部分构图的引线框架及其制造方法以及在半导体封装中的使用的制作方法

文档序号:7153443阅读:390来源:国知局
专利名称:部分构图的引线框架及其制造方法以及在半导体封装中的使用的制作方法
技术领域
本发明主要涉及电子封装,并且更加特别的,涉及一种部分构图的引线框架及其制造方法及其使用。部分构图引线框架比传统的引线框架更结实和更稳定。部分构图引线框架的坚固性改善了制造引线框架封装的工艺并增强了成品的整体可靠性。
发明的
背景技术
在制造使用引线框架的电子封装中,有几个工艺步骤使得引线框架受到机械和热应力。现有引线框架的更精细的几何结构和半导体芯片上的不断增加的集成度导致了处理时对引线框架施加更大的应力。精细配置的引线框架经常象很精细的刺绣,或者模版状(stencil-like)的金属结构,该金属结构容易弯曲,断裂,损伤和变形(参见

图1a和1b)。在工业中利用这种传统引线框架可制造多种芯片封装,包括导线键合和倒装芯片(FC)封装。(参见图2a-2d和3a-3b)传统引线封装一般缺乏结构的刚性。引线框架的指状部分能够非常易脆弱并很难固定在位置上,这导致了在装配过程中的操作缺陷,损坏和变形并且导致了复杂的导线键合局面。因而,在键合工艺中需要优化键合参数以补偿引线框架的摇动。用于补偿引线框架机械不稳定性的键合参数的优化失败会导致差的键合黏连,并且导致键合质量差和可靠性差。
典型引线框架的指状部分从被称作芯片接收区,也称作芯片垫(chip-pad)的中心部分延伸。芯片通常背面与接收区粘合,并且正面设置得面朝上端子外围地位于芯片的周边上,或者在矩阵形式的芯片的表面上方。典型的接收区具有大约5mm×5mm的尺寸,并且从芯片垫区向外延伸出的引线具有10mm长×1mm宽×0.5mm厚的典型尺寸。引线框架通常地通过真空吸盘和机械夹具固定。卡盘和夹具必须为不同大小和形状的引线框架而被重新改装。本发明消除了这个问题。
现有技术没有示出能够承受现有半导体封装工艺中遇到的应力以及能够以更有效的成本制造的任何引线框架。本发明通过提供一种部分构图的引线框架达到了这个目的,该引线框架不仅能改善了引线框架自身的可制造性,而且提高了由它形成的电子封装的集成度和可靠性。
发明概述本发明提供了一种用在半导体封装中的部分构图引线框架。该引线框架包括具有顶面和底面的薄膜。从顶面但不完全穿透薄膜到底面部分构图薄膜的第一区。薄膜的第二区,没有从顶面构图,形成了用于支撑集成电路(IC)芯片的芯片接收区和多个提供到IC芯片的电连接的引线触点。第一区在薄膜中形成了沟槽并且产生了网状结构,该结构连接从顶面没有部分构图的第二区。本发明也描述了一种制造部分构图引线框架的方法,以及利用该引线框架制成的电子封装。本发明的引线框架由于其网状或网状的结构提高了结构刚性。
根据本发明,金属薄膜的顶面,引线框架从该表面形成,首先利用标准的光刻技术或者类似技术构图,从而勾画出相应于芯片接收区和引线的区域轮廓。在下一步,在位于轮廓区外面的薄膜的第一区里进行从薄膜的顶面穿过在下面的薄膜的厚度的蚀刻,从而在薄膜里产生引线框架图。在部分构图后,从顶面余下的没有构图的区域形成了第二区,该区用于芯片接收区和沿着薄膜顶面的引线。第一区在薄膜的顶面下面形成了凹陷的网状区。第一区的网状结构将引线部分彼此连接,并将引线部分连接到芯片接收区。因而,部分构图的薄膜看起来类似于网状的脚并且保持其坚固性和强度,从而能承受随后制造过程步骤中的力。特别的,部分构图引线框架能承受在导线键合和密装过程期间遇到的力。在一些实施例中,芯片接收区和电引线能够从第二区同样的部分形成(例如,在电引线支撑集成芯片并提供电连接的情况中)。
本发明也提供一种利用部分构图引线框架制造多个电子封装的独特方法。该方法包括具有顶面和底面的薄膜。在第一区中,从顶面但不完全穿透到底面部分地构图薄膜。在薄膜上余下的没有从顶面部分构图的第二区形成了多个部分构图引线框架。每个引线框架具有用于支撑集成电路(IC)芯片的芯片接收区和多个用于提供到IC芯片的电连接的电引线。
薄膜的第一区形成了网状结构,该结构使芯片接收区和每个引线框架互联。第一区也在薄膜的渠道(street)部分中将多个引线框架彼此连接。
提供多个芯片,每个芯片具有多个用于附着相应引线框架的电端子。每个芯片在相应的引线框架上与芯片接收区粘贴,并在至少每个芯片的一个端子和引线框架的一个电引线之间形成电连接。然后,在引线框架和薄膜的渠道区上施加密封剂材料以完全覆盖薄膜的顶部。一旦密封剂材料干燥后,从在第一区的薄膜的底面进行背面构图工艺来去除网状结构和薄膜的渠道部分。然后将设置在薄膜的渠道部分上的密封剂材料切单从而形成单独的封装。
在优选实施例中,该方法包括将引线框架的块/窗口图案形式形成到矩阵中的薄膜内,并包括芯片规模封装的产品。
本发明的部分构图引线框架还产生了几个优点。引线框架的平坦和固体的未蚀刻底面在导线键合工艺期间作为优异的散热器。这为更好和更稳定的键合质量提供了均匀的热传输。另外,固体结构为通用的真空吸盘提供了连续的表面来固定引线框架,从而使得芯片粘贴工艺更加稳定以及在随后的工艺步骤中引线更加安全。消除了引线框架的外部边缘的使用困难的固定,并能够不需要变换的进行矩阵排列引线框架的设计和工艺。因为部分构图引线框架的底部是平坦连续的表面,因此可以利用通用的真空吸盘来固定许多不同尺寸的框架。这解决了每次不同尺寸的引线框架用于封装工艺中时,都不得不重新改装真空吸盘的复杂问题。同样,也不再需要夹具。通用的真空吸盘的使用以及夹具的去除使得能够在第二区上构造两或三行交错的引线得到更高的引线数量。
本发明描述了一种部分构图引线框架,该框架不仅能够用于导线键合芯片而且能够适用于焊料凸块的倒装芯片。另外,本发明还公开了用于制造使用导线键合的蚀刻引线框架封装(ELPs),具有倒装芯片的ELPs,和同样或具有焊盘栅阵列(LGA)焊垫的ELPs或ELPFs来形成蚀刻焊盘栅阵列(ELGA)封装的方法,如在本发明的各实施例中的进一步描述。
倒装芯片(FC)技术是更进一步的技术,使在芯片上完全自动连接电端子向下一级封装更进一步完全自动连接,即连接到陶瓷或塑料基板,或者连接到稍后接合到基板的芯片微载体。该微载体仅比芯片本身稍大,现在被称为芯片规模封装(CSP)。倒装芯片技术从载带自动键合(TAB)进化而来,载带自动键合(TAB)进而起源于导线键合(WB)。然而在WB和TAB中,芯片定位在其背表面上,并且与在位于其顶面周边周围的端子电联接,在FC技术中,芯片的取向被倒转。芯片面朝下放置并且芯片的背面朝上。倒装芯片的取向具有显著的优点,在于它在芯片的底面上集中了电功能,使得顶部空余出来并在开发高效率的热传输设计中使用。
在FC工艺中,在芯片的表面上方将芯片端子或键合垫用不同类型的凸块密封,其中在区域阵列中可以运用图形,外围图形或其它图形里。芯片可以用以下的方式粘贴到下一级a)FC粘贴到引线框架;b)FC粘贴层/衬底,称作内插器,用于在引线框架上重新分配(re-routing)连接间隙;c)FC粘贴到引线框架上的预粘贴内插器;或d)用传统技术包括芯片回流方法将FC粘贴到印刷电路板。
在制造QFN封装及其变型中,比如VFQPF-N,当应用到QFN(四方扁平无引脚)引线框架上的时候,利用传统技术进行芯片粘贴变得很困难。这是因为传统引线框架一般欠缺结构的刚性。引线框架的指状部分非常脆弱并且很难固定在一个精确的位置上。这在组装工艺和复杂的芯片键合过程中导致了加工的裂缝,损伤和变形。FC接合工艺需要将凸块焊料头相对悬挂和脆弱的引线框架的引线末端的精确排列。并且,放置后在经过焊料回流工艺后湿润的焊料末端必须保持它们的位置。因此,不得不优化回流参数来补偿在芯片接合过程中引线框架的摇动,如果没有正确的操作,会导致成品的差的接合、差的质量和差的可靠性。
通过在金属带或者金属薄膜上构图光刻胶形成传统的膜板状引线框架,并且通过构图蚀刻来形成从芯片接收区向外延伸的指状引线是常用的。如图3a和图3b中,在指状元件之间利用“连杆(tie-bar)”以便指状元件在不同的工艺步骤中能保持彼此分开也是常见的。本发明通过形成网状的,部分构图引线框架来代替模版状的引线框架解决了引线框架缺乏结构刚性的问题。
根据本发明的方法,形成半导体封装的所有主要工艺都是从后来成为引线框架的薄膜的一面进行的。另一面,也就是说底部,在表面比如真空吸盘的表面上保持平坦未改变。这包括封胶和气密地密封部分形成封装的前面的步骤。一旦完成密封,回蚀(back-etched)底面从而选择性地去除将引线彼此连接和将引线与芯片接收区连接的网状部分。在ELP中,其中芯片在芯片接收区背键合到芯片垫(chip-pad),并且通过导线键合的方式制成到芯片端子的电连接,所有的中间网状部分通过蚀刻被分隔,以便芯片垫(chip-pad)和在导线键合末端的引线触点现在通过围绕芯片、导线和导线键合触点区域的正面的制模材料彼此分隔开来。在ELPF封装中,然而,只有通过蚀刻把将引线彼此连接的网状部分分隔开,是由于连接芯片焊料头凸块的引线自身提供了到封装下一级的电连接。
在网状部分中穿过锯厚度去除网状金属或者渠道具有几个优点,包括消除了贯穿引线框架结构扩散的锯力;以及因而在金属塑料界面防止了分层剥离。同样,通过背面蚀刻的电绝缘使得带测试(strip testing)先于任何切片或切单工序,或者(for that matter)先于任何更一步的工艺步骤。在背面蚀刻构图后,在底面上剩下和暴露的金属部分能通过浸锡浸渍或无镀覆镍镀覆使用许多可可焊接的材料被很快的加工。ELGA封装使用ELPF封装的FC,然而,用LGA垫连接到封装的下一级。
在制造期间,为了在制模材料和封装的其它构件之间防止任何分离,本发明也描述了如何在部分蚀刻的引线框架上的凹陷丝网部分的暴露的垂直壁上形成锁定结构,比如在引线的侧壁上,该侧壁将与制模材料如环氧树脂接触。可选的,同样描述了在芯片垫(chip-pad)的边缘和引线触点上形成“凸缘(lips)”,从而在每个凸缘下面锁住制模材料,因而使得制模材料很难从配套表面上分开。
从以上可以很清楚知道,部分蚀刻的引线框架提供了结构的统一与随之而来的刚性和强度,从而在电子封装的制造中能承受不同制造工艺的应力与应变力。因为这些独特的机械特性,使部分蚀刻的引线框架封装能同样承受导线超声键合到封装的底部以便连接到下一级的封装的严酷环境(rigor),而这是传统的塑料封装所不能的。在本发明的另一实施例中,形成具有超声键合导线的电子封装的方法。形成多个部分蚀刻的引线框架,其中该引线框架包括网状部分并且通过渠道部分彼此分开,该引线框架具有连续底面。芯片粘贴到在引线框架上的芯片接收区。在每个芯片端子和相应引线框架的电引线部分之间形成电连接。导线超声键合到引线框架的底面。在引线框架上施加密封剂材料来密封引线框架,该引线框架包括分开引线框架的渠道部分。然后进行底面的背面构图从而去除网状部分和渠道部分。然后在渠道部分上切单元密封的引线框架,从而形成底面上具有超声键合导线的单个芯片规模封装。
附图的简单描述图1a是根据现有技术具有引线和芯片垫(chip-pad)区的传统引线框架的示意图。
图1b是图1a中的传统引线框架示意图,该图示出了根据现有技术芯片粘贴到芯片垫(chip-pad),以及芯片上的端子导线键合到引线。
图2a是现有技术中导线键合和有引线的(具有引线的)近似芯片规模封装(CSP)的剖面图,示出了通过引线连接到封装的下一级。
图2b是根据现有技术,导线键合和无引线的(没有引线的)的近似CSP的剖面图,示出了通过焊料凸块或球连接到封装的下一级。
图2c是根据现有技术,倒装芯片和有引线的近似CSP的剖面图,示出了通过引线连接到封装的下一级。
图2d是根据现有技术,倒装芯片和无引线的近似CSP的剖面图,示出了通过焊料球连接到封装的下一级。
图3a是根据现有技术,示出了背面键合的芯片到引线框架的引线的导线键合连接的模版状引线框架的顶视图。
图3b是根据现有技术,示出了通过焊料回流工艺将倒装芯片和引线框架引线连接的模版状引线框架的顶视图。
图4是根据本发明两边都预镀覆均匀厚度可可焊接材料的金属薄膜的剖面图。
图5是根据本发明的图4的金属薄膜的剖面图,其中对应于两个芯片位置仅在顶面的预涂层被构图,每个位置包括芯片垫(chip-pad)和围绕每个芯片垫(chip-pad)的引线触点。
图6是根据本发明的图4的被部分构图的镀过的金属薄膜的剖面图。
图6a是根据本发明的部分构图引线框架的矩阵的顶视图。
图6b和图6c示出了在图6a中的矩阵中的引线框架的进一步放大图。
图7a是根据本发明图6的部分构图的金属薄膜的剖面图,其中芯片粘贴到两个芯片位置的每一个的芯片垫(chip-pad)上。
图7b是根据本发明的在芯片和芯片垫(chip-pad)之间接合的放大图,示出了包括环氧树脂或焊料的粘贴。
图8是根据本发明的粘贴了图7a或7b的金属薄膜的芯片的剖面图,其中每个芯片的端子与引线框架的引线部分导线键合,从而形成在每个芯片位置上。
图9是根据本发明的图8的导线键合的引线框架的剖面图,其中包括芯片和导线键合的金属薄膜的顶面被气密地密封在密封剂中。
图10是根据本发明从背面蚀刻以去除每个引线框架的第一区和薄膜中的渠道部分的图9的气密地密封的封装的剖面图。
图11是两个近芯片尺寸的部分构图的封装的剖面图,其中密封剂被切单在渠道部分,根据本发明形成了两个分隔的封装。
图12a是根据本发明的图11中的切单封装的顶视图,示出了芯片,触点和将芯片端子连接到引线触点的导线,以及具有导线键合的触点的放大剖面部分。
图12b是根据本发明在芯片垫(chip-pad)和其中一个触点之间的区域的剖面图,示出了在接触制模材料的垂直表面上使用”凸缘”,为了稳固并防止分层剥离。
图12c是根据本发明在芯片垫(chip-pad)和其中一个触点之间的区域的剖面图,示出了接触制模材料的垂直表面上使用不同形状的模槽(Cavities),为了稳固并防止分层剥离。
图13a-13f是根据本发明的能用于为在图12b和12c中所示的垂直表面上的制模材料提供稳固装置的不同的模槽的示意图。
图14是根据本发明的总结形成部分构图的封装的不同的工艺步骤的流程图。
图15a是根据本发明的示出了具有外围I/O设置封装的顶部,侧面和底部视角的示意图。
图16是根据本发明的图4中的金属薄膜的剖面图,其中只有顶面的预镀层相应于两个倒装芯片位置被部分构图了,每个位置包括芯片接收区和围绕每个芯片接收区的引线。
图17是根据本发明的图16中的镀覆金属薄膜的剖面图,该金属薄膜已经被部分构图从而形成了网状引线框架(即,网状结构)。
图18是根据本发明的芯片粘贴引线框架(FCL)的剖面图,示出了倒装芯片(FC)连接。
图19是根据本发明的图18中的FCL的剖面图,其中金属薄膜的顶面,包括芯片,已经被密封地密封在一封装剂中。
图20是根据本发明气密地密封的图19的封装的剖面图,其中该封装被从背面选择性地蚀刻了在独立引线之间和在凹陷的接收区域之间的网状部分。
图21是根据本发明的从图20的封装切单的两个近似芯片尺寸的部分构图封装的剖面图。
图22a是根据本发明的图21的切单了的封装中的一个的剖面图,图21示出了芯片和把芯片端子连接到引线的末端的引线,该引线进而连接到封装的下一级。
图22b是根据本发明的在倒装芯片和到封装的下一级的连接之间的区域的放大的剖面图,该图示出了引线的两个末端连接。
图23是根据本发明的形成支撑倒装芯片的部分构图的封装的不同工艺步骤的流程图。
图24a和24b示出了根据本发明的两个近似芯片尺寸部分构图的封装的剖面图和底视图,该封装被切单,然后为连接到封装的下一级而形成ELGA型封装而提供了球栅阵列连接。
图25a和25b示出了本发明的另一实施例,根据本发明其中图24a和24b的封装分别用铝导线超声键合和交替地用铜导线球键合技术键合。
详细描述图4-15b和图16-24b所示为形成可与近芯片规模封装(CSPs)的引线数量的相当的部分构图引线框封装的不同实施例。本发明的方法改进了生产线的自动化程度以及由此制造的封装的质量和可靠性。通过实施生产工艺步骤中的主要部分,部分构图的金属薄膜在一面上形成网状引线框架。与传统的穿孔的模版状引线框架相比,在本发明中用的引线框架在一侧上部分构图并且在另一侧是固体的和平坦的。该结构在机械上和热学上都改进了,在芯片粘贴、导线键合和封装工艺中能够保持不扭曲或不变形。在芯片粘贴和导线键合工艺步骤完成后,施加芯片和导线键合并密封地封装在制模材料中。穿过薄膜完全蚀刻底面,使得引线触点与芯片焊点隔开和彼此分隔开。然后,所得的密封的封装不用切成任何附加的金属就能成为单个。
更明确的说,图4-15b所示为用于导线键合芯片的部分构图引线框架的形成和利用该引线框架形成ELP型电子封装的方法。图16-22,在另一方面,示出了用于倒装芯片的部分构图引线框架的形成以及利用该引线框架来形成ELPF型电子封装的方法,结合图24a和24b也描述了利用直接部分构图引线框架形成ELGA型电子封装的方法。
图4是优选为金属薄片的薄膜的截面图,该金属薄片优选为铜,其不但被形成一个引线框架,而且在形成引线框架的随后的工艺步骤中用于稳定载体。金属带的厚度等于或大于约0.05mm。在另一实施例中,该厚度在约0.05至0.5mm的范围内。
形成引线框架通常包括切割金属带,类似于切割模板,以及然后对非常细的指状引线加工。为了将如此精细的结构固定在适当位置,利用了真空吸盘。然而传统的真空吸盘并不适合为如此精细的器件提供吸力,该引线框架通常必须被从外围被夹紧。任何用于此目的的设备都必须根据不同的引线框架的类型和大小而被改装。然而本发明消除了改装步骤。因为部分构图引线框架的底面是固体的和连续的,传统的真空吸盘能够很容易地在工艺期间将引线框架固定在原位。而且,能适应不同的工业引线框架的一种尺寸的金属带能被普遍用于引线框架制造中。随后能够以引线框架上的更少的应力和应变力的加工步骤实施芯片粘贴和导线键合。由于引线通过网状结构被固定在一起并直到最后的步骤才能彼此分开,因此能很容易的制造具有更精细几何结构的引线框架。
能用许多方法在引线框架上形成多种图形。一个方法是把图形冲压/模压到金属里。另一个方法可以包括化学或电化学蚀刻和电放电加工(EDM)。在另一方面,优选半导体制造中重要的光刻构图。在本发明中,在光刻构图前将如图4所示的金属带(100)在前(或顶)部和背(或底)部进行预镀覆。可以在正面和底面的任一或者两者上分别预镀覆能够粘结和焊接的材料。在一实施例中,在正面预镀覆粘结性的材料,如Ni/Pd/Au镀膜或Ag。在另一实施例中,在背表面预镀覆能够焊接的材料,如Sn/Pb,无引线焊料,埋锡无镀覆镍或Au镀膜。如果需要,能够在后面的步骤中实施预镀覆工艺。
在下一步中,光刻构图预镀覆的正部(110)从而形成对应于芯片垫(115)(chip-pad)和围绕芯片垫(chip-pad)区域的电触点(113)的区域。电触点(113)的特点为导线的末端,该末端穿过形成网状结构的中间凹陷部分的第一区与芯片垫(chip-pad)区域(115)连接。当金属薄膜(100)从背面被蚀刻掉后,这些中间凹陷的网状部分在稍后的时间被从背面除去,以便末端和芯片垫(chip-pad)部分能彼此分开。包括芯片垫(chip-pad)(115)的区和围绕触点(113)有时被成为芯片位置。能在耦合(sprocketed)到卷筒上的铜的连续滚筒上形成多个芯片位置,从而容易地使包括一个或者多个芯片位置的引线框架的形成自动化。图5所示为两个芯片位置,该芯片位置被形成为两个相应的引线框架,进而将成为由它们形成的两个封装的一部分。
为图5中所示的两个芯片位置的图形通过蚀刻转变成薄膜带(100)。如图6中所示,本发明的主要方面是蚀刻仅部分地穿过金属厚度进行,在此称为部分构图。在薄膜的第一区中实施部分构图来形成网状结构(130),该网状结构连接每个引线框架的引线触点(113)的芯片垫(chip-pad)(115)。第一区也在薄膜的渠道部分(136)将引线框架彼此连接。
如图6a-c中所示,这样引线框架(例如,16×16)的阵列可以形成在块/窗口型的薄膜(138)中。图6b和6c所示为第一区,包括连接芯片垫(chip-pad)的网状结构(139)和每个引线框架的引线触点。第一区也在薄膜的渠道部分(136)将多个引线框架彼此连接。
在一实施例中,部分构图能够从薄膜厚度的25%变化到90%。然而部分构图事实上可以是薄膜厚度的任何百分比,并且能够通过采用影响制造参量的不同因素来决定部分蚀刻的量,包括弹性,刚度和热厚度(或热导率)。能在给定芯片尺寸所需要的微型化的程度和导线键合或者其它连接介质的基础上决定引线触点区域(113)和芯片垫(chip-pad)区域(115)的横向尺寸,所述其它连接介质在下一级的封装中在给定的封装或封装之间能够用于级间或级内的连接。特别指出的是,由于指状引线的网状结构,与引线框架的精细零件和尺寸稳定性有关的制造问题变得没那么重要了。
如图7a所示,芯片(140)优选利用环氧树脂(150)粘贴到芯片垫(chip-pad)区。图7b为根据本发明的芯片和芯片垫(chip-pad)之间的接合处的放大图,其中该放大图显示了粘结剂包括环氧树脂或焊料。可在环氧树脂(150)中填充导电颗粒从加强芯片的冷却。可选择地,可以用焊锡膏(150’)代替环氧树脂(150),用于在芯片和芯片垫(chip-pad)之间提供更强的粘结和更有效的到外界环境的冷却路径。如图8所示,环氧树脂硬化后,用常见的导线键合技术将导线(160)连接到端子(145)和相应的引线触点(113)。因为根据本发明形成的引线框架具有固体的、连续的背面,该背面通过真空吸盘(未示出)在平坦的表面上被牢固的定位和固定,引线的网状结构在导线键合过程中不会抖动或摇动。这导致好的连接,从而提高了成品的可靠性。
在图9中,在连接芯片和相应的触点后,在例如利用树脂在制模材料中气密封地封装金属薄膜的正面上的所有构件。在薄膜和所有暴露的表面,包括引线框架和它们相连的导线(160)、芯片(140)和触点(113)和网状结构(130)和渠道部分(136)上形成密封剂。当所得的模制的封装被提起时,干净的背面能够用于进一步的加工。通常遇到的模料溢出到封装下面上的印记的问题用所公开的方法消除了。
如图10所示,通过穿过封装背面的蚀刻第一区的网状结构(135),引线触点(113)和芯片垫(chip-pad)(115)都能从彼此分开并形成它们自己的岛。在这一点上,渠道部分(136)也被背面蚀刻了。背面蚀刻持续直到延伸到制模材料。背面蚀刻金属的蚀刻方法与用于正面的蚀刻方法一样。然而用于背面的背面蚀刻的蚀刻时间与用于正面的不一样,该时间取决于从正面实施的部分蚀刻的程度。因此,就能定制部分蚀刻引线框架的初始形式以满足最终封装的自动化、质量、可靠性和功能性的需求。
最后一步,将引线框架之间的渠道部分(136)上的密封剂材料(170)切单以形成如图11所示的两个独立封装。这可以通过很多方法实现,包括锯断、水注切割、激光切割或它们的组合,或特别适合于切割塑料的其它方法。换句话说,由于不需要切割金属,因此不存在分层剥离,以及与切割塑料和金属联系在一起的其它问题。与传统的封装相比,在封装被切单时必须同时切割在渠道间的桥接金属。当同时切割金属和塑料时,一些金属芯片会短路并接触,并导致锯刃上形成不希望和未预料的损伤。如图6a中所示,该方法能用于产生大量的由引线框架形成的矩阵的封装。
图12a示出了切单ELP的顶视图,其中所示触点(120)和芯片(140)在它们自己的岛上彼此分开,仅仅通过已经导线键合的导线(160)连接彼此。图12b示出了在芯片和包括原金属带(100)的一部分的其中一个触点之间的封装的一角的放大图,显示出了用于形成粘结层(113)的预镀覆的顶面,和为形成可可焊接层(123)而预镀覆的底面。在图12b中,在触点和芯片的角部都示出了凸缘。
在封装下面上的预镀覆的表面(120)能用于不同的目的。第一,提供到芯片(140)垫(chip-pad)(140)的背部(125)的直接外部通道的附加散热途径;第二,在近芯片尺寸封装(CSP)的印记里的触点(123),使得能够在封装的下一级的紧密安装的间隔的封装,从而提高同样区域的性能。
本发明的另一方面提供一种在制模材料和其粘贴表面之间减少脱层可能性的方法。该方法通过半蚀刻芯片垫(chip-pad)周围的边缘和触点区域从而形成凸出部或“凸缘”,在图12b中用数字(105)表示。形成图12c中示出的不规则形状的模槽(107)来加强与制模材料接触的表面的咬合机制也是可能的。图13a-13f为各种其它模槽的放大图,并且这些表面增强的形成能够从正面容易地进行部分蚀刻。由于制模材料仅仅密封从正面部分形成的表面,因此没有必要在从背面蚀刻。
图14总结了本发明的方法,从正面部分蚀刻引线框架(200)到金属带开始,到同样金属带的背面构图蚀刻(250)结束,该蚀刻以这样一种方式形成所需的芯片垫(chip-pad)和围绕触点。芯片粘贴(210)、环氧树脂硬化(220)、导线键合(230),和密封(240)的中间的步骤用机械并热稳定引线框架的完成,因为引线还是通过在金属薄膜中的部分蚀刻的网状或者网状结构的中间凹陷部分的第一区相连。只有在封装剂中保护了封装的所有构件后,中间凹陷部分的第一区才能通过背面图形蚀刻(250)去除,并且为了适当的绝缘将外围触点和芯片垫(chip-pad)彼此分开。因此,在切单(260)成单个近芯片尺寸封装时再没有必要切割任何金属。
本发明的方法可以用于形成各种不同的封装,如用于电子封装的矩阵型引线框架。图15b中示出了矩阵型封装(400)的顶视图,旁边图15a示出了标准的外围型封装(300)的顶视图。当数字(305)表示芯片端子的外围排列时,数字(405)表示端子的矩阵型排列,该排列能被排列成直线或者交错。两个封装都是利用由数字(310)和(410)表示的所述部分构图的发明形成的。在矩阵型ELP中,示出了内引线(440)和外引线(445)。两个封装都被封装在密封剂材料(320)或(420)中。通过数字(330)和(430)表示用背面图形蚀刻分开的触点和芯片。数字(450)描述接地环的特征,将该接地环被蚀刻到模型一样的级别。数字(460)表示在ELP的底视图上的矩阵型输入/输出配置。
图16-24b中的第二实施例描述了形成部分构图的VFQFP-N型引线框架的方法,该方法特别适合大量生产FC电子封装。将引线框架制成适合于倒装芯片,以下,称作FCL以与传统的引线框架区别开来。这是因为,不同于传统引线框架,FCLs更坚固并且更加适用于自动化生产线,如下所述。
FCLs与传统通用的穿孔的、模版状的引线框架相比也是网状结构。,网状的FCL的正面具有凹陷部分,包括部分构图的引线,然而背面是固体和平坦的。这在制造过程中提供了防止扭曲或变形的机械稳定性。在完成封装的芯片粘贴和密封封装后,蚀刻背面从而使得引线触点彼此分开。随后,不需要切成任何多余的金属就能把所得的密封的封装切单。因此,显然具有非常精细几何结构的FCLs比如VFQFP-N封装能够容易地制造,因为引线框架通过网状或者网状结构固定在一起并且,并直到切单的最后一步才彼此分开。
与所述第一实施例的所公开的部分构图引线框架相似,第二实施例的FCL也从金属薄片形成,优选如图4中的铜薄膜,该铜薄膜的正面和背面都被预镀覆了,或者,如前面所述,该镀覆可以推迟到后面的步骤区别开来。(应该指出,与两个实施例的工艺步骤相似,参考数字保持适当相同,除了用单引号表示第二实施例中的这些部分。相同的参考数字(100)保持不变用于两个实施例的金属薄膜)。然后,光刻构图预镀覆的正面(110’)形成芯片接收区(115’)、围绕的芯片接收区的引线部分(113’)和别的中间区(117’)。在以下描述的随后步骤中,引线的一个末端部分与FC的端子连接,而另一个末端部分将与下一级的封装连接。包括芯片接收区和围绕引线的区域有时被称为芯片位置,与具有导线键合的芯片位置相似。包括多个芯片位置的多个引线框架能在耦合(sprocketed)到卷筒上的铜的连续滚筒上形成多个芯片位置,并容易使得包括一个或多个芯片位置的引线框架的形成自动化。图16所述为两个芯片位置,该芯片位置形成在两个相应的引线框架中,该引线框架进而将会成为从他们形成的两个封装的一部分。
在图16描述的两个芯片位置的构图通过部分构图穿透蚀刻转换成金属薄膜(100)。图17中的部分构图可以由半个、四分支一个或者类似的任何比例的金属带的厚度构成,部分蚀刻的量能够通过考虑不同的影响生产参数的多种因素来决定,该参数包括弹性,刚性,和热厚度(热导率)。引线触点区域(113’)和芯片区(115’)的横向尺寸能够在给定包括芯片尺寸的芯片位置所需的微型化程度以及引线在给定封装或在封装的下一级的封装之间用于级间或级内连接的基础上决定。特别注意的是,由于指状引线的网状结构,与引线框架的精细特征和尺度稳定性的可制造性有关的问题已经没有那么重要了。
将倒装芯片(FC)(130’)翻转,使得在芯片正面的端子(135’)搁在如图8所示的引线的一个末端部分。在稍后的步骤中,引线相对的末端形成用于连接封装的下一级的电触点,比如卡或者板。然而首先,安装在图18中的网状引线框架结构上的芯片通过芯片粘贴炉子发送,如本领域中的做法。焊球被回流以便回流被BLM限制,因此形成焊柱。由于根据本发明形成的引线框架具有固体的、连续的背面,且该背面牢固地定位和固定在平坦表面上,引线的网状结构在芯片粘贴炉中不会抖动或摇动,从而产生了优异的芯片连接。因此,所述方法提高了成品,也就是VGQFP-N型封装的可靠性。
在芯片连接后,把芯片与在原金属薄膜的正面的部分构图的引线一起用树脂封装在制模材料中如图19所示。封装剂(140’)形成在所有暴露的表面周围,包括引线(113’)的暴露表面、围绕焊料球(135’)的暴露表面,在芯片的下面的暴露表面、沿着凹陷芯片接收区的垂直壁(115’)的暴露表面以及凹陷区(117’)的垂直壁的暴露表面,除了被牢固地固定在平坦平面上地金属带(100)未蚀刻的完整和平坦的背面。将金属带(100)的固体的平坦的背面下压在平坦表面上。当提起所得制模的封装时,能在干净的背面实施进一步的加工。通常遇到的模料溢出到封装下面上的印记的问题用所公开的方法消除了。
通过构图穿过封装的背面能够容易的将引线(113’)彼此分开,并与在步骤开始的从正面部分蚀刻的图形对准。背面蚀刻持续直到到达制模材料。在图20中所示,去除引线框架的网状部分也就是区(111’)和(119’)使得芯片区(115’)彼此分开,以及引线(113’)彼此分开。优选的,用于背面构图金属的蚀刻方法与用于从正面部分蚀刻的方法相同。然而,从背面的背面蚀刻的时间可以与从正面蚀刻的时间不同,这取决于从正面进行的部分蚀刻的程度。因而,能够定制部分蚀刻引线框架的初始形成来满足用于最后封装的自动化、质量、可靠性和功能的制造需求。
最后一步,图20中的封装,具有用于说明本发明目的的两个密封的芯片位置,下一步被切单成单个近芯片尺寸封装(CSPs),该封装是在图21中所示的更多的VFQFP-N型封装。图22a中示出了单个的部分蚀刻引线框架封装的顶视图,其中引线(113’)彼此分开并与在芯片(130’)的下表面的焊料球(135’)相连。图22b示出了在芯片和连接到外部触点(145’)的引线之一之间的封装一角的放大图,该触点可提供在卡或板(150′)上。预镀覆表面(120’)已经准备好用于连接如同样的图中示出的触点的下一级。同样,将引线(113’)的下面(114’)暴露在惰性气体环境中,从而增强冷却。
可以利用如前所述的同样的技术用作防止封装剂从FCL的表面的分层剥离,也就是说,通过在网状引线框架的凹陷区域(115′)和(117′)的垂直壁上嵌入图13a-13f的不规则形状的模槽的方法,这些表面增强构件的形成能够容易地合并到从正面地部分蚀刻中。这对于从背面地蚀刻是不必要的,因为制模材料仅仅密封从正面部分形成的表面。
图23总结了本实施例的方法,该实施例以从正面的部分构图引线框架(200’)到金属带中开始,以同样的金属带的背面构图(240’)为结束,该方式使得形成需要的芯片接收区和围绕引线。FC设置(210’)的中间步骤,FC芯片接合(220’),和密封(230’)都在机械地并热稳定的FCL上完成,因为引线在金属薄膜中通过部分蚀刻的网状结构连接。同样重要的是,只有在密封剂中保护了封装的所有构件后,才通过背面蚀刻(240’)选择性地去除引线的网状部分,并将引线彼此分开以便适当隔离。从而,在切单(250′)成单个近芯片尺寸封装期间就没有必要切割穿过任何金属。
本发明的方法可以用于形成不同种类的封装,比如部分构图引线框架的矩阵类型,其中能将焊料凸块的区域矩阵用倒装芯片的方式同时连接到引线框架,与这里所述的用焊料凸块的外围组的方法相似。同样,能同时形成部分构图引线框架本身的阵列,以及同时连接FC,随后将矩阵分成多个分开的VFQFP-N型封装。同样,为每个所得的CSP提供焊料凸块、垫或在封装的下面的其它电连接,用于阵列类型接合到封装的下一级,从而形成具有球栅格阵列的被蚀刻的引线框架封装,或图24a和24b中所示的ELGA型封装。在图24a中示出了芯片垫(chip-pad)(135’)形成在引线(145’)上的剖面图。在被构图后,将引线(145’)彼此电隔离并连接到封装的下一级。能够利用许多可可焊接的材料通过浸入锡的浸渍或无镀覆镍的镀覆(145’)快速完成暴露的底面。图24b示出了具有用于电连接(145’)的矩阵图形的ELGA封装的底面(111’)。
因为形成ELP,ELPF或ELA封装的任何一种的部分蚀刻方法在不同的制造步骤期间提供了稳定性,电子封装的其它形式也是可以的。其中一个形式包括将本发明的引线框架封装的导线键合到封装的下一级。超声键合技术由于引线自身的脆性不能用于传统的引线框架,除非它们能被固定在固体基底上并提供稳定性和强度。相反的,部分蚀刻的引线框架由于它们的网状结构而很稳定。部分构图引线框架的没有蚀刻和预镀覆的底面(120’)提供了固体连接区域或接线柱,用作有效地为连接在ELPs块或者ELPs条上的铝导线楔施加超声能量。根据本发明的另一方面,为此将铝导线(121)超声粘贴到图25a中所示的部分蚀刻的引线框架的块状或条状的底面上。导线的直径从约0.001英寸到0.020英寸之间变化,后面的直径表示带而不是导线。然后将该带密封、背面构图和切单,从而形成单独的近似CSPs。超声键合是必须的因为它不需要将球栅格阵列封装暴露在球键合温度,从而提高了可靠性。可以如图25b所示应用铜导线球键合。如图25a和25b所示的CSPs可以是ELPs和ELPFs的任意一个。
本发明陈述了在用于电子封装的制造工艺中许多附加的优点。比如,在背面蚀刻之后和切单之前,当封装还是排列在块中的时候,封装组自然能够为带状测试做好准备。与单个工艺封装来说,这是个明显的优点。当它们成组的时候,带状测试封装提高了测试的可靠性。
本发明也使得制造具有两或三排的交错引线成为可能,该引线能够增加给定封装的I/O容量。引线框架的平坦连续的底面使得能够使用通用的组装设备,该设备不需要为每个应用改装,以及完全适合用于自动化。比如,在2×2到12×12封装块之间的工艺不需要做任何机械上的改变。另外,本发明能简单地形成具有用于每个脚的“支座(stand off)”的封装(比如,在2密耳处在脚的表面的在制模主体的底面之间)。当芯片封装连接到封装的下一级比如板时,该支座提供了额外的优点。
尽管以上结合本发明特定的实施例示出和描述了本发明,但是不同的形式和细节上的修改对于熟悉本领域上述技术的人员来说是显而易见的。只要形式和细节的修改没有离开本发明的精神和范围。
权利要求
1.一种用于电子封装制造中的部分构图引线框架,包括一具有顶面和底面的薄膜;该薄膜具有从顶面但没有完全穿透到底面的部分构图的第一区;该薄膜具有从顶面未部分构图的第二区,该第二区形成了用于支撑集成电路(IC)芯片的芯片接收区,和多个用于提供到IC芯片的电联接的电引线;以及第一区形成了与没有从顶面构图的第二区互连的网状结构。
2.如权利要求1所述的部分构图引线框架,其中该薄膜包括铜或铜合金。
3.如权利要求1所述的部分构图引线框架,其中该薄膜具有大于或等于约0.05mm的厚度。
4.如权利要求1所述的部分构图引线框架,其中顶面是用于倒装芯片粘贴的裸铜。
5.如权利要求1所述的部分构图引线框架,其中顶面被预镀覆了可焊接材料。
6.如权利要求5所述的部分构图引线框架,其中可可焊接材料包括Ni/Pd/Au镀膜或Ag。
7.如权利要求1所述的部分构图引线框架,其中底面是用于后装配镀覆或用于完成镀覆浸渍的裸铜。
8.如权利要求1所述的部分构图引线框架,其中底面预镀覆可焊接材料。
9.如权利要求8所述的部分构图引线框架,其中可焊接材料包括Sn/Pb,无铅的焊料,浸润锡,非电镀镍或Au镀膜。
10.权利要求1所述的部分构图引线框架,其中薄膜通过模印被部分构图。
11.如权利要求1所述的部分构图引线框架,其中薄膜通过蚀刻部分构图。
12.如权利要求1所述的部分构图引线框架,其中第一区具有用于增强封装剂的粘附的粗糙表面或咬合结构的内部垂直壁。
13.一种形成部分构图引线框架的方法,包括以下步骤形成具有顶面和底面的薄膜;从薄膜的顶面部分构图薄膜,但不完全穿过在第一区的薄膜的底面,形成网状结构连接没有从顶面部分构图的第二区;其中第二区具有用于支撑集成电路(IC)芯片的芯片接收区和多个用于为IC芯片提供电连接的电引线。
14.如权利要求13所述的方法,其中该薄膜包括铜及铜合金。
15.如权利要求13所述的方法,其中该薄膜具有大于或等于0.05mm的厚度。
16.如权利要求13所述的方法,其中部分构图包括去除薄膜厚度的约25%到90%。
17.如权利要求13所述的方法,进一步包括在薄膜的顶面上预镀覆的步骤,特别是用于导线键合。
18.如权利要求13所述的方法,进一步包括在薄膜的底面上预镀覆的步骤,特别是用于导线键合。
19.如权利要求13所述的方法,进一步包括在薄膜的顶面和底面上预镀覆的步骤。
20.如权利要求17或19所述的方法,其中顶面的预镀覆包括使用导线可键合材料。
21.如权利要求20所述的方法,其中所述可键合材料包括Ni/Pd/Au或Ag。
22.如权利要求18或19所述的方法,其中底面的预镀覆包括使用可焊接材料。
23.如权利要求22所述的方法,其中可焊接材料是Sn/Pb,无铅焊料,浸润锡,无电镀镍或Au镀膜。
24.如权利要求13所述的方法,其中第一区具有暴露的垂直壁,该垂直壁具有不规则的形状,当与其它材料结合时形成了咬合的表面。
25.如权利要求13所述的方法,其中芯片接收区包括电引线的末端部分,从而适合倒装芯片的焊料凸块连接。
26.一种利用部分构图引线框架的形成多个电子封装的方法,包括以下步骤形成具有顶面和底面的薄膜;从薄膜的顶面部分构图薄膜,但不完全穿过在第一区的薄膜的底面,保留薄膜上的第二区没有从顶面被部分地构图,第二区形成了多个部分构图引线框架,每个具有用于支撑集成电路芯片(IC)的芯片接收区和多个用于提供IC芯片的电连接的电引线;第一区形成互连芯片接收区和每个引线框架电引线的网状结构,并在薄膜的渠道部分将多个引线框架彼此连接;提供多个芯片,每个芯片具有多个用于连接相应引线框架的电端子;连接每个芯片到相应的引线框架上的芯片接收区;在每个芯片的至少一个端子和引线框架的至少一个电引线之间形成电连接;通过在引线框架和薄膜的渠道部分上施加封装剂从而封装引线框架;从薄膜的底面背面构图第一区来去除网状结构和薄膜的渠道区;和切单设置在薄膜的渠道部分的封装剂材料从而形成单个芯片规模封装。
27.如权利要求26所述的方法,其中每个芯片是半导体芯片。
28.如权利要求26所述的方法,其中连接芯片的步骤是通过利用环氧树脂背面连接芯片到芯片垫(chip-pad),从而形成蚀刻的引线框架封装(ELP)。
29.如权利要求26所述的方法,其中形成至少一个互连的步骤是利用导线键合技术完成的。
30.如权利要求26所述的方法,其中连接芯片的步骤是通过连接芯片上的端子到3个电引线的末端完成的,其中电引线延伸到芯片接收区从而形成具有倒装芯片的ELP(ELPF)。
31.如权利要求26所述的方法,其中形成电连接的步骤是通过连接芯片上的端子到延伸到芯片接收区的电引线的末端完成的。
32.如权利要求26所述的方法,其中封装剂材料是树脂。
33.如权利要求26所述的方法,其中每个引线框架进一步包括具有暴露的垂直壁的第一区并且封装剂与暴露的垂直壁咬合。
34.如权利要求26所述的方法,其中每个封装的底面利用用于连接电引线到连接的下一级的电连接器形成。
35.如权利要求26所述的方法,其中多个引线框架位于在块/窗口图形的矩阵中。
36.如权利要求26所述的方法,其中封装是芯片规模封装。
37.一种形成具有超声键合引线的电子封装的方法,包括以下步骤形成多个部分蚀刻的引线框架,其中该引线框架包括网状部分并且通过渠道区域彼此分开,并具有底面;将芯片粘贴到相应的引线框架上的芯片接收区;在每个芯片的端子和相应引线框架的电导线部分之间形成电连接;超声键合导线到引线框架的底面;在引线框架和分隔引线框架的渠道部分上施加密封剂材料,从而密封引线框架;背面蚀刻底面从而去除网状部分和渠道部分;和切单设置在渠道部分上的封装剂从而形成独立的在底面上具有导线的各芯片规模封装;
38.如权利要求1所述的方法,其中引线框架包括铜或铜合金薄膜。
39.如权利要求1所述的方法,其中引线框架由模压或压印形成。
40.如权利要求2所述的方法,其中铜的薄膜具有大于或等于0.05mm的厚度。
41.如权利要求1所述的方法,其中该芯片包括半导体器件。
42.如权利要求1所述的方法,其中连接芯片通过利用环氧树脂背面连接芯片到芯片接收区完成。
43.如权利要求1所述的方法,其中连接芯片通过利用焊膏背面连接芯片到芯片接收区完成。
44.如权利要求1所述的方法,其中形成电连接是通过利用导线键合技术完成的。
45.如权利要求1所述的方法,其中形成电连接是通过连接芯片上的端子到延伸到芯片区的电引线的末端而实现的。
46.如权利要求1所述的方法,其中超声键合导线包括铝导线。
47.如权利要求1所述的方法,其中封装剂材料是树脂。
48.如权利要求1所述的方法,其中背面构图通过蚀刻完成。
49.如权利要求1所述的方法,其中切单通过切割封装剂完成。
全文摘要
公开了一种制造引线框架和具有近芯片规模封装(CSP)的部分构图引线框架封装的引线计数的方法。通过用金属的部分构图的带(100)在一面上形成为网状引线框架的制造工艺的主要部分来完成。只在正面之后,金属引线框架的底面被构图从而隔离芯片垫(chip-pad)和引线键合触点(113),包括芯片(140)和导线(160),被气密地密封。电绝缘所得的封装使得不需要切割任何附加的金属就可以进行带测试和可靠的切单。
文档编号H01L23/495GK1650410SQ03809358
公开日2005年8月3日 申请日期2003年4月28日 优先权日2002年4月29日
发明者S·伊斯兰, R·S·圣安东尼奥 申请人:先进互联技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1