基板材料可以为俄亥俄州RETEC多孔金属公司生产的海绵镍。但是,预期适宜的非金属多孔导电材料也可以用作基板30。微孔层36可以是塑料材料,例如氟聚合物(即特氟隆Teflon或聚四氟乙烯)或者其他高温塑料,优选其玻璃化温度高于一般为250℃的阴极烧结温度。这样高的玻璃化温度有利于使微孔层36在烧结之前涂覆或以其他方式置于基板30上,如下面更详细讨论的那样。
现在参照图3,电化学电极(即阴极)114示出了本发明的另一实施方案。阴极114包括具有内、外表面34和38的金属海绵基板30。基板30置于分别位于表面34和38之上的内部反应层32和基本相同的外部反应层40之间。与图2所述阴极14不同,阴极114采用的是一个不叠加疏水微孔层(图2中的层36)的外部反应层40。本发明这一实施方案可以用于燃料电池和电池组技术中。
如图2和3所示,本发明的阴极14和114,优选包括一种颗粒微观结构,该微观结构中,通过烧结金属海绵基板30三维内连孔中的聚合物粘合剂颗粒42,提供了较强的粘结,而使之得以增强。在本发明优选的实施方案中,三维多孔金属海绵基板30的厚度t约在0.3~5mm的范围内,孔大小约在200~600μm范围内,孔隙率大约在50~98%。粘合剂颗粒42充满在三维多孔基板30内,固体负荷范围在40~1200mg/cm3。在优选的实施方案中,固体负荷范围是400~1200mg/cm3。基板30(包括聚合物粘合剂颗粒42)可采用任何适当的已知方法加以挤压,例如下面将更详细讨论的常规辊压。然后可以采用任何适当的方法涂覆层32和36(图2)或者层32和40(图3),例如常规的涂布或其他辊压步骤。但是,在优选的实施方案中,层32、40和/或33都是采用与粘合剂42同样的材料制成的,其好处是能够在单一的辊压步骤中,同时将粘合剂42充满基板30,并在其上形成层32、40和/或33。
反应(或气体扩散)层32和40,以及粘合剂颗粒42,优选由相同材料制成。尤其是,这些材料可以包括疏水聚合物粘合剂,并以液体形式即分散液、悬浊液或浆液应用于基板30的表面34和/或38上。适宜的疏水聚合物粘合剂的例子包括聚四氟乙烯(PTFE)和氟化乙丙共聚物(FEP)。其他有用的材料包括卤烃,例如聚氟氯乙烯。也可以利用这些树脂的混合物。
在优选实施方案中,疏水聚合物粘合剂与颗粒炭联合使用。这种联合是通过将颗粒炭与细粉状干燥疏水聚合物的分散液混合或者与干粉状聚合物直接掺混实现的。优选聚合物的含量是掺混物的20~60wt%。这样的范围一般可以提供足够聚合物,使全部炭粒基本粘结,而不会过分减少气体孔隙率或降低电化学性能。
另外,优选采用本领域熟练人员熟知的任何方法、采用任何数量的已知的用于炭的催化剂,使炭粒被催化。适宜催化剂的例子包括二氧化锰(MnO2)、硝酸银、铂、氧化钴及其混合物。
现在参照图4,其表示本发明的制造步骤。步骤50包括将所需的粘合剂颗粒42的组分混合(如上所述,其组分优选与活性层32、40、和/或33的组分基本相同)。混合后,如52所示,进行浆液涂覆、挤压或浸渍多孔金属海绵基板30,可以采用本领域熟练人员所熟知的任何一种连续涂布和/或层压方法,例如但不限于辊压、浸渍、挤压贴胶、平板辊涂或辊上刮涂等。如本领域熟练人员所熟悉的,可以根据最终电极产品厚度和理想的固体负荷来选择这样的涂布/浸渍方法。在液体(即浆液)中所应用的液体介质,可以是水或沸点较低的有机溶剂,如异丙醇或混合醇。如步骤53所示,在着手其后制造步骤之前,该浆液要进行干燥。
在粘合剂42组分不同于反应层所需组分的情况下,可以利用一种或多种反应层32、40和/或33的所需组分重复步骤50和52。在这方面,其后的各层可以通过叠加或其他层压方法施加在先前涂布的材料上。例如在干燥后,如果需要,可以在浸渍过的三维多孔金属海绵上层压或涂布适当材料如上述特氟隆(PTFE)片材,形成如步骤54所述的微孔或气体扩散层36。这一层压或涂布过程,可以按照步骤52,利用以上讨论的任何涂布方法以及常规层压和压制方法完成。
如步骤56所示,将基板30、粘合剂42和其上配置各层的整个组合,通过加热到200~350℃、优选加热到250~350℃烧结0.5~4h,制得本发明最终的电极14、114。优选实施方案中电极的最终厚度t约在0.3~5mm的范围内。
尽管在此所示和说明的主要是电化学电池的阴极,但是本领域熟练人员应该认识到,本发明基本上可以用任何电化学电池的电极,即阴极和阳极来实施,只要不违背本发明的精神和范围即可。
下面的实施例旨在说明本发明的某些情况。应该理解这些例子不应被认为是限制本发明的范围。
实施例1本发明一种空气阴极是以下述方法制造的。
一种导电的三维多孔金属海绵(Retec多孔金属有限公司)被引入类似于美国专利4,885,217(此处作为本发明的参考文献)所公开的连续涂布机进行涂布、浸渍和干燥操作。浸渍用的混合物包括45g BlackPearls 2000(从CABOT公司购得)在300g去离子水中形成的分散液(固含量15%),向其中加入158g 4%的CoTMPP(四(4-甲氧基苯基)卟吩钴),然后加入36g特氟隆T-30(60%)固体。所得浸渍过钴/聚合物粘合剂的三维多孔金属海绵,通过保持在200~350℃的烘箱,然后基材(web)与微孔特氟隆片在单位长度(in)辊隙压力100磅、温度250~350℃下一起通过层压辊,形成适于高功率应用的电化学阴极。该电极的使用电流密度可以高达500mA/cm2,改进的机械强度能够使电极在这样高功率下延长运行时间。
对比例为了对比,采用美国专利4,129,633公开的干粉法制造的具有相同结构和化学组成的另一电极。该电极的性能以电压和电流密度关系图来表明,并且与上述实施例1中本发明电极进行比较。结果发现,利用干粉法制造的电极,性能不如本发明方法制造的电极,如图5所示。干粉法制造的电极性能相对较差,很明显是由于其聚合物分布不如本发明方法均匀。
图5表明湿式涂布法和干粉法制备的电极(阴极)各自的性能。湿式涂布法制造的阴极的电池性能是,1V放电时电流密度为500mA/cm2,而干粉法制造的类似阴极的电池性能是,1V放电时电流密度大约只有200mA/cm2。这些结果表明,在制造高性能空气阴极时,本发明湿式涂布工艺优于干粉工艺。
已经发现与本发明电极有关的许多好处,例如较高的集电效率,因此有较高的使用电流密度;以及金属海绵与组分材料之间粘结的改善使电极结构更耐用,因此延长了操作寿命。
尤其是,与现有技术的电极相比,本发明电极由于改善了机械强度,因此提供了稳定的高功率电极性能。按照本发明生产的电极,已经现显示出比利用常规网状支撑结构/基板的电极优越的结果。非常有利的是,本发明的三维多孔结构提供了内部连接的孔道网络,因此有较高的表面积用以物理粘结浸透在其中的烧结的炭/聚合材料42。本发明优越的结果,主要源于基板30的三维多孔金属海绵结构与烧结聚合物粘合剂42的结合,改善了机械强度。本发明电极与碳纤维增强的电极相比也具有优越的性能,因为碳纤维易于从金属集电极部分脱层。另外,除了提供耐用的结构整体性,与只有不相互连接的凹槽或空隙的常规平板或网状集电极相比,三维多孔金属海绵基板30也易于提供单位体积更大的表面积而改善了集电效率。
已经发现,这样改善的机械强度特别有利于金属-空气燃料电池和电池组的应用。例如,对于使用机械充电金属燃料电池(阴极)的电动车辆而言,其对机械磨损和撕裂的要求可能特别苛刻。在这方面,气体电极通常为电化学电池暴露的外壁,因此必须基本上避免金属-空气电合成电池中或燃料电池系统中电解质的泄漏。
此外,与现有技术相比,本发明展示出在采用碱性电解质的系统中催化剂保持力的改善,以及防渗水、防腐蚀的改善。而且,本发明也可以将各种组分的材料在热处理(烧结)工艺之前以连续工艺涂覆到基板上,而这很有利。因此,本发明也为生产改进的电化学电池用阴极提供了一种新型的、成本效益好的工艺。
上面所述主要解释本发明。尽管本发明已经根据实施方案进行了展示和说明,但是本领域熟练人员应该理解,只要不违背本发明的精神和范围,上述和其他的各种变化,以及形式和细节上的省略或添加都是可以的。
在对本发明描述之后,我们要求保护的权利如下
权利要求
1.一种用于电化学电池的电极,所述电极包括分布着许多内部连接孔的集电极;在所述孔内分布着炭粒和聚合材料的混合物;所述聚合材料在所述孔内就地烧结。
2.按照权利要求1的电极,其中,进一步包括一种叠加在所述集电极部件上的疏水微孔膜。
3.如权利要求1的电极,其中,所述集电极包括金属。
4.如权利要求3的电极,其中,所述集电层包括金属海绵。
5.如权利要求1的电极,其中,所述集电极孔隙率大约为50~98%。
6.如权利要求1的电极,其中,所述炭粒包括被催化的炭。
7.如权利要求6的电极,其中,所述被催化的炭含有选自二氧化锰(MnO2)、硝酸银、铂、氧化钴及其混合物的催化剂。
8.如权利要求1的电极,其中,所述聚合材料是非纤维性的。
9.如权利要求1的电极,其中,所述炭粒是非纤维性的。
10.如权利要求1的电极,其中,进一步包括用于燃料电池的空气阴极。
11.如权利要求1的电极,其中,进一步包括一种沉积在所述基板表面上的活性层。
12.如权利要求11的电极,其中,所述活性层是由所述炭/聚合物混合物制成。
13.如权利要求11的电极,其中,进一步包括一种沉积在所述基板多个表面上的活性层。
14.如权利要求13的电极,其中,进一步包括一种沉积在所述基板相对侧面上的活性层。
15.如权利要求1的电极,其中,所述基板包括集电极。
16.一种用于电化学电池的阴极,其中,该阴极包括具有许多内部连接孔的集电极组件;浸入所述孔中的、包括被催化的炭粒和非纤维性聚合材料的混合物;所述聚合材料是在所述孔内就地烧结的;以及叠加在所述集电层上的疏水微孔膜。
17.一种制备用于电化学电池的电极的方法,所述方法包括如下步骤提供一种具有许多内部连接孔的集电极;在基板的孔内沉积炭/聚合物的混合物;在集电极的孔内,就地烧结炭/聚合物混合物的聚合物粘合剂。
18.如权利要求17的方法,其中,所述沉积步骤(b)基本上以连续工艺实施。
19.如权利要求17的方法,其中,进一步包括步骤(d)在实施所述沉积步骤(b)之前以液体形式制备炭/聚合物的混合物。
20.如权利要求19的方法,其中,所述制备步骤(d)包括以浆液或分散液形式制备炭/聚合物的混合物。
21.如权利要求17的方法,其中,进一步包括步骤(d)在集电极上沉积活性层。
22.如权利要求21的方法,其中,所述沉积步骤(b)和(d)同时进行。
23.如权利要求17的方法,其中,进一步包括在集电层上叠加疏水微孔膜的步骤。
24.如权利要求17的方法,其中,所述集电极包括金属材料。
25.如权利要求24的方法,其中,所述集电极由金属海绵构成。
26.如权利要求17的方法,其中,所述集电极孔隙率约为70~98%。
27.如权利要求17的方法,其中,进一步包括催化炭/聚合物混合物中炭的步骤。
28.如权利要求27的方法,其中,炭被选自二氧化锰(MnO2)、硝酸银、铂、氧化钴及其混合物中的催化剂所催化。
29.如权利要求17的方法,其中,所述电极包括用于燃料电池的空气阴极。
30.如权利要求17的方法,其中,进一步包括在集电极上叠加疏水微孔膜的步骤。
31.如权利要求30的方法,其中,所述微孔膜包括氟聚合物。
32.如权利要求31的方法,其中,所述氟聚合物包括聚四氟乙烯。
33.一种制备电化学电池电极的方法,所述方法包括以下步骤(a)提供一种具有许多内部连接孔的集电极;(b)提供一种聚合物粘合剂;(c)混合炭与聚合物粘合剂,形成炭/聚合物的混合物;(d)以液体、分散液或浆液的形式制备炭/聚合物的混合物;(e)在基板的孔内沉积炭/聚合物的混合物;(f)基本上以连续工艺实施所述沉积步骤(e);(g)在基板上沉积活性层;以及(h)就地烧结炭/聚合物混合物的聚合物粘合剂与集电极的孔。
全文摘要
本发明涉及一种包括由内部连接孔网络形成的多孔金属海绵基板的电化学阴极。在金属海绵基板的一个或多个表面上沉积一种活性层和一种疏水微孔气体扩散层。金属海绵基板作为阴极的集电极。微孔层是一种塑料材料,例如氟聚合物(即聚四氟乙烯)。该阴极也包括一种颗粒微孔结构,它被金属海绵基板的三维内部连接孔中聚合物粘合剂烧结所提供的强粘结作用所增强。反应层优选采用与粘合剂相同的材料制成;这样的优点是,可以采用单一的辊压操作同时把粘合剂浸入基板并在其上形成反应层。
文档编号H01M4/96GK1378708SQ00814009
公开日2002年11月6日 申请日期2000年10月5日 优先权日1999年10月8日
发明者姚文斌, 蔡则彬 申请人:瑞威欧公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1