图像显示装置及制造图像显示装置的方法

文档序号:6899874阅读:418来源:国知局
专利名称:图像显示装置及制造图像显示装置的方法
技术领域
本发明涉及图像显示装置,包括排列成矩阵的发光器件,用以响应图像信号而进行图像显示;制造图像显示装置的方法;以及制造适合于图像显示装置的发光器件的方法。本发明还涉及在底板上排列诸如半导体发光器件和液晶控制器件这样的器件的方法,以及特征在于在转移步骤中将微器件转移到宽区域的排列发光器件的方法,以及根据器件排列方法制造图像显示装置的方法。本发明进一步涉及改进了发光器件装配方向的图像显示装置、在其上装配器件的装配板,以及制造图像显示装置的方法。
背景技术
已开发了各种显示装置,像那些轻且薄的图像类型。作为那种图像显示装置中主要的一类,有大家所熟知的LED(发光二极管)显示器、液晶显示器,以及等离子体显示器。这些图像显示装置的应用已随着计算机技术的进步而得以扩展。例如,对角尺寸大约从30至150cm的显示装置已用作电视接收机、放像设备,以及游戏机的输出装置;进一步,对角尺寸小于大约30cm的显示装置已用作车载导航系统、图像记录系统,以及监视器。
然而,上述各种图像显示装置在下列方面都有问题例如分辨率、亮度、光输出/功率效率,以及图像质量;进一步,还有屏幕尺寸和制作成本的问题。例如,在使用将发光二极管排成矩阵这种类型的显示装置中,单个发光二极管一起装配以形成发光器件的列阵。然而,由于对每个发光二极管都进行了封装从而其尺寸大至几个mm,所以一个象素的尺寸变大,降低了分辨率。同时,在使用发光二极管列阵的图像显示装置中,由于提高了每个象素的成本,从而使制作成本升高,对于具有大屏幕的图像显示装置尤其如此。
在液晶显示装置中,将形成部分显示装置的衬底插入置于真空中的膜形设备中,并且使用光刻形成像晶体管这样的器件和布线。在这样的显示装置中,尤其是在提高液晶显示器分辨率的情形中,工艺控制必须在μm的量级上进行。因此,为了提高成品率,必须严格进行工艺控制,所以,在制造具有大屏幕的液晶显示装置情形中,制造成本就提高了。进一步,液晶显示器有视角依赖性,对比度和色彩随视角而改变,它还有颜色改变时响应速度滞后的问题。
等离子体显示装置受这样一种机制的使用而推动放电在象素尺寸量级的狭小空间中产生,且通过来自放电产生的电离气体的紫外线辅助激发荧光物质而产生可见光。因此,在等离子体显示装置中,发光效率不高且功率消耗大。进一步,还会发生这样的问题外部光线被荧光物质反射,降低对比度;并且色彩重现范围窄。
因此,上述各种图像显示装置在形成大尺寸屏幕方面都很困难,且制造成本高,在下列方面也都有问题分辨率、工艺控制、图像质量,以及发光效率。
考虑到前述这些,提出了本发明,本发明的一个目的是给出能提高像分辨率、图像质量和发光效率这些特性,便于形成大尺寸屏幕,以及降低制造成本的图像显示装置。本发明的另一目的是给出制造这种高性能图像显示装置的方法。本发明进一步的目的是给出制造图像显示装置的发光器件的方法。本发明的再一目的是给出排列器件的方法,能够将微器件转移到更宽的区域而不降低转移之后的位置精度,且不会发生布线失误。
发明公开根据本发明,给出一种图像显示装置,包括响应特定图像信号而显示图像的许多发光器件的列阵,其特征在于每个发光器件所占的面积在大于等于25μm2小于等于10000μm2的范围内;发光器件装配在布线板上。由于每个发光器件所占的面积在大于等于25μm2小于等于10000μm2的范围内,如此微小尺寸的发光器件可以高密度装配在布线板上。
在本发明的具体图像显示装置中,每个发光器件所占面积与图像显示装置上一个象素所占面积之比在大于等于10小于等于40000的范围内,更优选地,在大于等于10小于等于10000的范围内。
用作本发明图像显示装置的发光器件并不特别局限,只要具有微小尺寸并能装配在布线板上,但通常的例子为发光二极管或半导体激光器。特别地,发光器件可从下面这些中选取氮化物半导体发光器件、砷化物半导体发光器件,以及磷化物半导体发光器件。在该图像显示装置中,一个象素可由一组三片波长不同的发光器件组成。通常,彩色屏幕可通过组合红、绿和蓝发光器件而获得。
根据本发明,还给出了一种制造图像显示装置的方法,该装置包括响应特定图像信号而显示图像的许多发光器件的列阵。该方法的特征在于预备布线板,在板上已预先在一个矩阵中给出了特定布线;预备许多分成单个芯片的发光器件;将发光器件如下装配到布线板上将发光器件连到布线上,从而制作出图像显示装置。用这种构造,由于发光器件尺寸微小,它们可以高密度排列在布线板上,并且由于是在做好发光器件之后再将它们装配到布线板上,所以有可能提高成品率且便于大屏幕的形成。
在上面制造图像显示装置的方法中,优选地,在形成衬底的特定器件上堆积一层半导体层,在该半导体层上排列许多发光器件,这许多发光器件分成单个芯片,发光二极管分开的芯片装配在布线板上,进一步,在相邻两个发光器件之间的区域中形成直达半导体器件形成衬底的前表面的凹槽,环绕每个发光器件,将每个被凹槽环绕的发光器件从器件形成衬底上分离下来;分离下来的发光器件被装配到布线板上。
更优选地,将每个分离发光器件如下装配到布线板上将发光器件装配到布线板上使分离发光器件的前表面或背表面被吸取器吸取;进一步,用下面的方法将每个发光器件从器件形成衬底上分离下来用能量束从器件形成衬底的背表面照射发光器件。
优选地,在从器件形成衬底的背表面用能量束照射之前,将器件形成衬底上的每个发光器件支持在器件形成衬底和临时支持板之间,在能量束的照射之后,从器件形成衬底上分离下发光器件,使其支持在临时支持板上。在此情形中,可在整个临时支持板上形成粘合剂,发光器件的前表面临时粘在粘合剂上。也可通过使发光器件的电极部分与布线板上的导电材料压接触而将每个分离发光器件装配到布线板上。
根据本发明,还给出一种制造用于上述图像显示装置的发光器件的方法,其特征在于在特定衬底上堆积半导体层,在半导体层上形成许多发光器件的列阵,将发光器件列阵分离成单个发光器件,以及从衬底上分离下每个发光器件。
在制造发光器件的方法的一个具体实施例中,每个发光器件从衬底上的分离通过用能量束从衬底背表面照射发光器件而进行;在用能量束从衬底背表面照射之前,衬底上的每个发光器件支持在衬底和临时支持板之间,在能量束的照射之后,从衬底上分离下发光器件,使其支持在临时支持板上;在整个临时支持板上形成粘合剂,发光器件的前表面临时粘在粘合剂上。
根据本发明,还给出在第二底板上重新排列已在第一衬底上排列过的许多器件的器件排列方法,其特征在于该方法包括第一转移步骤,将器件转移到临时支持部件上,器件之间的间距大于排列在第一衬底上的器件的间距,并将器件支持在临时支持部件上;第二转移步骤,将支持在临时支持部件上的器件转移到第二底板上,器件之间的间距大于支持在临时支持部件上的器件的间距。
利用这种构造,由于器件排列间距在支持在临时支持部件上时就已经增大了,可以通过利用增大了的排列间距使用相对较大的电极和电极焊盘。在第二转移步骤中,由于通过利用临时支持部件上相对较大的电极和电极焊盘进行布线,即使与每个器件的尺寸相比,最终装置的尺寸很大,也可能容易地形成布线。
根据本发明,还给出根据上述器件排列方法制造本发明的图像显示装置的方法。也就是说,根据本发明,给出制造图像显示装置的方法,发光器件或液晶控制器件在该图像显示装置上排成矩阵,该方法的特征在于它包括第一转移步骤,将排列在第一衬底上的发光器件或液晶控制器件转移到临时支持部件上,器件之间的间距大于排列在第一衬底上的器件的间距,并将器件支持在临时支持部件上;第二转移步骤,将支持在临时支持部件上的器件转移到第二底板上,器件之间的间距大于支持在临时支持部件上的器件的间距;布线形成步骤,形成要与器件相连的布线。
利用这种构造,由排列成矩阵的发光器件或液晶控制器件组成图象显示装置的图像显示部分。发光器件或液晶控制器件可精细制造以密集排列,也就是,在第一衬底上以高密度排列,通过利用临时支持部件上的器件的间距——它在临时支持部件上的器件转移时被放大了,可使用相对较大的电极或电极焊盘。因此,与上述器件排列方法一样,在第二转移之后可容易地形成布线。
根据本发明,还给出改进了发光器件的装配的图象显示装置,以及制造该图像显示装置的方法。也就是说,根据本发明,给出具有如下结构的图像显示装置在布线板上装配许多发光器件,它们排列在底板主平面上;该图像显示装置的特征在于每个发光器件以如下方式装配在布线板上通过晶体生长形成的发光器件的晶体生长层处在与沿底板主平面法线方向生长晶体时的晶体生长层相倒转的姿态。
在本发明的图像显示装置中,除了上面的构造之外,优选地,发光器件有一在晶体生长时处在衬底侧的部分,作为出光窗口,在装配到布线板上之前将发光器件从用以生长的衬底上分离下来;还优选地,在具有相对于衬底主平面倾斜的倾斜晶面的晶体生长层上形成第一导电层、有源层以及第二导电层,并以如下方式形成要与第一导电层相连的第一电极和要与第二导电层相连的第二电极从用以生长的衬底到第一电极的高度近似等于从用以生长的衬底到第二电极的高度。在该具有倒转晶体生长层的图像显示装置中,优选地,在第一导电层和第二导电层之间形成有源层,并以如下方式形成要与第一导电层相连的第一电极和要与第二导电层相连的第二电极晶体生长层处在它们之间,且沿衬底主平面法线方向。
根据本发明,还给出制造图像显示装置的方法,其特征在于通过如下方式在用以生长的衬底上制造每个发光器件通过选择生长形成具有开口在衬底侧的形状的晶体生长层,并在晶体生长层上形成第一导电层、有源层和第二导电层;以如下方式对每个发光器件形成于第一导电层相连的第一电极和与第二导电层相连的第二电极从用以生长的衬底到第一电极的高度近似等于从用以生长的衬底到第二电极的高度;将每个晶体生长层从用以生长的衬底上分离下来,并将该晶体生长层装配到布线板上,装配时该晶体生长层的姿态与生长时的姿态相倒转。
根据本发明,提供具有这样结构的器件安装板,其中多个器件安装在布线板上使得布线在板的主平面上,其特征在于,通过晶体生长形成的每一器件的晶体生长层沿板的主平面法线方向以与晶体生长时晶体生长层的姿态倒转的姿态安装在布线板上。
在本发明的图像显示装置中,由于每个发光器件的晶体生长层正好与它在晶体生长时的姿态(沿底板主平面法线方向)相倒转,即使每个器件的电极侧形成在晶体生长层的上侧,因为电极侧通过器件的倒转而位于与布线板相对的下侧,所以,电极侧可以容易地与装配每个器件时形成在布线板上的布线层电互联。结果,无须封装该器件,而且可能以高密度排列发光器件。
根据本发明制造图像显示装置的方法,晶体生长层可简单地通过选择生长来形成,以具有相对于衬底主平面倾斜的倾斜结晶面,从而,在倒转晶体生长层时,可容易地将上表面作为出光窗口。而且,通过使与第二导电层相连的第二电极的高度近似等于从用以生长的衬底算起的高度,可能便于与用以生长的衬底的电互联。
附图简述

图1为一布置图,示出根据本发明第一实施方案的图像显示装置的基本部分;图2为一布置图,示出根据本发明第二实施方案的图像显示装置的基本部分;图3为一电路图,示出根据本发明第二实施方案的图像显示装置;图4示出制造根据本发明第三实施方案的图像显示装置的方法中形成晶体层的步骤;图5示出制造根据本发明第三实施方案的图像显示装置的方法中形成分隔槽的步骤;图6示出制造根据本发明第三实施方案的图像显示装置的方法中将发光装置压到临时支持板上去的步骤;图7示出制造根据本发明第三实施方案的图像显示装置的方法中用能量束照射发光器件的步骤;图8示出制造根据本发明第三实施方案的图像显示装置的方法中从用以生长的衬底上剥离发光器件的步骤;图9示出制造根据本发明第三实施方案的图像显示装置的方法中吸取发光器件的步骤;图10示出制造根据本发明第三实施方案的图像显示装置的方法中分离选定发光器件的步骤;图11示出制造根据本发明第三实施方案的图像显示装置的方法中马上要装配发光器件之前的状态;图12示出制造根据本发明第三实施方案的图像显示装置的方法中装配好光器件之后的状态;图13A至13D为示出排列根据本发明一个实施方案的器件的一种方法的示意图;图14A至14D为示出排列根据本发明实施方案的器件的另一种方法的示意图;图15A至15D为示出排列根据本发明实施方案的器件的方法中非连续转移的示意图;图16为示出排列根据本发明实施方案的器件的方法中树脂模型晶片的示意性透视图;图17为示出排列根据本发明实施方案的器件的方法中树脂模型晶片的示意性俯视图;图18A和18B示出在排列根据本发明实施方案的器件的方法中用到的发光器件,其中图18A为剖面图而18B为俯视图;图19为示出排列根据本发明一个实施方案的发光器件的方法中第一转移步骤的剖面图;图20为示出排列根据本发明实施方案的发光器件的方法中形成电极焊盘的步骤的剖面图;图21为示出排列根据本发明实施方案的发光器件的方法中形成电极焊盘的另一步骤的剖面图;图22为示出排列根据本发明实施方案的发光器件的方法中吸取选定发光器件的剖面图;图23为示出排列根据本发明实施方案的发光器件的方法中第二转移步骤的剖面图;图24为示出排列根据本发明实施方案的发光器件的方法中形成绝缘层的步骤的剖面图;图25为示出排列根据本发明实施方案的发光器件的方法中形成布线的步骤的剖面图;图26为示出排列根据本发明一个实施方案的液晶控制器件的方法中形成薄膜晶体管的步骤的剖面图;图27为示出排列根据本发明实施方案的液晶控制器件的方法中第一转移步骤的剖面图;图28为示出排列根据本发明实施方案的液晶控制器件的方法中在临时支持部件上支持选定器件的步骤的剖面图;图29为示出排列根据本发明实施方案的液晶控制器件的方法中从临时支持部件上转移器件的步骤的剖面图;图30为出排列根据本发明实施方案的液晶控制器件的方法中在第二临时支持部件上支持器件的步骤的剖面图;图31为示出排列根据本发明实施方案的液晶控制器件的方法中形成液晶面板的相对底板并将液晶密封在缝隙中的步骤的剖面图;图32为示出发光器件一个实施例的剖面图;图33为示出发光器件另一实施例的剖面图;图34为示出发光器件又一实施例的剖面图;图35为示出图像显示装置第一实施例的基本部分的剖面图,在该图像显示装置上倒转装配了发光器件的晶体生长层;图36A和36B示出作为根据第一实施例的图像显示装置组成元件的发光二极管,其中36A为该器件的剖面图而图36B为该器件的俯视图;图37为示出根据第二实施例的图像显示装置基本部分的剖面图;图38为示出根据第三实施例制造图像显示装置的方法中形成晶体生长层和电极的步骤的剖面图;图39为示出根据第三实施例制造图像显示装置的方法中形成抗蚀层的步骤的剖面图;图40为示出根据第三实施方案制造图像显示装置的方法中形成凸起的步骤的剖面图;图41为示出根据第三实施方案制造图像显示装置的方法中用能量束照射器件的步骤的剖面图;图42为示出根据第三实施方案制造图像显示装置的方法中将器件转移到临时支持板上去的步骤的剖面图;图43为示出根据第三实施方案制造图像显示装置的方法中吸取选定发光器件的步骤的剖面图;图44为示出根据第三实施方案制造图像显示装置的方法中装配发光器件的步骤的剖面图;图45为示出根据第三实施方案制造图像显示装置的方法中装配好发光器件之后的状态的剖面图;图46为示出根据第三实施方案制造图像显示装置的方法中压按发光器件的步骤的剖面图;图47为示出根据第四实施方案制造图像显示装置的方法中用能量束照射发光器件的步骤的剖面图;图48为示出根据第四方案制造图像显示装置的方法中装配发光器件的步骤的剖面图;图49为示出根据第五施方案制造图像显示装置的方法中用能量束照射选定发光器件的步骤的剖面图;图50为示出根据第六施方案制造图像显示装置的方法中用能量束照射选定发光器件的步骤的剖面图;图51示出根据第六实施方案制造图像显示装置的方法中的转移步骤;图52为示出根据第六实施方案制造图像显示装置的方法中第二转移步骤的剖面图;图53为示出根据第六实施方案制造图像显示装置的方法中第二转移之后的状态的剖面图;图54为示出根据第六实施方案制造图像显示装置的方法中装配发光器件的步骤的剖面图;图55为示出根据第七实施方案制造图像显示装置的方法中形成发光器件的步骤的剖面图;图56为示出根据第七实施方案制造图像显示装置的方法中带有能量照射的装配步骤的剖面图;图57为根据第八实施方案的图像显示装置的剖面图。
实现本发明的最佳方式以下,将参考附图详细描述图像显示装置、制造图像显示装置的方法、制造发光器件的方法、排列发光器件的方法,以及应用本发明的器件装配板。
图1示出根据第一实施方案的图像显示装置基本部分的布置,该基本部分等效于四个象素区域垂直和水平方向各两个。在根据该实施方案的图像显示装置中,在布线板1主平面上形成许多沿水平方向延伸的地址线ADD0和ADD1,以及通过夹层绝缘膜(未示出)而形成在布线板1主平面上沿垂直方向延伸的许多数据线DLR0至DLB1。作为布线板1,通常使用制作半导体器件所用的通用板,像玻璃板、覆盖合成树脂或绝缘膜的金属板,或者硅板;然而,可以使用任何其它底板,只要能在板上以所需精度形成地址线和数据线。
地址线ADD0和ADD1由导电性优良的金属材料层形成,或由半导体材料层和金属材料层的组合形成。每条地址线的线宽可以大于发光二极管的尺寸M,如图1所示。正如以后将要描述的,可以实现这样的关系是由于下面的事实在布线板1上装配每个占据面积大于等于25μm2且小于等于10000μm2的微尺寸发光二极管。有了这个关系,可以尽可能减小在通过顺序扫描象素输出所需图像的情形中由于每条地址线的电阻而造成的延迟。地址线ADD0和ADD1沿水平方向延伸,从而一条地址线要穿过每个象素。因此,为水平方向上相邻象素选择了一条公共地址线。
与地址线类似,数据线DLR0至DLB1由导电性优良的金属材料层形成,或由半导体材料层和金属材料层的组合形成。如图1所示,数据线DLR0至DLB1的线宽设定为大约占有布线板1占据面积的一半。正如上面关于地址线所描述的,可以实现数据线这样的宽线宽是由于下面的事实在布线板1上装配每个占据面积大于等于25μm2且小于等于10000μm2的微尺寸发光二极管。这些数据线DLR0至DLB1沿垂直方向延伸,数量与发光二极管数目相应的数据线——也就是,三条数据线——用于每个象素。更具体地,在位于该图左上角的象素中给出了一个红光发光二极管DR00、一个绿光发光二极管DG00以及一个蓝光发光二极管DB00,数据线DLR0至DLB0穿过该象素以分别相应于发光二极管DR00、DG00和DB00的颜色,也就是,红、绿和蓝色。对于这些数据线DLR0至DLB1,对于相同光色的二极管使用一条公共数据线,这些相同光色的二极管位于垂直方向上相邻的象素中。
根据该实施方案的图像显示装置具有排成矩阵的发光二极管,并响应特定图像信号(包括视频信号,也就是动态信号,与相对地施加到下面这些上的相同)进行光发射。该实施方案中的图像显示装置以点序方式或行序方式驱动,类似于一个动态矩阵型液晶显示装置。作为发光二极管的材料,例如,生长在蓝宝石衬底上具有镓氮基双异质结构的多层结构可用来做蓝光或绿光发光二极管,而生长在砷化镓衬底上具有砷化镓铝或磷化镓铟铝基双异质结构的多层晶体可用来做红光发光二极管。一组三种作为三个发光器件——它们之间的发射波长不同——的发光二极管构成了一个象素。该组三种发射波长不同的发光二极管并不局限于一组发射红、绿和蓝光的发光二极管,而可以是一组发射其它波长的光的发光二极管。
在根据该实施方案的图像显示装置中,红光发光二极管DR00和DR01处在水平排列在一行上的两个象素中,而红光发光二极管DR10和DR11处在水平排列在另一行上的两个象素中;绿光发光二极管DG00和DG01处在水平排列在一行上的两个象素中,而绿光发光二极管DG10和DG11处在水平排列在另一行上的两个象素中;蓝光发光二极管DB00和DB01处在水平排列在一行上的两个象素中,而蓝光发光二极管DB10和DB11处在水平排列在另一行上的两个象素中。例如,红光发光二极管DR00、绿光发光二极管DG00和蓝光发光二极管DB00以此顺序排列在位于本图左上角的象素中。也就是说,这组三个发光二极管构成了一个象素。
每个发光二极管具有近似正方的形状,且具有装配在未封装状态或微封装状态(封装尺寸为,例如1mm或更小)中的芯片结构。虽然图1的布置中没有示出发光二极管的详细分层结构,从俯视图中看每个发光二极管都形成为近似正方的形状。发光二极管这种近似方形的芯片装配在一个矩阵中。发光二极管位于相应于地址线ADD0和ADD1与数据线DLR0至DLB1相交位置的位置上。每个发光二极管通过与地址线相连的电极焊盘部分11而与地址线电互联,类似地,每个发光二极管通过与数据线相连的电极焊盘部分12而与数据线电互联。电极焊盘部分11是沿垂直方向延伸的小条形区域,而电极焊盘部分12是沿水平方向延伸的小条形区域。发光二极管通过电极焊盘部分11和12而与地址线和数据线电互联,且以点序方式或行序方式驱动。
由于每个发光二极管的器件占据面积处在大于等于25μm2小于等于10000μm2的范围内,具有近似正方形状的发光二极管一边的尺寸为大约5μm至100μm。具有如此微小尺寸的发光二极管以微封装状态或未封装状态装配在布线板1上。发光二极管可优选地根据后面将描述的制造发光二极管的方法来制造。另一方面,在根据该实施方案的图像显示装置中,象素排列的垂直方向间距为V,而水平方向间距为H。排列间距V和H都设定为一个0.1mm至1mm范围内的值。这么做的原因是即,在显示动态图像(例如,电视接收机、视频设备或游戏机)或显示信息图像(例如,用于计算机)的图像显示装置的情形中,从实用角度来看,其合适的对角尺寸为30cm至150cm,而象素——每个都包括一组R、G和B的二极管——的数目希望为大约300000至2000000个;进一步,在直观图像显示装置的情形中,从人类视觉特性的角度来看,象素的排列间距可希望是0.1mm(为一个观众显示高分辨率图像)至1mm(为几个观众显示动态图像)。结果,当发光二极管的一边设定为一个从大约5μm至100μm的值时,每个发光二极管的占据面积与图像显示装置上一个象素的占据面积之比优选地处在10至40000范围内,更优选地,处在10至10000范围内。
普通图像显示装置的发光器件在树脂封装之前通常具有0.3平方毫米的芯片尺寸,而在树脂封装之后通常具有大于等于1平方毫米的芯片尺寸。因此,假设象素的排列间距设置为5mm,则每个发光二极管的占据面积与图像显示装置上一个象素的占据面积之比变成1至2。这个比例,也就是1至2,超出了根据本发明每个发光二极管的占据面积与图像显示装置上一个象素的占据面积之比,后者优选地处在10至40000范围内,更优选地,处在10至10000范围内,如上所述。
尽管根据该实施方案的图像显示装置特征在于利用这样微芯片尺寸的发光二极管,它依然可以得到足够的亮度,如下所述。室内型显示装置所需的亮度大约为500cd/m2。这个亮度转换为光输出即为红、绿和蓝每个5W/m2。计算表明,为了使图像显示装置能实现红、绿和蓝每个5W/m2的光输出,每个发光二极管的平均光输出可在0.017μW至1.7μW的范围内。这里,假设平均光输出为0.017μW至1.7μW的发光二极管的可靠性等于普通发光二极管的可靠性,如果上述发光二极管的驱动电流密度等于普通发光二极管的驱动电流密度,那么即使在加上少许余量的情形中,每个发光二极管也可具有大约1μm2至100μm2的尺寸。结果,通过将每个要装配到布线板上的发光二极管的占据面积设定为一个大于等于25μm2小于等于10000μm2的值,该图像显示装置可同时实现足够的亮度和足够的可靠性。
每个将要以微尺寸状态装配的发光二极管具有上述尺寸,根据后面将要描述的制造方法,这些发光二极管形成在器件形成底板上,分成芯片,并以未封装状态或微封装状态装配在装配板上。未封装状态指的是每个二极管芯片都没有被树脂模塑覆盖的状态,而微封装状态指的是二极管芯片被薄树脂层覆盖且封装尺寸(例如,大约1mm或更小)小于普通封装尺寸的状态。正如后面将要对制造方法进行的描述,每个用于根据该实施方案的图像显示装置的发光二极管以微尺寸状态装配在布线板上,尺寸的减小是由于未封装或微封装。
下面将参考图2至3描述根据第二实施方案的图像显示装置。该实施方案是根据第一实施方案的图像显示装置的调整,其特征特别在于以芯片状态装配与每个发光二极管电互联的电流保持电路。
图2为一布置图,示出根据该实施方案的图像显示装置中一个象素区域(V1×H1)的结构。沿水平方向延伸的一条地址线ADD和两条电源线PW1和PW2形成在与第一实施方案中所用的布线板类似的布线板21上,互相之间相隔一定间距。地址线ADD和两条电源线PW1和PW2由导电性优良的金属材料层或半导体材料层和金属材料层的混合组成,每条线的线宽大于发光二极管和电流保持电路芯片的尺寸。发光二极管R、G和B的信号线DLR、DLG和DLB沿垂直方向延伸,形成在同一象素中,每条信号线DLR、DLG和DLB的结构和大小与地址线ADD相同。
在根据该实施方案的图像显示装置中,发光二极管DR、DG和DB排成矩阵,用以响应特定图像信号进行光发射。在该象素中,发光二极管的排列顺序为红光发光二极管DR、绿光发光二极管DG,以及蓝光发光二极管DB。一组三个发光二极管构成了一个象素。与上述实施方案相似,每个装配状态的发光二极管DR、DG和DB具有形成近似正方的形状且尺寸微小的芯片结构。发光二极管DR、DG和DB装配在电源线PW1和PW2之间的区域中。
在根据该实施方案的图像显示装置中,对发光二极管DR、DG和DB分别形成与发光二极管DR、DG和DB电互联以保持发光二极管DR、DG和DB中的电流的电流保持电路PT。电流保持电路的电路结构包括晶体管和电容器(将在后面描述)。特别地,电流保持电路PT形成单个芯片,装配到布线板21上。在该实施方案中,每个发光二极管DR、DG和DB的芯片尺寸与每个电流保持电路PT的芯片尺寸基本相同,每个发光二极管的占据面积设定为大于等于25μm2小于等于10000μm2,而每个电流保持电路PT的芯片的占据面积也类似地设定为大于等于25μm2小于等于10000μm2。通过使每个电流保持电路的芯片尺寸近似等于每个发光二极管的芯片尺寸,可以在相同装配步骤中装配电流保持电路的芯片和发光二极管的芯片,从而简化了制造步骤。这些电流保持电路形成在电源线PW1和地址线ADD之间的区域中。
从布线的需要来考虑,布线部分22至26形成在电源线PW2和发光二极管DR、DG和DB之间,发光二极管DR、DG和DB和电流保持电路PT之间,电源线PW1和电流保持电路PT之间,电流保持电路PT和地址线ADD之间,以及电流保持电路PT和信号线DLR、DLG和DLB之间。布线部分22为沿垂直方向延伸的条形小区域,将发光二极管与电源线PW2相连。布线部分23为沿垂直方向延伸的条形小区域,将发光二极管DR、DG和DB与用以保持电流的电流保持电路相连以分别驱动发光二极管DR、DG和DB。布线部分24为从发光二极管水平延伸然后垂直延伸与电源线PW1相连的条形区域,将电流保持电路PT与电源线PW1相连。布线部分25为沿垂直方向延伸的条形小区域,将电流保持电路PT与地址线ADD相连。布线部分26为沿水平方向延伸的条形小区域,将电流保持电路PT与信号线DLR、DLG和DLB相连。当发光二极管DR、DG和DB以微尺寸状态装配到布线板上时,布线部分22至26相应的那些可以与形成在布线板上的导电材料连接部(将在后面描述)相连,类似地,当电流保持电路PT以微尺寸状态装配到布线板上时,布线部分22至26相应的那些可以与形成在布线板上的导电材料连接部(将在后面描述)相连。
图3为一电路图,示出图2中所示的该实施方案的图像显示装置。在途中,参考号31标示用以响应图像信号发射特定颜色的光的发光二极管。应当注意,在图3所示的电路图中,三个排列在水平方向的红、绿和蓝二极管31构成一个象素;然而,为简单起见,所示出的二极管31并没有区分颜色。与二极管31相连的晶体管32和33以及电容器34构成电流保持电路。晶体管32串连在电源线PW1和PW2之间,只有在晶体管32处在ON状态时二极管31才进行光发射。电源线PW1和PW2中的一条为晶体管32提供地电压,而另一条为晶体管32提供源电压。电容器34的一端和用作开关晶体管的晶体管33的源、漏区之一与晶体管32的栅相连。晶体管33源、漏区中的另一个与被施加图像信号的信号线相连,晶体管33的栅与沿水平方向延伸的地址线ADD相连。
地址线ADD具有这样的结构其中它的电平由移位寄存器电路36进行选择性切换。例如,通过将许多地址线之一切换为高电平,就选定了相应于该选的地址线的水平地址。信号线DL为用以传输图像(视频)信号至每个发光二极管31的布线。对每个发光二极管31提供一条信号线DL。当地址线ADD的电平被移位寄存器电路36选择切换了时,信号线DL被移位寄存器/传输门电路35扫描,并且一个图像信号通过移位寄存器/传输门电路35而施加到选定的信号线DL上。
与晶体管32的栅相连且与晶体管33源、漏区之一相连的电容器34具有在晶体管33变成关状态时保持晶体管32电势的功能。由于栅电压即使在晶体管33关断的时也能保持,发光二极管31可被连续驱动。
下面将简要描述图像显示装置的操作。从移位寄存器电路36施加一个电压到水平地址线ADD中特定的一条上,以选择相应于选定地址线ADD的地址,由此开启选定线中电流保持电路的开关晶体管33。在这样一个状态中,一个图像信号作为电压施加到沿垂直方向延伸的信号线DL中特定的一条上。此时,该电压沿选定信号线DL通过电流保持电路的开关晶体管33到达每个电流保持电路的晶体管32的栅,同时栅电压被存储在电流保持电路的电容器34中。电容器34保持晶体管32的栅电压。即使在水平方向的地址线ADD的选择操作停止从而选定地址线的电势从新回到低电平之后,也就是,即使在晶体管33关断之后,电容器34还继续保持该栅电压。理论上,电容器34可将地址选择时施加的栅电压继续保持到下次地址选择的发生。在电容器34持续保持栅电压期间,晶体管32可进行与所保持电压相联系的操作,从而继续为相应31提供驱动电流。通过像上面描述的那样使发光二极管31保持更长的发光时间,那么即使施加到每个发光二极管上的驱动电流减小了,也可以提高整个图像的亮度。
下面将参考图4至12详细描述作为第三实施方案的根据本发明制造图像显示装置的方法。另外,制造图像显示装置的方法可应用于制造发光器件的方法。更特定地,制造图像显示装置的方法中在将发光器件装配到布线板上之前的那些步骤的描述与制造发光器件的方法的描述相同。
如图4所示,首先预备一片蓝宝石衬底51,在其上形成低温和高温缓冲层(未示出)。在缓冲层上顺序叠置第二导电型包层52、有源层53,以及第一导电型包层54。蓝宝石衬底51作为器件形成衬底。这里,例如在制造蓝光和绿光发光管的情形中,第二导电型包层52、有源层53和第一导电型包层54中的每一层都可是镓氮基晶体生长层。生长了这样的结构,就在蓝宝石衬底51上形成了具有pn结的双异质结构发光二极管。
如图5所示,通过使用光刻技术并进一步使用气相沉积和反应离子刻蚀,形成n型电极55与第二导电型包层52相连,并形成p型电极56与第一导电型包层54相连。在各器件形成区域形成电极55和56之后,形成分隔槽以将各个器件的外围互相分隔开来。分隔槽的排列图形通常设为网格图形以使剩下的发光二极管形成为方形;然而,并不局限于此,而可以是其它图形。分隔槽57的深度设为一个使蓝宝石衬底51的主平面暴露出来的值。因此,即使是第二导电型包层52也被分隔槽分成许多部分。另外,每个发光二极管的占据面积设定为大于等于约25μm2小于等于约10000μm2,因此,发光二极管的一边为大约5μm至100μm。
如图6所示,预备用以在转移发光二极管情形中支持各发光二极管的临时支持板60。临时支持板60的前表面用粘性材料层覆盖。粘性材料层61的前表面62与蓝宝石底板已形成分隔槽57的发光二极管侧压接触。因此,各发光二极管的前表面粘附在粘性材料层61的前表面上。
其后,如图7所示,用能量束照射蓝宝石衬底51的背表面,通常能量束为高输出脉冲紫外激光束,例如受激准分子激光束,能量束从背表面侧穿过蓝宝石衬底51到达前表面侧。通过用此高输出脉冲紫外激光束照射,在衬底51和作为晶体层及其邻层的第二导电型包层52之间的边界处,形成第二导电型包层52的材料——例如镓氮——分解成氮气和金属镓,从而使第二导电型包层52和蓝宝石衬底51之间的结合力变弱。结果,如图8所示,蓝宝石衬底51可容易地从作为晶体层地第二导电型包层52上剥离下来。
从蓝宝石衬底51上剥离下来之后,每个发光二极管以器件分隔状态支持在临时支持板60地粘性材料层61上。在这样一种状态中,如图9所示,第二导电型包层52前表面上位于一个发光二极管要被吸取的位置处的部分被吸取器吸取。更特定地,吸取器70的吸取部分72与第二导电型包层52背表面上相应于要被吸取的发光二极管的部分相接触,并降低吸取器70的吸取孔71中的内压。如此进行吸取要被吸取的发光二极管所必须的吸取操作。
在第二导电型包层52背表面上相应于要被吸取的发光二极管的部分被牢固吸取之后,吸取器70与临时支持板60分离,从临时支持板60上移下要吸取的发光二极管,如图10所示。
上述步骤同样适于制造单个小尺寸发光器件的方法。这些步骤之后的步骤是将每个发光二极管装配到布线板上,从而制造图像显示装置。图11示出马上要将吸取在吸取器70上的发光二极管装配到布线板80上之前的状态。要装配的发光二极管具有微小尺寸。特别地,发光二极管的占据面积设定为大于等于25μm2小于等于10000μm2。在该步骤中,已预备了布线板80,在其上已形成了布线电极81,例如特定信号线、地址线、电源线以及地线。作为布线板80,通常使用制作半导体器件所用的通用板,像玻璃板、覆盖合成树脂或绝缘膜的金属板,或者硅板;然而,可以使用任何其它底板,只要能在板上以所需精度形成地址线和数据线。在布线板80上形成导电材料连接部82。导电材料连接部82由这样的材料制成即使在发光二极管与其压接触时该材料变形了,它也能获得电互联。
如图12所示,吸取器70移近布线板80,之后发光二极管与一特定位置压接触,从而装配到布线板80上。在未封装状态中,导电材料连接部82由于与发光二极管的压接触而变形,从而发光二极管牢牢地固定在它上面。这样就完成了发光二极管向布线板80的装配。对所有二极管重复装配发光二极管的工作,以获得象素排列排列成矩阵的图像显示装置。电流保持电路也可用类似的方式以未封装状态装配到布线板上,从而可容易地制造具有电流保持电路的电路结构。
在实行根据该实施方案制造图像显示装置的方法的情形中,形成在镓氮衬底上的发光二极管或形成在硅衬底上的发光二极管的微芯片,以及电路器件的微芯片可以不使用激光装置来形成,而可以使用以下这些方法的组合来形成研磨、抛光和从衬底背表面的化学腐蚀以及用以形成分隔槽的腐蚀。
在上述实施方案中,依次吸取发光二极管以对其进行装配;然而,为了提高生产率,可通过使用具有许多吸取部分的吸取器来同时吸取许多发光二极管。进一步,在在硅衬底或化合物半导体衬底上形成器件的情形中,上述实施方案中采用的能量束的照射被研磨、抛光和从衬底背表面化学腐蚀所代替。
附带地,由于作为发光器件的LED(发光二极管)很昂贵,可以像上述那样通过在一个晶片上制造许多LED来以低成本制造使用LED的图像显示装置。更特定地,可以通过将尺寸为大约300μm2的一块LED芯片分成尺寸为几十μm2的LED芯片,并将这样分开的LED芯片装配到底板上,以此来降低图像显示装置的成本。
在这方面,已知各种技术,其中以高密度形成的器件通过转移等方法移到一个宽区域中,同时互相间隔开,以此得到相对较大的显示装置,例如图像显示装置。例如,U.S.专利号5438241公开了一种薄膜转移方法,而日本专利公开号Hei 11-142878公开了一种用于显示装置的形成晶体管排列面板的方法。在U.S.专利号5438241公开的转移方法中,密集形成在衬底上的器件通过如下方法粗糙重排在特殊显示面板上将密集形成在衬底上的器件转移到涂有粘合层的可延伸底板上,沿X方向和Y方向拉伸该可延伸底板,同时监视排列间距和各个器件的位置,将延伸底板上的器件转移到显示面板上。在日本专利公开号Hei 11-142878公开的技术中,在第一衬底上形成液晶显示部分的薄膜晶体管全部转移到第二底板上,然后从第二底板上将薄膜晶体管选择转移到第三底板上,排列间距与象素的排列间距一致。
然而,上述技术都有如下问题。首先,将密集形成在衬底上的器件粗糙重排到显示面板上的转移方法有这样一个基本问题器件位置受芯片尺寸(≥20μm)影响而发生偏离,至少依赖于延伸可延伸底板时固定点(支撑点)位于器件芯片粘性结合表面的什么位置,结果必须对每个器件芯片进行精确的位置控制。因此,在形成需要定位精度至少为大约1μm的高分辨率TFT排列面板的情形中,需要大量时间来对每个TFT器件芯片进行测量和控制。这种转移方法的另一个问题就是,在转移热膨胀系数大的树脂膜上的TFT器件芯片的情形中,可能会由于定位操作之前和之后温度和应力的改变而使定位精度下降。由于这些原因,从大规模生产的角度考虑,这种转移方法具有很大的缺点。
日本专利公开号Hei 11-142878所公开的技术有如下问题。在该方法中,布线电极等在最终的转移之前形成;然而,为了满足器件的高度集成,得减小像薄膜晶体管或发光器件这样的器件的尺寸,以实现高速操作并降低成本,如果在以相应于特定象素间距的排列间距排列器件之后形成布线层等,那么需要在这样的状态下形成布线已经在更宽区域中排列了微芯片。结果,由于器件的定位精度问题,又出现了新的与布线失误相关的缺陷。
因此,需要给出一种排列器件的方法,能够将最终形成的器件转移到更宽的区域中去,而不在转移之后破坏定位精度,也不导致任何布线失误,还要给出一种根据该排列器件的方法的制造图像显示装置的方法。以下将描述排列器件的方法和制造图像显示装置的方法。
在根据该实施方案的排列器件的方法和制造图像显示装置的方法中,如下进行两步转移将以高密度形成在第一衬底上的器件转移到临时支持部件上,器件之间的间距大于排列在第一衬底上时的间距;并进一步将临时支持部件上的器件转移到第二底板上,器件之间的间距大于支持在临时支持部件上时的间距。应当指出,在该实施方案中采用两步转移,而根据排列在第一衬底上的器件和装配在第二底板上的器件之间必要的排列间距放大比,还可以采用多步转移,例如三步或更多步转移。
图13A至13C以及图14示出通过两步放大转移方法转移器件的基本步骤。首先,器件92——例如发光器件或液晶控制器件——密集形成在第一衬底90上,如图13A所示。液晶控制器件是像薄膜晶体管这样的器件,用以在形成作为最终产品的液晶面板时控制液晶的对准状态。通过密集形成器件,可增加每个衬底所能制造的器件数目,从而降低最终产品的成本。作为第一衬底90,可使用各种能在其上形成器件的衬底,例如半导体晶片、玻璃衬底、石英玻璃衬底、蓝宝石衬底,以及塑料衬底。器件92可以直接形成在第一衬底90上,或者也可一次形成在另一衬底上并排列到第一衬底90上。
如图13B所示,器件被转移到临时支持部件91上并支持在临时支持部件91上,临时支持部件91在图中用虚线示出。在临时支持部件91上,相邻的两个器件互相分开,这些器件排成一个矩阵,在图中作为一个整体示出。更特定地,器件92被转移到临时支持部件91上,器件之间不仅在X方向互相分开,而且在垂至于X方向的Y方向也互相分开。第一衬底90上的器件和临时支持部件91上的器件之间的排列间距放大比并没有特别地限制,而可以考虑后继步骤中树脂部分的形成和电极焊盘的形成来进行确定。器件可以全部从第一衬底90上转移到临时支持部件91上,互相之间分离开。在此情形中,临时支持部件91沿X方向和Y方向的尺寸可等于或大于将排列在X方向和Y方向的器件的数目与排列在临时支持板91上的器件的间距相乘而得到的值。应当指出,可将第一衬底90上的部分器件转移到临时支持部件91上,器件互相分开。
可以通过采用使用吸取器或传动器的特殊机械装置来进行器件92向临时支持板91的转移,正如后面将要描述的。作为选择,可通过如下方法将器件92选择转移到临时支持部件91上用树脂(它可由于热或光的作用而导致某种反应,例如软化、硬化、搭接或退化)覆盖器件92,并用热或光局部照射器件92中选定的那些,从而剥离或粘结选定器件。器件92的转移可由热或光装置与机械装置的组合来进行。通常,从第一衬底90向面向第一衬底90的临时支持部件91进行器件92的转移;然而,也可一次从第一衬底90上单独分离器件92的芯片,然后将它们重排到临时支持部件91上。
在这样一个第一转移步骤之后,如图13C所示,对临时支持部件91上互相分开的器件92中的每个进行覆盖每个器件的树脂模塑以及电极焊盘的形成。进行覆盖每个器件的树脂模塑以利于器件电极焊盘的形成和随后第二转移步骤中对对器件的处理。由于后面所要描述的,每个电极焊盘在最终的布线之前的第二转移步骤之后形成。应当指出,电极焊盘在图13C中并没有示出。通过用树脂93覆盖每个器件92,形成了树脂模塑片94。在俯视图中,器件92近似位于树脂模塑片94的中心部分;然而,器件92也可位于偏离中心部分的位置上,靠近树脂模塑片94的一边或一角。
随后,如图13D所示,执行第二转移步骤。在该第二转移步骤中,以树脂模塑片94的形式排列在临时支持部件91上的矩阵中的器件92被转移到第二底板95上,器件之间相隔更大的间距。与第一转移步骤类似,器件92的转移可采用利用吸取器或传动器的特殊机械装置来进行。作为选择,可通过如下方法选择转移器件92用树脂(它可由于热或光的作用而导致某种反应,例如软化、硬化、搭接或退化)覆盖器件92,并用热或光局部照射器件92中选定的那些,从而剥离或粘结选定器件。器件92的转移可由热或光装置与机械装置的组合来进行。
即使在第二转移步骤中,相邻的两个树脂模塑片94形式的器件92互相分开,并且器件92重排成一个矩阵,图中作为一个整体示出。更特定地,如此转移器件92器件之间不仅在X方向互相分开,而且在Y方向也互相分开。如果在第二转移步骤中重排的器件92的位置相应于最终产品——例如图像显示装置——象素的位置,那么在第二转移步骤中重排的器件92的间距大约为排列在第一底板90上的器件92的原始间距的整数倍。假设支持在临时支持部件91上的器件92和排列在第一衬底90上的器件92之间的间距放大比为“n”,而重排在第二底板95上的器件92和支持在临时支持部件91上的器件92之间的间距放大比为“m”,则总的放大率(也就是,上述的大约整数倍)可表达为E=n×m。放大比“n”和“m”可以都是整数,也可以不是整数,只要放大比“n”和“m”的组合使E为整数(例如,n=2.4而m=5)。
对互相分开重排在第二底板95上的树脂模塑片94形式的器件92进行布线,布线通过利用预先形成的电极焊盘等小心进行,以免造成连接失误。对于发光二极管这样的发光器件,布线包括到p电极和n电极的布线,而对于液晶控制器件,布线包括到选择信号线、电压线、对准电极膜等的布线。
图14A至14D示出图13A至13D中所示的两步放大转移方法的调整。该调整的特征在于从第一衬底90a向临时支持部件91a的转移方式。如图14A所示,器件92——例如发光器件或液晶控制器件——密集形成在衬底90a上。许多器件92在第一衬底90a上排列成矩阵。与图13A至13D所示的第一衬底90类似,第一衬底90a为在其上可形成各种器件的衬底,例如半导体晶片、玻璃衬底、石英剥离衬底、蓝宝石衬底,或塑料衬底。器件12可直接形成在第一衬底90上,也可形成在另一衬底上而排列在第一衬底90上。
在第一衬底90a上形成矩阵之后,许多器件12被转移到临时支持部件91a上,同时互相分开。在此情形中,临时支持部件91a与第一衬底90a相对,在第一衬底90a上排成矩阵的器件92以非连续方式进行转移。根据该非连续转移方式,在转移第一衬底90a上的器件92中的一个时,不转移那些与其相邻的器件。更特定地,在排列在衬底90a上的所有器件92中,那些处在互相间隔一定距离的位置上的器件被转移到与第一衬底90a相对的临时支持部件91a上。在该情形中,那些与已转移器件92中的每个相邻的器件依旧留在第一衬底90a上;然而,通过将剩余器件92转移到另一临时支持部件上,可以有效地利用密集形成在第一衬底90a上的所有器件92。
可以通过采用使用吸取器或传动器的特殊机械装置来进行器件92向临时支持板91a的转移,正如后面将要描述的。作为选择,可通过如下方法将器件92选择转移到临时支持部件91a上用树脂(它可由于热或光的作用而导致某种反应,例如软化、硬化、搭接或退化)覆盖器件92,并用热或光局部照射器件92中选定的那些,从而剥离或粘结选定器件。器件92的转移可由热或光装置与机械装置的组合来进行。
在第一转移步骤之后,如图14C所示,临时支持部件91a上的器件92现在处在互相分开的状态,每个器件92都被树脂93覆盖,且对器件92中的每个都形成电极焊盘。然后,如图14D所示,执行第二转移步骤。在第二转移步骤中,在临时支持部件91a上重排成矩阵的树脂模塑片94形式的器件92转移到第二底板95上,同时这些器件间隔更大的间距。用树脂93对每个器件的覆盖和每个电极焊盘的形成以及第二转移步骤都和参考13A至13D所描述的那些相同,而且两步放大转移之后所需布线的形成也与参考图13A至13D描述的相同。
在图13A至13D和图14A至14D所示的两步放大转移中,可利用第一转移之后和第二转移之后相邻两个器件92之间的空间来进行每个电极焊盘的形成和树脂模塑,通过利用预先形成的电极焊盘,可进行布线而不导致连接失误。因此,可能提高图像显示单元的成品率。进一步根据该实施方案的两步放大转移方法包括两个步骤,在每个步骤中,器件都互相分开。通过执行许多这样的放大转移步骤,可实际减少转移次数。例如,假设第一衬底90或90a上的器件与临时支持部件91或91a上的器件之间的间距放大比为2(n=2),而临时支持部件91或91a上的器件与第二底板95上的器件之间的间距放大比为2(m=2),则总的转移放大率为2×2=4。为了实现4的转移放大率,根据一步转移方法,转移(对准)的次数为16(4×4)次。相反,根据两步放大转移方法,通过将第一转移步骤中的放大比(即2)的平方与第二转移步骤中的放大比(即2)的平方相加,即可得到转移(对准)的次数,因此,转移的次数为8(4+4)。更特定地,令第一和第二转移步骤中的放大比分别为“n”和“m”,根据两步放大转移方法,为了获得n×m的总转移放大率,转移的总次数为(n2+m2)次。同时,根据一步转移方法,为了获得n×m的转移放大率,转移的次数为(n+m)2=n2+2nm+m2。结果,根据两步放大转移方法,转移次数可比根据一步转移方法的次数少2nm次,从而相应地节约了制造步骤所需的时间和成本。这在转移放大率更大时更为重要。
在图13A至13D和图14A至14D所示的两步放大转移方法中,每个器件92都设置为发光器件或液晶控制器件,但并不局限于此,器件92还可以是下面这些器件中的一种光电转换器件、压电器件、薄膜晶体管、薄膜二极管、电阻器件、开关器件、微磁器件、微米光学器件,或它们的一部分,或它们的组合。

图15A至15D示出图14A和14B所示的非连续转移的另一实施例。该非连续转移通过从供应侧衬底向接收侧底板(部件)选择转移器件来进行。在此情形中,通过将接收侧底板(部件)做得足够大,可以将供应侧衬底上的所有器件转移到接收侧底板(部件)上。
图15A至15D示出一个实施例,其中第一转移步骤中的放大比为3。临时支持部件91c的面积是第一衬底90c面积的9(=3×3)倍。为了将作为供应侧衬底的第一衬底90c上的所有器件92转移到临时支持部件91c上,转移操作重复9次。第一衬底90c上的器件92的矩阵图形分成3×3矩阵单元。九片器件92——每个都处在3×3矩阵单元中的一个内——倍转移到临时支持部件91上。重复这样的转移9次,从而第一衬底90c上的所有器件都转移到临时支持部件91c上。
图15A粗略示出这样一种状态在第一衬底90c上的器件92中,位于3×3矩阵单元中第一位置上的第一组器件92c被转移到临时支持部件91c上。图15B粗略示出这样一种状态位于3×3矩阵单元中第二位置上的第二组器件92c被转移到临时支持部件91c上。在第二次转移中,在第一衬底90c对临时支持部件91c的对准位置沿图中垂直方向移动之后,再进行非连续转移。图15C粗略示出这样一种状态位于3×3矩阵单元中第八位置上的第八组器件92c被转移到临时支持部件91c上。图15D粗略示出这样一种状态位于3×3矩阵单元中第九位置上的第九组器件92c被转移到临时支持部件91c上。在第九次转移结束之后,第一衬底90c上没有留下任何器件92,器件92在临时支持部件91c上排成矩阵,并互相分开。之后,根据图13C和13D以及14C和14D中所示的步骤相同的步骤执行两步放大转移。
形成在临时支持部件并转移到第二底板上的树脂模塑片将在下面参考图16至17进行描述。树脂模塑片100通过用树脂102填充互相分开的器件101之间的空隙而得到。这样的树脂模塑片100可用于将器件101从临时支持部件向第二底板的转移。
器件101以后面将要描述的发光器件作为例子,但也可以是其它种类的器件。树脂模塑片形成近似平板的形状,主平面近似为方形。树脂模塑片100如下制造覆盖临时支持部件表面以用未硬化树脂包含器件101,使树脂硬化,并通过切割将硬化树脂102切成方形片。在近似平板形的树脂22前表面侧和背表面侧分别形成电极103和104。电极焊盘103或104如下制造在树脂的102的整个表面上形成由用作形成电极焊盘的材料的金属或多晶硅支撑的导电层,并通过光刻将导电层刻成特定的电极形状。形成电极103和104以使其与器件101的p电极和n电极相连,并视需要在树脂102中形成通孔。
在图中所示的实施例中,电极焊盘103和104分别形成在树脂模塑片100的前表面侧和背表面侧上;然而,它们可形成在树脂模塑片100前表面侧和背表面侧的任意一个上。对具有三个电极——即,源、栅和漏电极——的薄膜晶体管来说,可形成三个和更多个电极焊盘。电极焊盘103和104在水平方向互相错开的原因是为了防止在最终形成布线时从上面形成接触孔的情形中电极焊盘103和104的互相重叠。每个电极焊盘103和104的形状并不局限于方形,而可以是任何其它形状。
在这样的树脂模塑片100中,环绕器件101的空间被树脂102覆盖。电极焊盘103和104可精确形成在树脂模塑片100的树脂102的平整表面上,延伸到宽于器件101芯片尺寸的区域,从而在第二转移步骤中由吸取器执行的转移时对树脂模塑片100的处理。正如后面将要描述的,由于最终的布线在第二转移步骤之后进行,可通过使用具有相对较大尺寸的电极焊盘103和104进行布线来防止布线失误。
图18A和18B示出发光器件的结构,该发光器件作为用在该实施方案中的器件的一个实施例,其中图18A为器件的剖面图,而图18B为器件的俯视图。图中所示的发光器件为GaN基发光二极管,通常通过蓝宝石衬底上的晶体生长来形成。在这样的GaN基发光二极管中,通过用穿透衬底的激光束照射,会发生激光剥蚀,产中GaN的氮蒸发的现象,从而导致蓝宝石衬底和GaN基生长层之间的边界上的膜剥离,结果可容易地进行器件分离。
GaN基发光二极管具有这样的结构,其中在由GaN基半导体层组成的下生长层111上通过选择生长形成六棱锥形GaN层112。在下生长层111上形成绝缘膜(未示出),并通过MOCVD工艺等在形成于绝缘膜中的开孔中形成六棱锥形GaN层112。GaN层112为形成被S平面——即(1-101)平面——覆盖的金字塔形的生长层,生长时所用的蓝宝石衬底的主平面作为C平面。GaN层112用硅进行局部掺杂。GaN层112倾斜的S平面用作双异质结构的包层部分。形成用作有源层的InGaN层113,覆盖GaN层112倾斜的S平面。在InGaN层113上形成掺镁的GaN层114。掺镁GaN层也用作包层部分。
发光二极管具有p电极115和n电极116。通过气相沉积在掺镁GaN层114上形成金属材料的组合,例如Ni/Pt/Au或Ni(Pd)/Pt/Au,以形成p电极115。通过气相沉积在形成于上述绝缘膜(未示出)中的开孔中形成金属材料的组合,例如Ti/Al/Pt/Au,以形成n电极116。应当注意,在如图20所示从下生长层111的背表面侧吸取n电极的情形中,可省略下生长层111前表面侧上n电极116的形成。
具有这种结构的GaN基发光二极管可发射蓝光。特别地,这种发光器件可相对简单地通过激光剥蚀而从蓝宝石衬底上剥离下来。换句话说,可通过激光束的选择照射来选择剥离器件。另外,GaN基发光二极管可以是这样的结构有源层形成平面或条形,或可以是在上端部形成了C平面的金字塔形。进一步,GaN发光二极管可用任何其它氮基发光器件或化合物半导体器件代替。
下面将参考图19至21描述排列发光器件的方法。作为发光器件,使用了图18A和18B所示的GaN基发光二极管。
首先,如图19所示,在第一衬底121的主平面上形成许多发光二极管122,并排列成矩阵。发光器件122的尺寸设定为大约20μm。第一衬底121由这样的材料制成它对用以照射发光二极管122的激光束的波长具有高的透射率,例如,可以由蓝宝石制成。发光二极管122上已做好p电极等,但还没有进行最后的布线。形成用于器件分隔的凹槽122g以使发光二极管122可以单个地从第一衬底121上分离下来。可通过使用,例如,反应离子刻蚀来形成凹槽122g。如图19所示,这样的一篇第一衬底121与临时支持部件123相对,以进行它们之间的选择转移。
在临时支持部件123朝向第一衬底121的表面上形成剥离层124和粘合层125。作为临时支持部件121,可使用下面这些玻璃衬底、石英玻璃衬底或塑料衬底。临时支持部件121上的剥离层124可由氟涂层制成,或由硅树脂、水溶性粘合剂(例如PVA)或聚酰亚胺制成。临时支持部件123上的粘合层125可由紫外(UV)固化型粘合剂、热固化型粘合剂或热塑型粘合剂制成。作为一个实施例,用石英玻璃衬底作为临时支持部件123,在其上形成厚度为4μm的聚酰亚胺膜作为剥离层124,并形成厚度大约为20μm的UV固化型粘合层作为粘合层125。
调整临时支持部件123的粘合层125以使其包括硬化树脂125s和未硬化区域125y的混合。确定未硬化区域125y以使要选择转移的发光二极管122位于未硬化区域125y处。英华区域125s和未硬化区域125y混合位于粘合层125中,粘合层125这样的调整可如下进行用曝光系统选择曝光由UV固化型粘合层构成的粘合层125上相距200μm的部分,从而发光二极管122要转移到其上的部分未硬化而其它部分硬化了。在利用曝光对粘合层125进行这样的调整之后,用激光束从第一衬底121的背表面照射位于未硬化区域125y的发光二极管122,以通过激光剥蚀将它们从第一衬底121上剥离下来。由于在GaN层和蓝宝石之间的边界上的GaN基发光二极管122分解成Ga和氮,从而可相对简单地剥离发光二极管122。作为用来照射发光器件的激光束,可使用受激准分子激光束或调谐YAG激光束。
通过激光剥蚀,用激光束选择照射过的发光二极管122在GaN层和第一衬底121之间的边界上从第一衬底121上剥离下来,并转移到相对的临时支持部件123上,以使发光二极管122的p电极部分与粘合层125上相应的未硬化区域125y相接。由于其它发光二极管122没有用激光束进行照射并且也位于相应于粘合层125硬化区域125s的位置上,其它发光二极管122没有转移到临时支持部件123上。应当指出,在图19所示的实施例中,只有一个发光二极管122被激光束选择照射;而实际上,相距为n的发光二极管122都被激光束照射了。利用这样的选择转移,发光二极管122重排在临时支持部件123上,临时支持部件123上二极管122的重排间距大于第一衬底121上二极管122的排列间距。
在选定发光二极管122从第一衬底121转移到临时支持部件123上之后,如图20所示,硬化粘合层125的未硬化区域125y,从而发光二极管122被固定到粘合层125上。未硬化区域125y的硬化可通过向其加热或光来进行。在发光二极管122被临时支持部件123的粘合层支持的状态中,清洁发光二极管122作为n电极侧(负电极侧)的背表面以将其上的树脂(粘合剂)移除。因此,如果在发光二极管122的背表面上形成电极焊盘126,它可与之电互联。
作为粘合层清除的一个实施例,用氧等离子体刻蚀形成粘合剂的树脂,并通过UV臭氧的照射而将其清除。进一步,在用激光将GaN基发光二极管从蓝宝石制成的第一衬底121上剥离下来时,Ga沉积在剥离平面上,因此,必须用含NaOH的水溶液或稀硝酸来腐蚀元素Ga。之后,对电极焊盘126进行构图。此时,处在负极侧的电极焊盘可形成尺寸大约为60μm2。作为电极焊盘126,可使用透明电极(ITO或ZnO基电极)或Ti/Al/Pt/Au电极。在使用透明电极的情形中,即使电极很大程度上覆盖了发光二极管的背表面,它也不会遮蔽光发射,从而电极的构图精度可较低且其尺寸可较大,结果可能简化构图过程。
图21示出这样一种状态,其中在发光二极管122从临时支持部件123转移到第二临时支持部件127,且在粘合层125中形成正电极(p电极)侧上的通孔130之后,形成正极侧电极焊盘129,并切割粘合层125。切割的结果,形成了器件分隔槽131,以将器件122互相分隔开。为了将排成矩阵的发光二极管122互相分隔开,器件分隔槽具有平面图形,由许多沿垂直和水平方向延伸的平行线组成。器件分隔槽131的底部朝向第二临时支持部件127的表面。第二临时支持部件127具有表面剥离层128,例如氟涂层,或硅树脂、水溶性粘合剂(例如PVA)或聚酰亚胺层。作为第二临时支持部件127的一个实施例,可使用由覆盖有UV粘合剂的塑料板组成的所谓的切割板,UV粘合剂的粘合强度在受到紫外线照射时变弱。用受激准分子激光束照射临时支持部件127的背表面侧。利用激光束的照射,如果剥离层125由聚酰亚胺制成,则因聚酰亚胺的剥蚀而在聚酰亚胺和石英底板之间的边界上发生剥离,从而将发光二极管122转移到第二临时支持部件127上。
在这种过程的一个实施例中,用氧等离子体刻蚀第二临时支持部件127的表面直到发光二极管122的表面暴露出来。利用受激准分子激光、调谐YAG激光束或二氧化碳激光束形成通孔130。通孔的直径设定为大约3至7μm。正极侧电极焊盘由Ni/Pt/Au制成。切割过程可利用普通的刀片进行,如果需要20μm或更小的切入宽度,则可用激光切割来进行切割过程。切入宽度取决于图像显示装置一个象素中被粘合层125覆盖的发光二极管的尺寸。作为一个实施例,用受激准分子激光束形成每条宽度为大约40μm的凹槽,以形成芯片形状。
利用机械装置将发光二极管122从第二临时支持部件127上剥离下来。图22示出这样一种状态排列在第二临时支持部件127上的发光二极管122被吸取系统133拾取。吸取系统133具有开口成相应于图像显示装置象素间距的矩阵的吸取孔135,以选择吸取某些发光二极管122。更特定地,每个的开口直径大约为100μm的吸取孔135排列成间距600μm,而吸取系统133可选择吸取300片发光二极管122。从Ni中通过利用腐蚀在SUS板这样的金属板上制作或形成孔来制作吸取孔135部分。在形成于金属板132中的吸取孔135的深处形成吸取腔134。控制吸取腔134的压力成负压,吸取系统133即可吸取发光二极管122。由于每个发光二极管122都处在表面近乎平面的被粘合层125覆盖的状态下,用吸取系统133对发光器件122的吸取可得以简化。
图23示出发光二极管被转移到第二底板140上去的状态。已预先在第二底板140上形成了粘合层136。通过使粘合层136相应于发光二极管122的部分硬化,发光二极管122可牢固地排列在第二底板140上。在装配时,吸取系统133的吸取腔的压力变高,以解除吸取系统133对发光二极管122的吸取。粘合层136由UV固化型粘合剂、热固化粘合剂或热塑粘合剂制成。另外,这样排列在第二底板140上的发光二极管122互相之间的间距大于支持在每个临时支持部件123和127上时发光二极管122互相之间的间距。用以硬化粘合层的树脂的能量从第二底板140的背表面给出。如果粘合层136由UV固化型粘合剂制成,则粘合层相应于发光二极管122的部分可利用紫外线来硬化,或者,如果粘合层136由热固化粘合剂制成,则用激光束来硬化。如果粘合层136由热塑粘合剂制成,则用激光照射来使粘合剂软化以将发光二极管136粘到它上面。
电极层137——同时也用作掩模板——布置在第二底板140上。特别地,在电极层137的屏幕侧——也就是观众侧——表面上形成黑铬层138。这使得提高图像对比度成为可能。进一步,由于通过使用黑铬层138而提高了能量效率,可及早硬化粘合层136被光束152选择照射的部分。如果粘合层由UV固化型粘合剂制成,则可用能量大约为1000mJ/cm3的紫外线对其进行照射。
图24示出这样一种状态三种颜色——即RGB——的发光二极管122、141、142排列在第二底板140上并用绝缘层139覆盖。通过在第二底板140上偏移所需颜色的位置的位置处装配每个发光二极管122、141和142,可形成象素间距固定的由三种颜色的发光二极管122、141和142组成的象素。绝缘层139可由透明的环氧树脂粘合剂、UV固化型粘合剂或聚酰亚胺制成。三种颜色的发光二极管122、141和142的形状并不一定要相同。在图24所示的实施例中,结构中没有六棱锥形GaN层的红色发光二极管141与另两种发光二极管122和142形状不同;然而,在这一步,发光二极管122、141和142中的每一个都已经被粘合层125覆盖以要形成树脂模塑片,因此,无需考虑它们器件结构方面的不同,可以用同样的方法处理发光二极管122、141和142。
图25示出布线形成步骤,其中在绝缘层139中形成开孔145、146、147、148、149和150,并形成用以将发光二极管122、141和142的正极和负极电极焊盘与用以在第二底板140侧布线的电极层137相连的布线部分143、144和145。由于发光二极管122、141和142的电极焊盘126和129的面积大,开孔——也就是通孔——的形状可做得较大,并且与直接形成在每个发光二极管上的通孔相比,这种通孔的定位精度可较粗糙。更特定地,当每个电极焊盘126和129的尺寸大约为60μm2时,可形成直径大约为20μm的通孔。通孔有三种,分别与布线板、正电极和负电极相连。每个通孔的深度通过控制激光束的脉冲数来优化,依赖于通孔种类。然后在布线上形成保护层,以完成图像显示装置的面板。保护层可由用于图25所示的绝缘层139的透明环氧树脂粘合剂制成。加热保护层使其硬化,以最好地覆盖布线。之后,在面板端部将驱动IC与布线相连,以制造驱动面板。
在上述排列发光器件的方法中,由于发光二极管122已经在临时支持部件123上以放大了的间距互相分开,利用器件122的大间距,可给出相对较大的电极焊盘126和129,且由于利用相对较大的电极焊盘126和129进行布线,即使最终装置的尺寸显著大于器件尺寸,也可以容易地形成布线。而且,根据本实施方案中排列发光器件的方法,由于发光器件周围的空间都被硬化树脂层覆盖,电极焊盘126和129可精确地形成在粘合层125的已构图表面上,且可以延伸到宽于器件尺寸的区域中,从而有利于第二转移步骤中吸取器对电极焊盘126和129的处理。进一步,在将每个发光二极管122转移到临时支持部件123上时,通过利用GaN材料在GaN和蓝宝石之间的边界处的分解(分解成金属Ga和氮),可相对容易地剥离发光二极管122。
下面将参考图26至31描述排列液晶控制器件的方法。在该实施方案中,液晶控制器件以用来控制作为最终产品的液晶面板上液晶的对准状态的薄膜晶体管作为例子。
如图26所示,在通常由石英玻璃衬底构成的第一衬底161上形成非晶硅膜162。非晶硅膜162为后继步骤中用作牺牲膜的剥离膜。在非晶膜162上形成二氧化硅膜163作为下绝缘膜,并在二氧化硅膜163上密集形成薄膜晶体管164,形成一个矩阵。如下制造薄膜晶体管164在多晶硅膜上形成栅氧化膜和栅电极,以及源和漏区。形成用于器件分隔的凹槽,其深度允许部分非晶硅膜162可被反应离子刻蚀等曝光,由此薄膜晶体管164互相分开。
如图27所示,第一衬底161与临时支持部件165相对以进行选择转移。剥离层166和粘合层167叠在临时支持部件165朝向第一衬底161的表面上。作为临时支持部件165的实施例,可使用玻璃板、石英玻璃板或塑料板。作为形成在临时支持部件165上的剥离层166的实施例,可使用氟涂层,或硅树脂、水溶性粘合剂(例如PVA)或聚酰亚胺层。作为形成在临时支持部件165上的粘合层167的实施例,可使用紫外线(UV)固化型粘合剂、热固化粘合剂或热塑粘合剂层。
临时支持部件165的粘合层167具有硬化区域167s和未硬化区域167y。第一晶体管161与临时支持部件165相对,从而要选择转移的薄膜晶体管164之一对着未硬化区域167y。如果粘合层167是UV固化型的,则可通过对粘合层167选择曝光以使要转移的薄膜晶体管164所处的区域未硬化而硬化其它区域,以此进行粘合层167的硬化调整,从而粘合层167具有硬化区域167s和未硬化区域167y。在这样的对准之后,用来自第一衬底161背表面的激光束照射对着未硬化区域167y的薄膜晶体管164,以利用激光剥蚀将薄膜晶体管164从第一衬底161上剥离下来。作为用于照射的激光,可使用受激准分子激光或调谐YAG激光。
通过利用激光剥蚀的剥离,将要选择转移的薄膜晶体管164转移到粘合层167上相对的未硬化区域中。处在第一衬底161上未被激光束照射的区域中的其它薄膜晶体管164没有转移到临时支持部件165上,因为粘合层167相应的部分位于硬化区域167s中而且这些薄膜晶体管164没有用激光束照射。应当指出,在图27中,只有一个薄膜晶体管164被激光束选择照射;然而,薄膜晶体管164中相距为n的那些也可被激光束照射并转移。利用这样的选择转移,选定的薄膜晶体管164排列在临时支持部件165上,间距大于排列在第一衬底161上的薄膜晶体管的原始间距。
在薄膜晶体管164从第一衬底161上选择转移到临时支持部件165上之后,如图28所示,使未硬化区域中的粘合剂硬化以固定薄膜晶体管164。未硬化区域的硬化可通过向未硬化区域167y施加能量——例如热或光——来进行。薄膜晶体管164即以支持在粘合层167上的状态牢固地支持在临时支持部件165上。
如图29所示,将薄膜晶体管164从临时支持部件165上转移到第二临时支持部件168上。第二临时支持部件168用于将薄膜晶体管164的薄膜晶体管层侧装配到第二底板上。因此,如果薄膜晶体管164的前侧还是背侧装配到第二底板上不会引起什么问题的话,就无需使用第二临时支持部件168。在从临时支持部件165向第二临时支持部件168转移薄膜晶体管164的情形中,在粘合层167中形成分隔槽167g以将薄膜晶体管164的区域与其它区域分隔开来。分隔槽167g的深度达到剥离层166的上表面,或者它也可达到剥离层166的下表面。
从剥离层166的上表面剥离薄膜晶体管164,并用吸取装置(未示出)将其从临时支持部件165上转移到第二临时支持部件168上(见图30),然后转移到第二底板上,与另一薄膜晶体管分隔开(第二转移步骤)。这一步骤与前面参考图22的器件排列方法中所描述的相同。
最后,如图31所示,在薄膜晶体管164如此装配到玻璃或透明塑料制成的第二底板176上且互相分隔开之后,在第二底板176上形成栅电极线、源电极和漏电极,并将它们与薄膜晶体管164的源和漏相连。在第二底板176侧形成透明电极膜172和对准膜173。表面具有透明电极膜175和对准膜174的相对底板169与第二底板176相对,二者之间有一间隙,用液晶填充该间隙以得到液晶面板。第二底板176上的薄膜晶体管164用作液晶的控制器件。薄膜晶体管164装配在第二底板176上,通过两步放大转移,它们之间显著分隔开,两步放大转移是第一转移步骤中的放大转移和第二转移步骤中的放大转移的组合。在两步放大转移方法中,令第一和第二转移步骤中的放大比分别为“ n”和“m”,则总的转移放大率为n×m,为了获得n×m的总转移放大率,转移需要在第一转移步骤中重复n2次,并在第二转移步骤中重复m2次,因此,总的转移次数为(n2+m2)次。同时,根据一步转移方法,为了获得n×m的转移放大率,转移的次数为(n+m)2=n2+2nm+m2次。结果,根据两步放大转移方法,转移的次数可比根据一步转移方法的转移次数少2nm次,相对节省了制造步骤所需的时间和成本。这在转移放大率更大时更为重要。
附带地,已知一些图像显示装置,在其上装配有发光器件——例如发光二极管,以使这些发光器件在布线板上排成矩阵。
图32示出日本专利号2895566的说明书和附图中公开的发光二极管。这种所谓的倒装片型发光二极管在同一表面侧具有一对正极和负极电极部分。如图所示,引线框200包括形成一对正、负电极的引线部件201和206,二者互相平行,之间有一间隙。在引线框201和206的前端202和207上分别形成扁平部分203和208,装配发光芯片190以使其架在扁平部分203和208之间。反射部分204和209分别整体形成在延续到扁平部分203和208的侧外表面上,好像从扁平部分203和208倾斜向外。发光芯片——例如GaN蓝光发光芯片——的电极部分通过凸起205与作为负电极的引线部件201和作为正电极的引线部件206相连。
图33示出日本专利公开号Hei 9-293904中公开的芯片型LED(发光二极管)。如图所示,在形成在绝缘陶瓷支撑部件211上的导电层上装配LED 213,其中LED 213的电极214通过导线215与电极端212相接,用密封树脂216填充环绕LED 213的空腔。
图34示出同一文档日本专利公开号9-293904中公开的芯片型LED。如图所示,在陶瓷支撑部件221上形成一对电极端222,LED 223表面上的一对电极224通过导电铜焊部分225与这对电极端222倒装相连。为了将LED 223强制结合到陶瓷支撑部件上,用密封树脂226填充LED和制成不见之间的间隙。
然而,在将这样的发光二极管排成矩阵来制造图像显示装置的情形中,需要每个发光二极管各自容纳在一个外壳中,并将要安装的许多发光二极管的列阵装配到平板型图像显示装置等中。在此情形中,由于形成在晶片上的LED切割成单个芯片并且每个都密封在一个外壳中,每个未封装芯片状态下的LED芯片尺寸接近mm2的量级,而LED外壳的尺寸则有几个mm2。结果,一个象素的尺寸变大,降低了分辨率,从而无法制造小尺寸高分辨率的图像显示装置。进一步,对于GaN基氮化物半导体制成的发光二极管来说,由于发光二极管通常形成在蓝宝石衬底上,每个LED的外壳厚于蓝宝石衬底的厚度。
以下,将描述装配发光器件的方法的实施例,这些实施例能够解决上述问题,也就是说,这些实施例能够实现高分辨率的图像显示、在短时间内装配发光器件并降低生产工艺所需的成本。
实施例1图35为图像显示装置一个实施例的基本部分的剖面图,其上根据本发明的装配方法装配了发光器件。根据该实施例的图像显示装置为图35所示的全色备色(full color-ready color)图像显示装置231,其中发光器件为用以发射红、绿和蓝光的发光二极管,并排成矩阵。
在根据该实施例的图像显示装置231中,在玻璃和塑料材料制成的布线板240的底板主平面241上的布线层247和248预先形成特定的布线图形。布线层248形成为每个发光二极管的p电极提供信号的布线,而布线层247形成为每个发光二极管的n电极提供信号的布线。应当指出,布线层247和248之一对各个发光二极管是公用的。
对于每个发光二极管,通过p电极244在布线层248上提供晶体生长层。图35所示的晶体生长层243处在与晶体生长时的状态垂直倒转的状态。正如后面所要描述的,晶体生长层243通过掩模层的窗口部分从位于晶体生长层243上侧的下生长层245上选择生长而形成。图35中所示的下生长层245也处在与晶体生长层243的晶体生长时的状态垂直倒转的状态。晶体生长层243由具有纤锌矿结构的氮化物半导体材料——例如掺硅GaN——制成。晶体生长层243形成六棱锥形,具有被S平面——也就是(1-101)平面——覆盖的倾斜侧表面。由于图35示出图像显示装置的剖面,晶体生长层243的剖面形状为倒转的近似三角形的形状。
通过在n型半导体层和p型半导体层之间提供有源层,为晶体生长层243提供了发光区。有源层靠近晶体生长层243的倒转六棱锥形状的最外面部分。在该实施例中,相邻三个发光器件中的有源层的带隙能量各不相同,以分别相应于红、绿和蓝的光发射。在其它的结构和尺寸构造方面,发光二极管都基本相同。
六棱锥形的晶体生长层243装配在布线板240上,其姿态与沿布线板240主平面发现方向进行晶体生长时的姿态相倒转。因此,在晶体生长层243的装配状态中,其晶体生长时六棱锥形状的背表面变成了它的顶面,这个面用作出光侧。更特定地,六棱锥形晶体生长层243与下生长层245通过上述用于晶体生长的掩模层(未示出)的窗口部分相接,并且掩模层的窗口部分用作出光开孔。
下生长层245用作选择生长的种子层。下生长层245通过掩模层的窗口部分与晶体生长层243相接,下生长层245的平坦顶面用作出光面250。下生长层245还用作n电极侧上的布线的一部分,也就是说,它用作金属制成的n电极249和晶体生长层243之间的电流通路。在图中所示的状态中,由于发光器件的垂直倒转,n电极249处在晶体生长层245之下。对于这样一种n电极249,由于晶体生长层243大于n电极249,通过在n电极249下方形成凸起246而使n电极249的高度与晶体生长层243的高度相匹配。凸起246为由电镀等形成的连接部。在该实施方案中,凸起246由Cu、Ni等通过电镀或化学镀而形成,厚度大约为10μm。为了防止凸起246的氧化,在凸起246的表面上通过电镀形成厚度大约为0.1μm的Au层。在装配每个发光器件时,凸起246的底部与预置在底板主平面241上的布线层247相连。
根据发光器件的功能,在凸起246、布线层247和248、以及晶体生长层243的周围形成间隙。在该实施例的图像显示装置中,这些间隙被热固化粘合剂或紫外线固化型粘合剂制成的粘合层242所填充。
图36A和36B示出每个要装配到该实施例的图像显示装置上去的发光二极管,其中图36A为该发光二极管的剖面图而36B为该发光二极管的顶视图。应当注意,装配在图35中所示的图像显示装置上的许多发光二极管中的每一个的姿态都与图36A中所示的发光二极管的姿态沿底板主平面的发现方向相倒转。
下面将参考图36A和36B描述发光二极管的制造。通过下生长层245在不同于布线板240的生长衬底——例如,优选地为蓝宝石衬底——上由选择生长形成六棱锥形或六棱梯形晶体生长层243。晶体生长层243可由选择生长容易地形成,其结构中具有倾向衬底主平面的结晶面,例如,S平面。特别地,S平面为由选择生长在(C+)平面上形成的稳定平面,相对容易形成。S平面由六边形系统的米勒指数表示为(1,-1,0,1)平面。对于镓氮基化合物半导体制成的晶体层,S平面上的键数最大,结构有效地提高了V/III比。这在提高堆叠结构的结晶度方面很有利。进一步,在该晶体生长层243中,由于晶体沿不同于衬底的方向生长,从衬底向上延伸的位错经常会拐弯。这在减少晶体缺陷方面是有利的。
用于形成晶体生长层243的材料种类并没有特别的限制,只要这种材料能形成由第一导电层、有源层251和第二导电层252组成的发光区,但是最好具有纤锌矿结构。这些材料的特定实施例可包括III族元素基化合物半导体、BeMgZnCdS基化合物半导体和BeMgZnCdO基化合物半导体,并进一步包括镓氮(GaN)基化合物半导体、铝氮(AlN)基化合物半导体、铟氮(InN)基化合物半导体、铟镓氮(InGaN)基化合物半导体以及铝镓氮(AlGaN)基化合物半导体。特别地,优选使用氮化物半导体,例如镓氮基化合物半导体。应当指出,根据本发明,InGaN、AlGaN等并不是指仅具有三元混合晶体结构的氮化物半导体,类似地,GaN等并不是指仅具有二元混合晶体结构的氮化物半导体。例如,即使InGaN含有微量的Al和无法避免的杂质,其含量处在不足以改变InGaN功能的范围内,那么这样一种材料也可用于形成根据本发明的晶体生长层。
为了生长上述晶体层,可以使用各种气相生长方法金属有机物化学气相沉积(MOCVD(MOVPE))和分子束外延生长(MBE)方法,以及氢化物气相外延(HVPE)方法。特别地,MOCVD方法能有效地快速生长具有高结晶度的晶体层。在采用MOCVD方法的情形中,用三烷基金属化合物作源,例如,用TMG(三甲基镓)或TEG(三乙基镓)作为Ga源,用TMA(三甲基铝)或TEA(三乙基铝)作为Al源,而用TMI(三甲基铟)或TEI(三乙基铟)作为In源;用氨气或联胺这样的气体作为氮源;用各种不同的气体作为掺杂源,例如Si用硅烷气体,Ge用锗气体,Mg用Cp2Mg(环戊二烯基镁),Zn用DEZ(二乙基锌)。根据MOCVD方法,将这些气体通向通常加热到600℃或以上的衬底表面进行分解,由外延生长形成InAlGaN基化合物半导体。
具体地,选择生长可如下进行在下生长层245上形成薄掩模层,并在掩模层上选择开孔以形成窗口区。掩模层可由二氧化硅或氮化硅制成。窗口区是形成在掩模层中的开孔部分。在该实施方案中窗口区形成六边形;然而,它可以形成其它任何形状,例如圆形、方形、三角形、矩形、菱形、椭圆形、或它们的组合。由于在选择生长过程中晶体生长从掩模层的窗口区沿横向进行,有可能抑制穿通位错的产生。
在每个用于本发明的图像显示装置的发光二极管中,有源层251在平行于倾斜结晶面的平面上延伸,且处在第一导电层和第二导电层252之间。有源层243通过半导体层形成在晶体生长层243上,或形成在晶体生长层内或晶体生长层表面上。
第一导电层为p型或n型包层,第二导电层为n型或p型包层。对于由掺硅镓氮基化合物半导体层形成的晶体生长层,形成掺硅镓氮基化合物半导体层作为n型包层、形成InGaN层作为有源层251,并形成掺镁镓氮基半导体层作为p型包层。这样的结构称作双异质结构。作为有源层251形成的InGaN层处在AlGaN层之间。有源层251可以是单个的体有源层;然而,它也可以具有量子阱结构,例如单量子阱(SQW)结构、双量子阱(DQW)结构或多量子阱(MQW)结构。作为需要,量子阱结构具有垒层,用以分隔各个量子阱。InGaN构成的有源层251具有有利的结构,它容易制作且能够提高使用该结构的器件的发光特性。InGaN层还有另一有利结构,它在S平面(氮原子很难从这个面上释放)上的InGaN生长的情形中可容易结晶,以提高结晶度,从而提高了使用它的器件的发光效率。
形成在晶体生长层243上的p电极244用以向有源层251注入电流。根据该实施方案,p电极244形成在晶体生长层243的倾斜结晶面上,由于发光二极管倒转装配到布线板上,所以p电极244用作开孔向上的反射膜,它提高了倒转发光二极管的出光效率。
在该实施例的图像显示装置中,处在布线板240上的发光二极管都处在与晶体生长时相倒转的姿态。此时,下生长层245的平坦顶面用作出光面250,光从晶体生长层243的有源层251通过出光面250而出射。与用作反射膜的p电极244的功能相结合,下生长层245顶面的功能使得提高出光效率成为可能。尽管晶体生长层243通过选择生长形成六棱锥形,由于凸起246处在n电极249侧,每个器件的下生长层245中用作出光面250的顶面可基本处于同一水平面上,也就是说,处在同一水平高度。进一步,由于环绕每个器件的空间都被粘合剂242所填充,有可能消除晶体生长层243倾斜的问题。
由于在完成每个发光二极管之后再对其进行装配,有可能避免次品器件装配到布线板上,从而提高了作为一个整体的图像显示装置的成品率。通过用上凸起246,一对正、负电极集中在布线板240侧上,有可能消除电极的出现而使出光面积减小的麻烦。利用这种结构,该实施例的图像显示装置可以进行高分辨率彩色显示。因此,可根据有效地运用了选择生长的优点的制造工艺来制造该实施例的图像显示装置。
在该实施例的图像显示装置中,n电极249和凸起246都可由两个相邻二极管共用,且每个二极管的下生长层245都可与相邻二极管的下生长层相连。在该实施例中,所构成的图像显示装置可进行彩色显示;然而,它也可以显示两种颜色或显示另一种颜色与RGB的组合。可在每个布线板240上放置用于驱动每个二极管的选择晶体管。
尽管在该实施例中器件设为发光器件,但本发明并不局限于此。例如,每个倒转装配在布线板上的器件可以是晶体管或其它半导体器件。可预备装配这种器件的器件装配板,然后在后继步骤中完成图像显示装置或任何其它半导体装置。
实施例2根据本发明使用发光二极管的图像显示装置具有与实施例1中的图像显示装置不同的结构。参看图37,示出根据该实施例的图像显示装置,其中布线层268和269形成在布线板260的底板主平面261上,凸起266和267分别形成在布线层268和269上,晶体生长层263通过p电极264和n电极265与凸起266和267的上侧相连。晶体生长层263形成近似平板形。有源层(未示出)在晶体生长层263上延伸;p电极264和n电极265形成以与第一导电层和第二导电层电互联,第一导电层和第二导电层把有源层夹在中间。然后将如此预备的发光二极管倒转,并将其置于凸起266和267上以使处于晶体生长层263背表面上的p电极264和n电极265分别与凸起266和267的上部相连。与实施例1类似,用热固化粘合剂或紫外线固化型粘合剂填充凸起266和267周围的空间。
在该实施例的图像显示装置中,由于p电极264和n电极265分别与凸起266和267相连,提供光发射的晶体生长层可保持在一个特定的水平高度,而且由于凸起266和267周围的空间被粘合层262填充,故而有可能消除晶体生长层263等倾斜的问题。由于每个发光二极管在完成之后才装配,所以有可能避免次品器件装配到布线板上,并因此提高了作为一个整体的图像显示装置的成品率。通过用上凸起266和267,一对正、负电极集中在布线板260侧上,有可能消除电极的出现而使出光面积减小的麻烦。利用这种结构,该实施例的图像显示装置可以进行高分辨率彩色显示。
实施例3该实施例涉及制造实施例1中的图像显示装置的方法。下面将参考图38至46以制造步骤的顺序描述该实施例中的制造方法。
如图38所示,预备用以生长的衬底270,它是C平面作为主平面的蓝宝石衬底;在用以生长的衬底270上形成下生长层271,它由低温和高温缓冲层组成。形成由二氧化硅或氮化硅制成的掩模层以覆盖下生长层271,在掩模层中形成相应于晶体生长区域的窗口区。之后,通过从相应窗口区的选择晶体生长,得到了每个六棱锥形的晶体生长层272,它们具有被倾斜S平面覆盖的侧表面。在每个晶体生长层272上形成第一导电层、有源层以及第二导电层(未示出)。在形成于掩模层中的开孔处,由多层金属膜——例如Ni/Pt/Au膜——形成p电极273,由多层金属膜——例如Ti/Al/Pt/Au膜——形成n电极274。P电极273通过,例如,气相沉积来形成,而n电极通过,例如,浮脱(lift off)来形成。
在p电极273和n电极274形成之后,将用以生长的衬底270上的下生长层271分隔成相应于各个器件的部分。下生长层271的分隔通过,例如,反应离子刻蚀来进行。每个器件的芯片尺寸通常设为一个大约为20μm2的值,芯片的排列间距通常设为一个大约为25μm的值。
在用以生长的衬底270上全部形成抗蚀层275。抗蚀层275的高度设为一个近似等于每个p电极273尖端部分的高度的值。在抗蚀层275中开出一个相应于每个n电极274的区域,以在抗蚀层275中形成开孔276,如图39所示,从而使位于开孔276底部的n电极274暴露出来。
在每个形成于抗蚀层275中的开孔276中通过,例如,电镀形成凸起277。更特定地,凸起277为由Cu或Ni通过电镀或化学镀而形成的高度大约为10μm的连接部。为了防止氧化,通过电镀在凸起277表面上形成厚度大约为0.1μm的Au层。在形成每个凸起277之后,移除抗蚀层275,如图40所示。
在移除抗蚀层275之后,如图41所示,预备用以转移的底板280,它由玻璃等制成,并覆盖有转移材料278,用以生长的衬底270与用以转移的底板280相对,衬底上已如上述那样形成了凸起277。转移材料278为粘性材料,优选地对用以照射的激光束的波长表现出低的吸收。这是因为在这种材料中,激光束导致的剥蚀较低,从而提高了分隔发光器件的位置精度。在用以生长的衬底270的主平面与用以转移的衬底280的主平面相对的情形中,用KrF受激准分子激光束或三倍频YAG激光束照射用以生长的衬底270背表面,该背表面与形成发光器件的一侧相对。通过激光束的照射,在下生长层271和用以生长的衬底270之间的边界处产生氮,从而将发光器件从用以生长的衬底270上分离下来。
如图42所示,每个这样从用以生长的衬底270上通过激光束照射而分离下来的发光二极管临时支持在用以转移的底板280上,同时掩埋在转移材料278中。此时,Ga层281粘附在每个下生长层271上表面上,发光二极管从这里与用以生长的衬底279分离。由于下生长层271的上表面用作出光面,Ga层281必须通过腐蚀等方法移除。用于这种腐蚀的腐蚀剂可以是碱性的也可以是酸性的,但不能降低转移材料278的粘合强度。
构造图像显示装置,以使RGB之一的发光器件整齐排列,因此,如图43所示,发光器件中间距相应于布线板电极间距的那些被从用以转移的底板280上选择拾取。这基于这样的假设支持在用以转移的底板280上的发光二极管在发光颜色——即发射波长——方面都一致。因此,为了在布线板上装配发射波长不同的发光二极管,必须使用许多用以转移的衬底280。在该实施例中,使用吸取头282来从用以转移的底板280上选择拾取发光二极管。吸取头282具有前端284,每个前端284上都形成了吸取孔283。前端284的间距相应于布线板的电极间距。使吸取头282每个前端284的环绕吸取孔283的部分变平,而下生长层271用作发光器件出光平面的上表面吸在前端284的扁平部分上。吸取操作可对每个器件进行。然而,根据该实施例,许多间距相应于布线板电极间距的发光器件同时被吸取。通过这种结构,可能简化制造工艺并降低制造成本。
如图44所示,将许多间距相应于布线板电极间距的发光器件送到布线板上,后者用参考号290标示。器件沿垂至于布线板290主平面的方向靠近布线板290的主平面,与其粘合。在布线板290的主平面上已预先形成了布线层291和292。在将器件与布线板290的主平面压接触之后,释放吸取头282,以使每个器件与布线板290临时结合。用粘合剂——它用于将器件支持在布线板290的主平面上——覆盖布线板290的主平面。另外,粘合剂293可以是热固化粘合剂或紫外线固化型粘合剂。
图45示出通过将RGB器件送到布线板290的主平面上而得到的状态。在图中所示的状态中,相邻两个器件的发射波长不同。每个器件确实装配在布线板290上,同时通过使用凸起277而使其相对于布线板290的主平面保持水平。
将加压头295压到每个下生长层271作为每个器件出光侧的上表面上,在这种状态中,使粘合剂293硬化。如果粘合剂293是热固化型,则加压头295可以是加热型加压头,以脉冲加热方式加热。如果粘合剂293为紫外线固化型,在每个器件被加压头295压在布线板290上的状态中,紫外线可以从布线板290背表面向上发射,或者在加压头由像玻璃或石英这样的透光材料制成的情形中,紫外线也可从加压头295的上侧向下发射。
在根据该实施例制造图像显示装置的方法中,由于许多间距相应于布线板290电极间距的发光器件选择装配到布线板290的主平面上,所以有可能在短时间内以低成本制造图像显示装置。通过使用凸起277,每个器件可以确定地装配成水平姿态,而不会倾斜;进一步,也减少了将器件装配到布线板上所需的余量。结果,有可能以高精度在布线板上排列发光器件。进一步,凸起277的使用可实现可靠的电布线以及出光效率的最大化。
在该实施例中,由于可以在发光器件支持在用以转移的衬底280上的状态下对其进行检查,所以有可能及早移除次品器件,从而提高成品率。进一步,由于可以在器件装配到布线板290上之前就将Ga层移除,故而有可能消除布线板被腐蚀破坏的麻烦。
实施例4下面将参考图47至48描述该实施例,其中发光器件形成的间距相应于布线板电极的间距,并直接装配到布线板上。
如图47所示,以相应于布线板301电极间距的间距排列的发光器件形成在用以生长的衬底305上。与前面的实施例类似,每个发光器件如下形成在下生长层311上形成六棱锥形晶体生长层312,在晶体生长层312上形成p电极313,在下生长层311上形成n电极314,并形成高度近似等于p电极313高度的凸起315。许多如此形成在用以生长的衬底305上的发光器件互相之间的间距相应于布线板301各组电极层303和302的排列间距。
在其上形成发光器件的用以生长的衬底305与布线板301相对,在这种状态中,用KrF受激准分子激光束或三倍频YAG激光束照射用以生长的衬底305的背表面,在每个下生长层311和用以生长的衬底305之间的边界上产生氮,从而每个发光器件从用以生长的衬底305上分离下来并支持在布线板301上。
图48示出发光器件支持在布线板301上的状态。之后,对其它发射波长的发光器件重复装配操作,并硬化粘合剂307,从而完成图像显示装置。此时,在下生长层311的上表面形成Ga层316,因此,如果粘合剂307是紫外线固化型的,则紫外线可从布线板301的背表面侧发射。如果粘合剂307是热固化型的,则可以用与实施例3中所描述的相同的方式进行硬化。通过在硬化粘合剂307之后移除Ga层316,有可能显著降低布线板301的破坏。
实施例5下面见参考图49描述该实施例,其中用激光束选择照射间距相应于布线板电极间距的发光器件,已分离下来的发光器件直接装配到布线板上。
如图49所示,在用以生长的衬底328上形成许多发光器件。与前一实施例类似,每个发光器件如下形成在下生长层327上形成六棱锥形晶体生长层324,在晶体生长层324上形成p电极326,在下生长层327上形成n电极,并形成高度近似等于p电极326高度的凸起325。
另一方面,在布线板320主平面上以特定间距形成各组电极层312和322。在用以生长的衬底328与布线板320相对的状态中,用激光束照射那些间距相应于布线板320电极间距的发光二极管。通过用KrF受激准分子激光束或三倍频YAG激光束照射用以生长的衬底328的背表面,在每个下生长层327和用以生长的衬底328之间的边界处产生氮,从而每个发光器件都从用以生长的衬底328上分离下来,并支持在布线板320上。在该情形中,由于用激光束选择照射那些间距相应于布线板320电极间距的发光器件,并不是用以生长的衬底328上所有的发光器件都从用以生长的衬底328上分离,而仅有那些间距相应于布线板320电极间距的一种颜色的器件可被分离下来并确实转移到布线板320上。通过对其它发射波长的器件重复这一步骤,就完成了图像显示装置。激光束的照射可通过扫描单束光而进行,也可固定单束光,而移动相关的用以生长的衬底和布线板。
实施例6下面将参考图50至54描述该实施例,其中用两块用以转移的底板来装配发光器件。
如图50所示,在衬底336上如下形成每个发光器件在下生长层332上形成六棱锥形晶体生长层333,在晶体生长层333上形成p电极334,在下生长层332上形成n电极,并形成高度近似等于p电极334高度的凸起335。在用以生长的衬底336上如此形成的发光器件之间的间距相应于布线板的电极间距。用以生长的衬底336于用以转移的底板330相对,在这样一种状态中,通过用激光束照射用以生长的衬底336的背表面而将每个发光器件从用以生长的衬底336上分离下来,并将它们转移到用以转移的底板330上。用以转移的底板330具有一层转移材料331,例如硅树脂,发光器件通过转移材料331支持在用以转移的底板330上。
如图51所示,移除Ga层,从而发光器件被用以转移的底板330支持,出光面向外。随后,如图52所示,在用以转移的底板330上固定用以转移的第二底板341,后者的上表面用转移材料340覆盖。在该情形中,转移材料340为紫外线固化型粘合剂,用以转移的第二底板341用玻璃或石英玻璃制成。
然后剥离用以转移的第一底板330,从而将发光器件转移到用以转移的第二底板341上,如图53所示。
如图54所示,用以转移的第二底板341与布线板342相对,以使发光器件相应于以特定间距形成在布线板主平面上的各组电极层343和344。在这样一种状态中,在间距相应于布线板342电极间距的位置上用激光束照射用以生长的衬底328的背表面,从而通过转移材料的剥蚀而将每个发光器件分离,并将它们支持在布线板342上。在该转移方法中,由于激光束的照射是在间距相应于电极间距的位置上选择进行,所以并不是衬底328上的所有发光器件都被分离,而是转移了间距相应于布线板电极间距的那些一种颜色的器件。之后,对其它发射波长的发光器件重复上述步骤,并硬化布线板342上的粘合剂345,从而完成图像显示装置。另外,如果转移材料340在剥蚀之后的残渣粘附在每个发光器件的背表面上,可通过清洗或抛光将其移除。
实施例7下面将参考图55描述该实施例,它是实施例6的一个调整。如图55所示,发光器件通过转移材料351置于用以转移的第二底板350上。发光器件如下制造在下生长层353上形成六棱锥形晶体生长层354,并形成高度近似等于p电极高度的凸起355。发光器件之间相隔的间距并不相应于布线板的电极间距,而是一个便于制造的间距。其它步骤与实施例6中所示的相同。
如图56所示,用激光束选择照射用以转移的第二底板350的背表面侧,由此通过转移材料351的剥蚀而将选定的发光器件从用以转移的第二底板350上分离下来,并将它们转移到具有布线层362和363的布线板360上。在该转移方法中,由于激光束的照射是在间距相应于电极间距的位置上选择进行,所以并不是衬底328上的所有发光器件都被分离,而是转移了间距相应于布线板电极间距的那些一种颜色的器件。之后,对其它发射波长的发光器件重复上述步骤,并硬化布线板360上的粘合剂361,从而完成图像显示装置。另外,如果转移材料351在剥蚀之后的残渣粘附在每个发光器件的背表面上,可通过清洗或抛光将其移除。
实施例8该实施例涉及一种图像显示装置,其中n电极布线部分和p电极布线部分形成在晶体生长层的上、下侧。在该实施例的图像显示装置中,如图57所示,在布线板370的底板主平面371上形成p电极布线部分372,用p电极布线部分372的上端支撑具有倾斜结晶面的六棱锥形晶体生长层374并与其相连。用粘合层373填充晶体生长层374周围的空间。在晶体生长层374上形成第一导电层、有源层和第二导电层,它们在图上都没有示出。应当指出,晶体生长层374支撑在粘合层373中,其姿态与晶体生长时的姿态相倒转。在平行于晶体生长层374的倾斜结晶面的平面上形成p电极375。在晶体生长层374的上侧出现用于晶体生长的平坦下生长层376,下生长层376的上表面用作出光面377。形成n电极布线部分378,并使其与下生长层376出光面377侧上的一个角落部分电互联,该角落部分并不与第一导电层、有源层和第二导电层沿底板主平面371法线方向的堆叠所组成的发光区域重叠。n电极布线部分378的一部分在粘合层373上延伸。更特定地,在通常由树脂制成的粘合层373上形成n电极布线层,在粘合层373硬化之后,对n电极布线层进行构图使其成为各个n电极布线部分378。用像聚酰亚胺这样的树脂制成的保护层379覆盖每个n电极布线部分378。
在该实施例的图像显示装置中,与p电极和n电极都出现在晶体生长面侧的发光器件不同,在该图像显示装置的发光器件中,至少是n电极布线部分378处在下生长层376的出光377侧。结果,每个发光器件的芯片尺寸得以减小一个相应于n电极布线部分的尺寸。由于n电极布线部分378和p电极布线部分372形成在晶体生长层374的上、下侧,它们之间在三维上分开。因此,有可能消除p电极布线部分378和n电极布线部分372之间的短路,也拓宽了n电极布线部分378的宽度,从而可容易地进行布线。
在上述这些实施例中,由Cu或Ni制成的凸起的表面用Au层覆盖;然而,凸起也可使用焊接材料制成。可通过焊接材料的电镀或气相沉积在发光器件的电极上形成凸起。在使用焊料凸起的情形中,可预先用用于焊接的焊剂代替支持在布线板上的粘合剂来覆盖布线板。在该情形中,发光器件由焊剂的粘合强度支持在布线板上,根据一示例性实施方案,在三种颜色的发光器件分离且转移之后,将整个布线板进行回流处理,以将发光器件连接到布线板上。在此情形中,由于布线板置于回流炉中,所以可使用玻璃板作为布线板。在由焊接形成连接之后,清除焊剂,并使芯片和布线板之间的密封剂硬化。焊接形成的连接有如下优点连接电阻小,而且由于在融化焊剂时通过自对准使发光器件的对准精度提高,故而象素的间距相应于布线电极的构图精度,以使象素间距保持常数,从而提高了图像显示装置的分辨率。在修理发光器件的情形中,在注入密封剂之前可直观地检查发光器件,如果发现了次品器件,就可通过局部加热该次品器件以融化其焊剂凸起来修理该次品器件。
本发明的图像显示装置可以是使用像发光二极管(LED)或半导体激光器这样的发光器件的显示装置,并可以包括这样的图像显示装置它具有发光器件排列在布线板上的结构,它包括在分立电子设备中,例如用作电视接收机、放像系统或计算机的显示器,游戏机的输出系统,以及家用电子设备的显示器;进一步还包括小尺寸图像显示装置,用作车载导航系统、移动电话、移动信息终端、图像记录系统以及监视器的显示屏。
如上所述,根据本发明的图像显示装置,有可能增进各种特性,例如分辨率、图像质量和发光效率,容易地实现大尺寸屏幕,以及降低制造成本。特别地,根据本发明的图像显示装置,由于每个发光器件具有由占据面积——具体说来处在大于等于25μm2小于等于10000μm2的范围内——代表的微小尺寸,因此可以高密度排列发光器件;而且由于发光器件在完成之后才装配到布线板上,所以可以提高成品率,进一步,如果需要形成大尺寸屏幕,则有可能无需对屏幕进行μm量级的严格工艺控制。
根据依照本发明制造图像显示装置的方法,有可能在布线板上以高密度容易地排列发光器件,并且通过利用临时支持板和能量束,也有可能在转移微器件时将其装配到布线板上所要装配的位置处。
另一方面,根据排列器件的方法和依照本发明制造图像显示装置的方法,由于器件支持在临时支持部件上时间隔可以较大,通过利用该大间隔,可给出相对较大的电极焊盘等;并且由于利用该相对较大的电极焊盘进行布线,即使最终装置的尺寸显著大于每个器件的芯片尺寸,也能实现器件之间容易的布线。
根据排列器件的方法和依照本发明制造图象显示装置的方法,由于发光器件周围的空间被硬化粘合层覆盖,电极焊盘每个都可以精确形成在粘合层的平坦表面上,延伸到宽于每个器件芯片尺寸的区域,从而在使用吸取器执行的第二转移步骤中电极焊盘的处理可变得简便。另外,对于发光二极管从用以生长的衬底——通常是蓝宝石衬底——向临时支持部件的转移,通过利用GaN基材料在蓝宝石衬底和GaN基材料之间的边界上的分解(分解成Ga和氮),可相对容易地将每个器件从蓝宝石衬底上剥离下来。
在排列器件的方法中采用的两步放大转移方法和根据本发明制造图像显示装置的方法中,令第一和第二转移步骤中放大比分别为“n”和“m”,则总的转移放大率为n×m,为了获得n×m的总转移放大率,转移必须在第一转移步骤中重复n2次,在第二转移步骤中重复m2次,因此,转移的总次数为(n2+m2)次。同时,根据一步转移方法,为了获得n×m的转移放大率,转移的次数为(n+m)2=n2+2nm+m2次。结果,根据两步放大转移方法,转移的次数可比根据一步转移方法的转移次数少2nm次,相对地节约了制造步骤所需的时间和成本。这在转移放大率更大的情况下更为重要。
根据本发明的图像显示装置,其中每个发光二极管排列在布线板上,其姿态与晶体生长时的姿态相倒转,由于扁平下生长层的上表面用作出光面而且p电极用作反射膜,所以有可能提高出光效率。在该装置中,尽管通常将晶体生长层通过选择生长形成六棱锥形,由于在n电极侧设置了一个凸起,对于每个器件,晶体生长层可处在与下生长层相同的高度,而且由于器件周围的空间都填充了粘合剂,所以有可能消除器件的晶体生长层等倾斜的麻烦。
在上述图像显示装置中,由于发光器件在完成之后才装配到布线板上,所以有可能防止次品器件装配到到布线板上,从而提高作为一个整体的图像显示装置的成品率。通过每个凸起的使用,在布线板侧集中了一对正、负电极,所以有可能消除电极的出现使出光面积减小的麻烦。利用这种结构,该实施例的图像显示装置可进行高分辨率彩色显示。另外,可依照有效地利用了选择生长的优点的制造工艺来制造该实施例的图像显示装置。
在根据该实施例制造图像显示装置的方法中,由于许多间距相应于布线板电极间距的发光器件选择装配到布线板的主平面上,所以有可能在短时间内以低成本制造该图像显示装置。每个器件可确定地以水平姿态装配,且通过使用每个凸起,可防止器件倾斜,而且器件装配在布线板上时对准所需的余量也得以减小。结果,有可能在布线板上以高精度排列发光器件。凸起的使用还可实现可靠的电布线和出光效率的最大化。
参考号说明1,21,80布线板DR00-DB11发光二极管32,33晶体管34电容51蓝宝石衬底52第二导电型包层53有源层54第一导电型包层55n型电极56p型电极57分隔槽60临时支持板70吸取器81布线电极90,121,161第一衬底91,123,165临时支持部件95,140,168第二底板92,101器件122发光二极管164薄膜晶体管
权利要求
1.图像显示装置,包括用以响应特定图像信号而显示图象的多个发光器件的一个列阵,其特征在于每个所述发光器件中占据面积都处在一个大于等于25μm2小于等于10000μm2的范围内;以及所述发光器件装配在布线板上。
2.根据权利要求1的图像显示装置,其中每个所述发光器件的占据面积与所述图像显示装置上一个象素的占据面积之比处在一个大于等于10小于等于40000的范围内。
3.根据权利要求2的图像显示装置,其中每个所述发光器件的占据面积与所述图像显示装置上一个象素的占据面积之比处在一个大于等于10小于等于10000的范围内。
4.根据权利要求1的图像显示装置,其中所述发光器件选自氮化物半导体发光器件、砷化物半导体发光器件,以及磷化物半导体发光器件。
5.根据权利要求1的图像显示装置,其中一个象素由一组三个所述发光器件组成,这三个发光器件的波长互不相同。
6.根据权利要求1的图像显示装置,其中电流保持电路与每个所述发光器件电连接,以保持发光器件中的电流。
7.根据权利要求1的图像显示装置,其中所述电流保持电路形成芯片形状,与所述发光器件一起装配到布线板上。
8.根据权利要求7的图像显示装置,其中每个形成芯片形状的所述电流保持电路的尺寸近似等于每个发光器件的尺寸。
9.制造图像显示装置的方法,该装置包括用以响应特定图像信号而显示图像的多个发光器件的一个列阵,该方法的特征在于预备布线板,其上已预先给出了特定的矩阵状布线;预备多个分成单个芯片的发光器件,每个所述发光器件中占据面积都处在一个大于等于25μm2小于等于10000μm2的范围内;以及将所述发光器件装配到布线板上,使所述发光器件与所述布线相连,以此制造图像显示装置。
10.根据权利要求9的制造图像显示装置的方法,其中在特定的器件形成衬底上堆叠一半导体层;所述多个发光器件形成在半导体层上,以便排列在其上;所述多个发光器件分成单个芯片;以及将所述发光器件的分隔芯片装配到布线板上。
11.根据权利要求10的制造图像显示装置的方法,其中在相邻两个所述发光器件之间的区域中形成深达器件形成衬底的前表面的凹槽,使得凹槽环绕每个器件;从所述器件形成衬底上分离每个被凹槽环绕的发光器件;以及将所述分离的发光器件装配到所述布线板上。
12.根据权利要求10的制造图像显示装置的方法,其中每个所述分离的发光器件向布线板上的装配如下进行在用吸取器吸取发光器件的前表面或背表面的状态中,将发光器件装配到布线板上。
13.根据权利要求10的制造图像显示装置的方法,其中每个所述发光器件从器件形成衬底上的分离如下进行用能量束从器件形成衬底的背表面照射所述发光器件。
14.根据权利要求13的制造图像显示装置的方法,其中在用能量束从所述器件形成衬底背表面照射之前,器件形成衬底上的每个发光器件支持在所述器件形成衬底和一个临时支持板之间,在能量束的照射之后,所述发光器件从所述器件形成衬底上分离下来,支持在所述临时支持板上。
15.根据权利要求14的制造图像显示装置的方法,其中在整个所述临时支持板上形成粘合剂,发光器件的前表面临时支持在所述粘合剂上。
16.根据权利要求10的制造图像显示装置的方法,其中每个所述发光器件向布线板的装配如下进行将发光器件的电极部分与布线板的导电材料压接触。
17.制造发光器件的方法,其特征在于在特定衬底上堆叠半导体层,在所述半导体层上形成多个发光器件的一个列阵,将发光器件的列阵分成单个发光器件,将每个发光器件从衬底上分离下来。
18.根据权利要求17的制造发光器件的方法,其中每个所述发光器件从衬底上的分离如下进行用能量束从衬底背表面照射发光器件。
19.根据权利要求17的制造发光器件的方法,其中在用能量束从所述衬底背表面照射之前,衬底上的每个发光器件支持在所述衬底和一个临时支持板之间,在能量束的照射之后,发光器件从所述衬底上分离下来,支持在所述临时支持板上。
20.根据权利要求19的制造发光器件的方法,其中在整个所述临时支持板上形成粘合剂,所述发光器件的前表面临时支持在粘合剂上。
21.将排列在第一衬底上的多个器件重排到第二底板上的器件排列方法,其特征在于所述方法包括第一转移步骤,将所述器件转移到临时支持部件上,使得器件之间的间距大于排列在所述第一衬底上时器件之间的间距,将器件支持在所述临时支持部件上;以及第二转移步骤,将支持在所述临时支持部件上的器件转移到第二底板上,使得器件之间的间距大于支持在所述临时支持部件上时所述器件之间的间距。
22.根据权利要求21的器件排列方法,其中在所述第一转移步骤中,临时支持部件上所述器件之间的间距大约是排列在所述第一衬底上的器件之间的间距的整数倍;以及在所述第二转移步骤中第二底板上所述器件之间的间距大约是第一转移步骤中临时支持部件上所述器件之间的间距的整数倍。
23.根据权利要求21的器件排列方法,其中所述方法进一步包括在第一转移步骤之后,用树脂模塑器件的步骤,在树脂上形成器件的电极的步骤,以及切割树脂的步骤。
24.根据权利要求21的器件排列方法,其中从所述第一衬底上选择转移的器件是第一衬底与临时支持部件相对时位于互相隔开的位置上的那些器件。
25.根据权利要求21的器件排列方法,其中从所述临时支持部件上选择转移的器件是临时支持部件与第二底板相对时位于互相隔开的位置上的那些器件。
26.根据权利要求21的器件排列方法,其中从互不相同的所述临时支持部件上转移的器件在第二底板上相邻。
27.根据权利要求21的器件排列方法,其中所述器件的每次从第一衬底向临时支持部件的转移以及从临时支持部件向第二底板的转移都用到了机械装置和光学装置二者中至少一种。
28.根据权利要求27的器件排列方法,其中所述机械装置为当将动能传给每个器件时能够选择转移所述器件的装置。
29.根据权利要求27的器件排列方法,其中所述机械装置为能够通过选择性地吸取所述器件而将其转移的装置。
30.根据权利要求27的器件排列方法,其中所述光学装置为能够将光能通过光照射传给每个器件而选择性地转移所述器件的装置。
31.根据权利要求30的器件排列方法,其中所述第一衬底为半透明衬底。
32.根据权利要求31的器件排列方法,其中所述器件为使用氮化物半导体的半导体器件,而光照射通过使用激光束进行。
33.根据权利要求21的器件排列方法,其中所述器件选自发光器件、液晶器件、光电转换器件、压电器件、薄膜晶体管器件、薄膜二极管、电阻器件、开关器件、微磁器件,以及微光器件,或者所述器件的一部分。
34.根据权利要求21的器件排列方法,其中所述器件制造在所述第一衬底上。
35.根据权利要求21的器件排列方法,其中在器件支持在临时支持部件上的状态中,部分布线形成在每一个所述器件上。
36.根据权利要求21的器件排列方法,其中部分所述布线为电极焊盘。
37.制造图像显示装置的方法,在该图像显示装置上,发光器件或液晶控制器件排列成矩阵,该方法的特征在于它包括第一转移步骤,将在第一衬底上的所述发光器件或液晶控制器件转移到临时支持部件上,使得器件之间的间距大于排列在第一衬底上时器件之间的间距,并将器件支持在所述临时支持部件上;第二转移步骤,将支持在所述临时支持部件上的所述器件转移到第二底板上,使得器件之间的间距大于支持在临时支持部件上时器件之间的间距;以及布线形成步骤,形成与所述器件相连的布线。
38.根据权利要求37的制造图像显示装置的方法,其中一个象素由一组多个相应于不同波长的所述发光器件或液晶控制器件的组合组成。
39.根据权利要求37的制造图像显示装置的方法,其中在所述发光器件或液晶控制器件支持在临时支持部件的状态中,在每个发光器件或液晶控制器件上形成电极焊盘,在所述布线形成步骤中对所述电极焊盘进行布线。
40.一种图象显示装置,具有这种结构多个发光器件装配在布线板上,使得排列在该底板主平面上,其特征在于以这样的方式将每个所述发光器件装配到布线板上由晶体生长形成的所述发光器件的晶体生长层的姿态与晶体生长时该晶体生长层的姿态在沿所述底板主平面法线的方向上相倒转。
41.根据权利要求40的图像显示装置,其中所述发光器件具有作为出光窗口的一个部分的晶体生长层,该部分在晶体生长时位于衬底侧,在将发光器件装配到布线板上之前,将其从用以生长的衬底上分离下来。
42.根据权利要求40的图像显示装置,其中在具有相对于衬底主平面倾斜的倾斜结晶面的所述晶体生长层上形成第一导电层、有源层和第二导电层;形成要与第一导电层相连的第一电极和要与第二导电层相连的第二电极,使得所述第一电极从用以生长的衬底算起的高度近似等于所述第二电极从用以生长的衬底算起的高度。
43.根据权利要求40的图像显示装置,其中在具有相对于衬底主平面倾斜的倾斜结晶面的所述晶体生长层上形成第一导电层、有源层和第二导电层;形成要与第一导电层相连的第一电极和要与第二导电层相连的第二电极,使得在沿衬底主平面法线的方向上,所述晶体生长层夹在两个电极之间。
44.根据权利要求40的图像显示装置,其中所述晶体生长层通过选择生长的方法由纤锌矿型氮化物半导体制成。
45.根据权利要求40的图像显示装置,其中所述晶体生长层通过选择生长形成六棱锥形或六棱梯形。
46.制造图像显示装置的方法,其特征在于在用以生长的衬底上如下制造每个发光器件通过选择生长形成晶体生长层,它具有开口在衬底侧上的形状,在所述晶体生长层上形成第一导电层、有源层和第二导电层;对每个发光器件形成与所述第一导电层相连的第一电极以及与第二导电层相连的第二电极,使得第一电极从用以生长的衬底算起的高度近似等于第二电极从用以生长的衬底算起的高度;以及将每个所述晶体生长层从用以生长的衬底上分离下来,将所述晶体生长层装配到布线板上,同时,将所述晶体生长层的姿态与其在晶体生长时的姿态相倒转。
47.根据权利要求46的制造图像显示装置的方法,其中将一个连接部分与第一和第二电极中的至少一个相连,以使所述第一和第二电极的高度彼此近似相等。
48.根据权利要求46的制造图像显示装置的方法,其中如下进行每个所述发光器件向布线板的装配在发光器件的前表面或背表面被吸取器吸取的状态中,将所述发光器件装配到所述布线板上。
49.根据权利要求46的制造图像显示装置的方法,其中如下进行每个所述发光器件从用以生长的衬底上的分离利用能量束从用以生长的所述衬底背表面进行照射。
50.根据权利要求49的制造图像显示装置的方法,其中选择性地进行用以分离每个所述发光器件的能量束照射。
51.根据权利要求49的制造图像显示装置的方法,其中在用能量束从用以生长的衬底背表面照射之前,每个所述发光器件支持在用以生长的所述衬底和用以转移的一个底板之间,在能量束的照射之后,从用以生长的所述衬底上分离下发光器件,使其支持在用以转移的所述底板上。
52.器件装配板,它具有这样的结构多个器件以排列在底板主平面上的方式装配在布线板上,其特征在于通过晶体生长形成的每个所述器件的晶体生长层装配到布线板上,晶体生长层的姿态与晶体生长时它的姿态在所述底板主平面的法线方向上相倒转。
53.根据权利要求52的器件装配板,其中以这样的方式装配所述器件所述器件的所述晶体生长层中除了倾斜结晶面之外的那些平面基本上保持在从所述布线板表面算起的同一高度。
全文摘要
本发明给出一种图像显示装置,它能提高诸如分辨率、图像质量和发光效率这样的特性,便于大尺寸屏幕的形成,并降低制造成本;还给出了制造图像显示装置的方法。图像显示装置包括许多用以响应特定图像信号而显示图像的发光器件的列阵,该图像显示装置的特征在于每个发光器件的占据面积处在一个大于等于25μm
文档编号H01L21/77GK1447958SQ01814309
公开日2003年10月8日 申请日期2001年7月18日 优先权日2000年7月18日
发明者岩渕寿章, 大畑丰治, 土居正人 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1