用作栅电极的过渡金属合金和包括这些合金的器件的制作方法

文档序号:6832074阅读:335来源:国知局
专利名称:用作栅电极的过渡金属合金和包括这些合金的器件的制作方法
技术领域
本发明一般地涉及集成电路器件,更具体地涉及可用作晶体管中栅电极的金属合金。
背景技术
图1所示的是传统MOSFET(金属氧化物半导体场效应晶体管)100。对于n型MOSFET,晶体管100包括分别形成在p掺杂衬底110内的n型源区120a和漏区120b。栅电极130设置在源区120a和漏区120b之间,栅绝缘层140将这个栅电极与衬底110、源区120a和漏区120b相隔开。绝缘层150a和150b也将栅电极130与周围结构相隔离。导体160a和160b(例如导电迹线,conductive trace)可以分别与源区120a和漏区120b电耦合。如果足够电压加到栅电极上(即阈值电压),电子将从源区流向漏区,这些移动电子被集中在源区120a和漏区120b之间延伸的薄“反转层(inversion layer)”170中。当然,本领域技术人员将认识到,互补型MOSFET(即p型MOSFET)将具有类似结构(n型衬底上p型源区和漏区),CMOS(互补型金属氧化物半导体)集成电路将利用n型MOSFET和p型MOSFET(或更一般地,NMOS和PMOS器件)。
在常规MOSFET器件中,栅电极130通常包括多晶硅材料,而栅绝缘层包括二氧化硅(SiO2)。为增加电路密度并改善器件性能,按比例减小栅绝缘层140(经常被称为“栅氧化物”)的厚度是所期望的。随着栅氧化物的厚度被按比例减小,可能有必要使用介电常数更高的材料(即高k值的电介质)作为栅氧化物,以保持足够的电容,同时又能防止电子隧穿的故障。但是,多晶硅栅电极集成到高k值栅氧化物上已证实比较困难,这是因为多晶硅栅材料与高k值绝缘材料之间的相互作用。而且,随着栅绝缘层140的厚度被进一步按比例减小(例如小于约20埃),可能希望使用多晶硅的替代材料来作为栅电极,以消除多晶硅对栅氧化物的厚度影响(即消除已耗尽自由电荷、从而增加了栅绝缘层有效厚度的多晶硅栅电极部分)。
金属栅电极的使用可以消除栅电极中耗尽自由电荷的多晶硅的上述效应,并且金属栅电极还能够进一步按比例降低栅氧化物的厚度。但是,金属材料作为栅电极用在NMOS和PMOS器件中也已证实比较困难。为了最优化晶体管的性能,用在栅电极的金属应该被选定为能够提供可获得足够低(但不为零)的晶体管阈值电压(例如0.2V-0.3V)的功函数(workfunction)。许多金属具有合适的功函数(代表金属内最活跃电子的能级的值),但是它们在高温下呈现热不稳定性。用于晶体管的工艺流程经常能达到900℃的温度,因此,在随后的工艺过程中,这些金属的功函数可能转变为不合适的值。而且,在高温下,这些金属栅材料可能与栅绝缘层反应,从而降低了其绝缘性能。其他金属在晶体管工艺流程中的温度下呈现热稳定性;但是,这些金属的功函数对于高性能晶体管不合适。

发明内容
本发明提供了一种过渡金属合金,这种合金的n型或p型功函数在高温下不会明显变化。在一个方面,本发明的合金包括约20-50原子百分率的过渡金属,约30-60原子百分率的碳和至多20原子百分率的铝,所述过渡金属选自钛、锆、钽和铪。所述合金的功函数在约3.8eV-4.4eV的范围内。在另一方面,本发明的合金包括约20-50原子百分率的过渡金属,约30-60原子百分率的一种或多种元素的组合和至多20原子百分率的掺杂剂,所述元素组合包括碳、氮、硅、锗和硼的其中至少一种,所述掺杂剂选自铝、铂、硅、镓和锗。所述合金的功函数在约3.8eV-4.4eV之间,或者在约4.9eV-5.5eV之间。在另一方面,本发明的合金包括约37原子百分率的钛,约55原子百分率的碳和约3原子百分率的铝,其中所述合金的功函数在约3.8eV-4.4eV之间。
本发明的上述过渡金属合金可用作晶体管的栅电极,或者形成为晶体管栅电极的一部分。
本发明还公开了形成使用这些过渡金属合金的栅电极的方法,包括在衬底上沉积绝缘材料层;在所述绝缘层上沉积上述过渡金属合金层。


图1是表示常规MOSFET晶体管实施例的示意图。
图2是表示可用作栅电极的过渡金属合金的一个实施例的组成的示意图。
图3是表示形成包括过渡金属合金的栅电极的方法的一个实施例的方框图。
图4A-4E是表示如图3中所示的形成栅电极的方法的进一步的实施例的示意图。
图5是表示形成包括过渡金属合金的栅电极的方法的另一个实施例的方框图。
图6A-6E是表示如图5中所示的形成栅电极的方法的进一步的实施例的示意图。
具体实施例方式
对于高性能晶体管,具有低的但并非为0的阈值电压是所期望的,所述阈值电压即电子(或者,在p型器件情况下,是空穴)开始在源区和漏区之间流动的栅电压。许多因素可以影响晶体管的阈值电压,其中一个因素是栅电极材料的功函数。但是,对于许多晶体管设计,可以影响阈值电压的大部分其他因素都被设计限制条件所“锁定”,这样使得决定晶体管阈值电压的主要因素是栅电极的功函数。因而,对栅电极功函数的选择在设置最优的、高性能(例如,高切换速度,高驱动电流等)MOSFET器件的阈值电压中起重大的作用。如上提到的,例如金属的材料的“功函数”描述这种材料内最活跃电子的能级。
晶体管的性能并不主要是由栅电极材料功函数的绝对值所控制的,而是由栅电极功函数和底下衬底材料(例如,硅、砷化镓、绝缘体上硅等)的功函数之间的关系所控制。负沟道半导体器件(即,在活化过程中依赖于电子运动的那类器件)需要“n型功函数”,而正沟道半导体器件(即,在活化过程中依赖于电子空缺或空穴运动的那类器件)需要“p型功函数”。如果电极材料的功函数接近底下衬底材料的导带的能级(例如,在+/-0.3eV内),则栅电极具有n型功函数。相反地,如果电极材料的功函数接近衬底材料的价带的能级,则栅电极具有p型功函数。一般地,对于半导体材料,价带是电子正常存在下电子能量的最高范围,而导带是电子在电场应用下自由加速(因而产生电流)情况下的高于价带的电子能量范围。
作为实例,硅的导带能级约为4.1eV,价带能级约为5.2eV。因而,对于硅衬底,负沟道MOSFET(或NMOS)器件的栅电极具有约4.1eV(+/-0.3eV)的n型功函数,正沟道MOSFET(或PMOS)器件的栅电极具有约5.2eV(+/-0.3eV)的p型功函数。注意,落在价带和导带能级之间的能级经常被称之为“中间能隙(midgap)”能量(例如,回到以上使用硅的实例,中间能隙能量落在约4.4和4.9eV之间)。而且,栅电极材料的功函数与衬底材料的功函数之间的差经常被称之为“平带”能量。但是,因为衬底的功函数经常是固定的(即,它是晶体管设计的其中一个“锁定”特征),所以术语“平带”有时被以与术语“功函数”同义的方式使用。
这里所公开的是具有n型功函数或p型功函数的过渡金属合金的实施例。所公开的过渡金属合金可用作CMOS集成电路中的栅电极,并且形成使用这种过渡金属合金的栅电极的方法实施例也将在下面公开。在一个实施例中,过渡金属合金在高温(例如大于900℃)下是热稳定的,即它们的功函数不会改变,或者换句话说,没有明显的平带移动。在另一实施例中,过渡金属合金当用作栅电极时,在高温下不会与底下的栅绝缘层反应。在另一实施例中,过渡金属合金包括过渡金属碳化物。
现在转向图2,所示的是过渡金属合金200的一个实施例,其可以具有适于用作MOSFET器件(例如,n型或p型)中栅电极的n型功函数,或者p型功函数。过渡金属合金200包括过渡金属210、碳(C)220(或其他合适的元素,如下将描述的)和掺杂剂230。
一般地,过渡金属210被选择来提供n型功函数或p型功函数。在一个实施例中,过渡金属包括钛(Ti)、钽(Ta)、锆(Zr)和铪(Hf)的其中一种。在另一实施例中,过渡金属可以包括前述元素的其中任一种,或铬(Cr)、钼(Mo)、钨(W)、钒(V)和铌(Nb)的其中一种。在一个实施例中,过渡金属210占合金200的原子百分率(“at%”)是20-50at%。在又一实施例中,合金200包括两种或多种以上列出的过渡金属。
碳220可以是过渡金属合金200的另一组分。在一个实施例中,碳构成了合金200的30-60at%。某些过渡金属当与碳成合金以形成过渡金属碳化物(或其他包括碳的、没有或只有最少量碳化物的合金)时,将具有良好的热稳定性的特征,即这些过渡金属碳化物的至少某些材料性质(例如功函数)在高温下不会降级。但是,应该理解到,碳仅是可以与过渡金属成合金以改善热特性的元素的一个实例。除了碳之外,其他可以与过渡金属成合金以获得增强的热性能的元素例如包括氮(N)、硅(Si)、锗(Ge)和硼(B),或这些元素的各种组合。
如以上提到的,过渡金属合金200还包括掺杂剂230。掺杂剂被引入过渡金属合金中来调节或改变合金的某些特性。在一个实施例中,掺杂剂被加入以影响合金的功函数(例如,增强n型或p型功函数特性)。在另一实施例中,掺杂剂被加入以改变过渡金属合金的另一性质,例如传导性。在一个实施例中,掺杂剂占过渡金属合金的原子百分率可以高达20at%。在一个实施例中,例如为n型功函数,掺杂剂包括铝(Al);在另一实施例中,例如为p型功函数,掺杂剂包括铂(Pt)。其他可能的掺杂剂包括硅、镓(Ga)和锗(Ge),以及许多过渡金属。
如图2所示,过渡金属合金200还可包括其他残余物质240。这些残余元素作为沉积工艺或其他制备步骤的结果,通常以相对少的量存在于过渡金属合金中。在一个实施例中,残余物质占合金组合物约5at%或更少。常见的残余物质包括氮和氧,以及例如氯化物的卤化物杂质。但是,应该理解到,如上所建议的,例如氮之类的元素在其他实施例中可以是合金200的所期望组分。
在一个实施例中,过渡金属合金200是过渡金属碳化物,包括20-50at%之间的钛、30-60at%之间的碳和至多20at%的铝。这种过渡金属碳化物可以提供n型功函数。在另一实施例中,过渡金属碳化物包括约37at%钛、约55at%碳和约4at%铝,以及约4at%氧和1at%或更少的氮。当然,本领域的技术人员将认识到这些仅是可作为栅电极材料的过渡金属合金的一些实例。
在一个实施例中,过渡金属合金200在高温下是热稳定的;在另一实施例中,过渡金属合金200在高温下具有热稳定的功函数,如在高k值的电介质栅材料(例如ZrO2、HfO2或Al2O3)上所测得的。在一个实施例中,过渡金属合金200在高达约900℃的温度下呈现热稳定性,例如合金的功函数不会移动到中间能隙能级。当过渡金属合金200用作MOSFET器件中的栅电极时,这种增强的热稳定性使得栅电极结构能够经得起高的后续沉积处理温度,这种处理温度是这种器件在制备工艺中常规要经历的。因而,晶体管的功函数在CMOS工艺流程的后续阶段将不会降级,最终其性能也不会降级。
图3中所示的是形成使用过渡金属合金的栅电极的方法300的实施例。而且,图3的方法300还通过图4A至4E的示意图进一步示出;后面将参照这些图进行描述。
参照图3中的方框310,栅绝缘层沉积在衬底上。这在图4A中示出,图4A表示已沉积在衬底410的表面上的栅绝缘材料层401。在一个实施例中,栅绝缘材料401包括高k值的介电材料,例如ZrO2、HfO2或Al2O3。栅绝缘材料层401可以利用任意合适的技术而沉积。在一个实施例中,栅绝缘材料层401通过覆盖层沉积工艺而形成,例如化学气相沉积(CVD)或物理气相沉积(PVD)。
在要形成NMOS器件的一个实施例中,衬底410包括p掺杂衬底(并且所形成的源区和漏区将包括n掺杂区)。在要形成PMOS器件的另一实施例中,衬底410包括n掺杂衬底(并且所形成的源区和漏区将包括p掺杂区)。在一个实施例中,衬底410包括硅(例如,单晶硅);但是,应该理解到,在其他实施例中,衬底410可以包括另外的材料(例如,GaAs、绝缘体上硅等)。
然后,过渡金属合金层沉积在栅绝缘材料层上,如方框320中所陈述的。这在图4B中示出,其中过渡金属合金层402已沉积在栅绝缘材料层401上。在一个实施例中,过渡金属合金层402包括以上根据图2所描述的过渡金属合金200。在另一实施例中,过渡金属合金层402包括过渡金属碳化物;在又一实施例中,过渡金属合金层402包括含有钛、碳和铝的过渡金属碳化物。在又一实施例中,过渡金属合金层402包括大约37at%的钛、55at%的碳和3at%的铝,以及大约4at%的氧和1at%或更少的氮。
过渡金属合金层可以利用任意合适的技术来沉积。在一个实施例中,过渡金属合金层402沉积的厚度在约500-2000埃之间。在一个实施例中,过渡金属合金层402是通过PVD工艺沉积的,这种PVD工艺在压力为1-100mTorr之间、衬底保持在0℃-450℃之间的温度下、具有氩气氛围(以10-200sccm的流速引入)的单个室中使用TiC(Al)靶。沉积可以利用1kW-40kW范围的直流电源来进行,在另一实施例中,使用频率在1-100kHz之间的脉冲直流电源。在另一实施例中,栅电极材料是通过PVD工艺沉积的,在第一室中使用Ti(Al)靶,在第二室中使用碳靶,其中栅电极通过交替的Ti(Al)薄层(例如,5-10埃)和碳薄层(例如,5-10埃)而形成至500-2000埃之间的最终厚度。
在另一实施例中,过渡金属合金层402是通过CVD工艺而沉积的。沉积是在压力为0.25-10.0Torr、温度在150℃-600℃之间的CVD室中进行的。引入沉积室内的前驱气体包括10-1000sccm流速下的TiCl4气体、10-1000sccm流速下的TMA(三甲基铝,Al(CH3))气体以及流速至多为10sccm的氨气(NH3)。而且,例如氮气、氩气(Ar)或氦气(He)的惰性气体可以至多4000sccm的流速被引入到沉积室内(例如作为传递剂或清洗剂)。
在又一实施例中,过渡金属合金层402是利用原子层沉积(ALD)工艺而沉积的。
返回到图3,接着进行蚀刻来形成栅电极叠层,如方框330陈述的。这在图4C中示出,其中过渡金属合金层402和栅绝缘材料层401已被蚀刻来形成栅电极叠层405。栅电极叠层包括覆盖在栅绝缘层440上的栅电极430。任意合适的蚀刻工艺都可用来蚀刻过渡金属合金层402和栅绝缘材料层401,以形成栅电极430和栅绝缘层440。虽然图中未示出,但本领域的技术人员将认识到,在蚀刻之前可形成经图案化的掩模层。
参照方框340,接着可以在衬底上形成其他特征来创建NMOS或PMOS器件。这在图4D和4E中示出,其中已形成其他特征来形成器件400。首先参照图4D,形成了源区420a和漏区420b。对于NMOS晶体管,源区420a和漏区420b将包括n型区域,而对于PMOS晶体管,源区和漏区将包括p型区域。离子注入工艺可用来形成源区420a和漏区420b。根据栅电极430的组成,在离子注入过程中在栅电极430上沉积硬掩模层490(虚线所示的)可能是所期望的,以抑制离子注入栅电极。
转向图4E,已形成了绝缘层450a,450b,并且已进行了进一步的离子注入以形成更深的源区420a和漏区420b。绝缘层450a,450b也充当掩模来抑制离子注入底下的衬底410,从而分别形成源延伸区422a和漏延伸区422b。如以上提到的,在栅电极材料上的离子注入可以利用硬掩模来抑制。其他可形成的特征包括导电互连(例如,见图1,160a-b项)以及钝化层。
在另一实施例中,如图3的方框350所陈述的,过渡金属合金层402的组成在沉积工艺过程中被调整。如上所提到的,在一个实施例中,栅电极可包括不同物质(例如,Ti(Al)和C)的交替的薄层。沉积工艺中的其他变化(例如,压力、温度、脉冲频率、工艺顺序、前驱气体等)可能影响过渡金属合金的最终组成。在一个实施例中(见方框350),引入沉积工艺的变化来改变过渡金属合金的组成。例如,这种在沉积过程中栅电极材料的附加合金化可用来转化功函数,例如从n型转化为p型,这样可提供简化的工艺流程(即,避免为n沟道和p沟道器件沉积两种不同的栅电极材料)。如本领域的技术人员将认识到的,功函数的转化仅是可通过这种附加合金化而改变的栅电极特性的一个实例,而且,沉积工艺的这种变化可用来调整栅电极材料的其他化学性质和电学性质。
在根据图3和4A-4E所示的实施例中,过渡金属合金作为栅电极。但是,所公开的过渡金属合金在功能和应用上并不受限于此。除了作为导体和栅电极的使用之外,在其他实施例中,所公开的过渡金属合金可作为阻挡层和/或蚀刻终止层。以下根据图5和6A-6E示出并描述所公开的过渡金属合金作为扩散阻挡和/或蚀刻终止(以及栅电极的部分)的使用实施例。
因而,现在转向图5,所示的是形成使用过渡金属合金的栅电极的方法500的另一实施例。图5的方法500还由图6A-6E的示意图进一步示出;后面将参照这些图进行描述。而且,在图5和6A-6E中所示的许多图形元素分别与图3和4A-4E中所示的相同或相类似,并且类似的标号用来表示图5和6A-6E中的相同项。
参照方框310,栅绝缘材料层形成在衬底上。这在图6A中示出,图6A表示已沉积在衬底410上的栅绝缘材料层401,如上所述。并且,在一个实施例中,栅绝缘材料层401包括高k值的介电材料(例如,ZrO2、HfO2、Al2O3等)。
如方框550所陈述的,相对较薄的过渡金属合金层沉积在栅绝缘材料层上来“设定”晶体管的阈值电压。这也在图6A中示出,其中过渡金属合金薄层602已沉积在栅绝缘材料层401上。在一个实施例中,过渡金属合金层602的厚度在25-100埃之间。
在一个实施例中,过渡金属合金层602包括以上参照图2描述的过渡金属合金200。在另一实施例中,过渡金属合金层602包括过渡金属碳化物,在又一实施例中,过渡金属合金层602包括含有钛、碳和铝的过渡金属碳化物。在又一实施例中,过渡金属合金层602包括大约37at%的钛、55at%的碳和3at%的铝,以及大约4at%的氧和1at%或更少的氮。过渡金属合金层602可以利用任意合适的覆盖沉积技术来沉积,例如PVD、CVD、或ALD,如上所述。
接着导电材料层沉积在过渡金属合金层上,如方框560中所陈述的。这在图6B中示出,其中导电材料层603已沉积在过渡金属合金层602上来形成栅电极。导电材料层603可包括任意合适的导电材料,例如多晶硅或铝。在一个实施例中,导电材料层603的厚度在500-2000埃之间。
导电材料层603可以利用任意合适的沉积技术来沉积。在一个实施例中,导电材料层603是利用覆盖沉积工艺来形成的,例如CVD或PVD。在另一实施例中,导电材料层603是利用有选择性的沉积技术来沉积的。在这个实施例中,过渡金属栅电极和栅绝缘层首先通过蚀刻而被图案化,并且利用选择性沉积技术,例如电镀或无电镀,导电材料被有选择性地沉积在过渡金属栅电极上。
接着进行蚀刻来生成栅电极叠层,如在图5的方框330中阐述的。这在图6C中示出,其中导电材料层603、过渡金属合金层602和栅绝缘材料层401中的每一个都已被蚀刻以生成栅电极叠层605。栅电极叠层605包括覆盖在过渡金属合金层635上的导电层680,其中过渡金属合金层635又覆盖在栅绝缘层440上。任意合适的蚀刻工艺可分别用来蚀刻导电材料603、过渡金属合金602和栅绝缘材料层401。虽然在图中未示出,但本领域的技术人员将认识到,在蚀刻之前可形成经图案化的掩模层。
接着可在衬底上形成其他特征来创建NMOS或PMOS器件,如方框340所阐述的。这在图6D和6E中示出,其中已经形成其他特征以形成器件600。参照图6D,通过离子注入生成源区420a和漏区420b。如前面所提到的,在这个实施例中可以不需要硬掩模,其中导电材料层680(例如多晶硅)自身在离子注入过程中起硬掩模的作用。现在参照图6E,绝缘层450a、450b已经形成。进一步的离子注入导致形成更深的源区420a和漏区420b,并且绝缘层450a、450b抑制了离子注入底下的衬底410内,这样形成了源延伸区422a和漏延伸区422b,这些都如上所述。可形成的其他特征包括导电互连(例如,见图1,160a-b项)以及钝化层。
如上所建议的,所公开过渡金属合金的功能并不仅限于作为导体和栅电极。在一个实施例中,所公开的过渡金属合金还可能起阻挡层材料的作用,在另一实施例中,这些过渡金属合金可能起蚀刻终止的作用,下面将对此进行更详细的描述。
对于某些实施例,过渡金属合金200可能不是“良好的”导体。在这种情况下,如图6C所示的,使用相对较薄的过渡金属合金层可能是所期望的,以利用过渡金属合金的最佳功函数特性获得所期望的阈值电压,接着在过渡金属合金上形成另一相对较良好导体(例如铝)的层。但是,许多良好导体的金属(例如铝)将与底下的栅绝缘体材料反应(例如,失电子)。这样,在这种情况下,过渡金属合金薄层起阻挡层的作用。
在另一实施例中,如上所提到的,相对薄的过渡金属合金层可充当蚀刻终止层。作为蚀刻终止层,薄的过渡金属合金层再次用来“设置”晶体管的阈值电压。更容易蚀刻的导电材料(例如多晶硅)接着被沉积在过渡金属合金薄层上(见图6B和6C)。导电层(例如多晶硅)的蚀刻终止于过渡金属合金薄层,并且进行另一种蚀刻工艺来去除任意残余的过渡金属合金。例如多晶硅的材料非常容易进行各向异性蚀刻,而且,因为相对于栅电极(即,包括过渡金属合金层和导电材料层的电极叠层)的总厚度,过渡金属合金层相对较薄,所以这层较容易去除。还要注意到,多晶硅在离子注入过程中可起硬掩模材料的作用,因此,在导电材料层680包括多晶硅(或其他类似材料)的情况下,硬掩模(见图4D,490项)在通过离子注入形成源区和漏区的过程中可能不是必须的。
这里已描述了可用在晶体管的栅电极中的过渡金属合金以及形成晶体管的栅电极的方法的实施例,本领域的技术人员将认识到所公开实施例的优点。所公开的过渡金属合金可以起NMOS或PMOS器件中的栅电极作用,并且这些过渡金属合金在高达900℃的温度下呈热稳定性,例如,合金的功函数不会明显变化,并且合金也不会与底下的绝缘材料反应。这样,所公开的过渡金属合金可以被集成到现有的CMOS工艺流程中,这种工艺流程的处理温度可能接近900℃。而且,使用所公开过渡金属合金的其中之一作为晶体管的栅电极,能够允许进一步按比例减小栅氧化物的厚度。而且,除了起导体和栅电极的作用,所公开的过渡金属合金还可充当阻挡层和/或蚀刻终止层。
前面详细的描述和附图仅是示例性的,而并非限制性的。它们主要是为了清楚、全面地理解所公开的实施例而提供的,不要理解为对本发明的限定。本领域的技术人员在不偏离所公开实施例的精神和所附权利要求的范围的情况下,可能会对这里所述的实施例进行许多增添、删除和更改,以及替换。
权利要求
1.一种合金,包括约20-50原子百分率的过渡金属,所述过渡金属选自钛、锆、钽和铪;约30-60原子百分率的碳;和至多20原子百分率的铝。
2.如权利要求1所述的合金,其中所述合金的功函数在约3.8eV-4.4eV的范围内。
3.如权利要求2所述的合金,其中所述功函数在高达约900摄氏度的温度下不会明显变化。
4.如权利要求1所述的合金,还包括至多5原子百分率的残余材料,所述残余材料包括氧、氮和氯化物的其中至少一种。
5.一种合金,包括约20-50原子百分率的过渡金属;约30-60原子百分率的一种或多种元素的组合,所述元素组合包括碳、氮、硅、锗和硼的其中至少一种;和至多20原子百分率的掺杂剂。
6.如权利要求5所述的合金,其中所述合金的功函数在约3.8eV-4.4eV之间。
7.如权利要求5所述的合金,其中所述合金的功函数在约4.9eV-5.5eV之间。
8.如权利要求5所述的合金,其中所述合金的功函数在高达约900摄氏度的温度下不会明显变化。
9.如权利要求5所述的合金,其中所述过渡金属选自钛、锆、钽、铪、钨、铬、钼、钒和铌。
10.如权利要求5所述的合金,还包括至多5原子百分率的残余材料,所述残余材料包括氧、氮和氯化物的其中至少一种。
11.如权利要求5所述的合金,其中所述掺杂剂选自铝、铂、硅、镓和锗。
12.一种合金,包括约37原子百分率的钛;约55原子百分率的碳;和约3原子百分率的铝;其中所述合金的功函数在约3.8eV-4.4eV之间。
13.如权利要求12所述的合金,其中所述功函数在高达约900摄氏度的温度下不会明显变化。
14.如权利要求12所述的合金,还包括约4原子百分率的氧和低于1原子百分率的氮。
15.一种器件,包括衬底,其内形成有源区和漏区;绝缘层,其设置在所述衬底上,并且在所述源区和所述漏区之间延伸;和栅电极,其覆盖在所述绝缘层上,所述栅电极由合金形成,所述合金包括约20-50原子百分率的过渡金属,所述过渡金属选自钛、锆、钽和铪,约30-60原子百分率的碳,和至多20原子百分率的铝。
16.如权利要求15所述的器件,其中所述合金的功函数在约3.8eV-4.4eV的范围内。
17.如权利要求16所述的器件,其中所述功函数在高达约900摄氏度的温度下不会明显变化。
18.如权利要求16所述的器件,其中所述源区和漏区包括n型区域,所述衬底包括位于所述源区和漏区之下的p型区域。
19.如权利要求15所述的器件,其中所述栅电极合金在高达约900摄氏度的温度下基本不会与所述绝缘层反应。
20.如权利要求15所述的器件,其中所述绝缘层包括具有高介电常数的材料。
21.如权利要求15所述的器件,其中所述高介电常数材料包括ZrO2、HfO2和Al2O3的其中之一。
22.如权利要求15所述的器件,还包括至多5原子百分率的残余材料,所述残余材料包括氧、氮和氯化物的其中至少一种。
23.一种器件,包括衬底,其内形成有源区和漏区;绝缘层,其设置在所述衬底上,并且在所述源区和所述漏区之间延伸;和栅电极,其覆盖在所述绝缘层上,所述栅电极由合金形成,所述合金包括约20-50原子百分率的过渡金属,约30-60原子百分率的一种或多种元素的组合,所述元素组合包括碳、氮、硅、锗和硼的其中至少一种,和至多20原子百分率的掺杂剂。
24.如权利要求23所述的器件,其中所述合金的功函数在约3.8eV-4.4eV之间。
25.如权利要求24所述的器件,其中所述源区和漏区包括n型区域,所述衬底包括位于所述源区和漏区之下的p型区域。
26.如权利要求23所述的器件,其中所述合金的功函数在约4.9eV-5.5eV之间。
27.如权利要求26所述的器件,其中所述源区和漏区包括p型区域,所述衬底包括位于所述源区和漏区之下的n型区域。
28.如权利要求23所述的器件,其中所述合金的功函数在高达约900摄氏度的温度下不会明显变化。
29.如权利要求23所述的器件,其中所述栅电极合金在高达约900摄氏度的温度下基本不会与所述绝缘层反应。
30.如权利要求23所述的器件,其中所述过渡金属选自钛、锆、钽、铪、钨、铬、钼、钒和铌。
31.如权利要求23所述的器件,其中所述掺杂剂选自铝、铂、硅、镓和锗。
32.如权利要求23所述的器件,还包括至多5原子百分率的残余材料,所述残余材料包括氧、氮和氯化物的其中至少一种。
33.一种方法,包括在衬底上沉积绝缘材料层;以及在所述绝缘层上沉积合金层,所述合金包括约20-50原子百分率的过渡金属,所述过渡金属选自钛、锆、钽和铪,约30-60原子百分率的碳,和至多20原子百分率的铝。
34.如权利要求33所述的方法,其中所述合金的功函数在约3.8eV-4.4eV的范围内。
35.如权利要求34所述的方法,还包括使所述合金层经历约高达900摄氏度的温度,其中所述功函数在该温度下不会明显变化。
36.如权利要求33所述的方法,还包括使所述合金层经历约高达900摄氏度的温度,其中所述合金基本不会与所述绝缘材料反应。
37.如权利要求33所述的方法,其中所述合金层是通过化学气相沉积、物理气相沉积和原子层沉积的其中一种方法而沉积的。
38.如权利要求33所述的方法,还包括在沉积所述合金层的过程中调整所述合金的组成。
39.如权利要求33所述的方法,其中所述合金还包括至多5原子百分率的残余材料,所述残余材料包括氧、氮和氯化物的其中至少一种。
40.如权利要求33所述的方法,还包括在所述合金层上沉积导电材料层。
41.如权利要求40所述的方法,其中所述导电材料包括铝和多晶硅的其中之一。
42.如权利要求40所述的方法,其中所述合金层的厚度在约50-100埃之间,所述导电材料层的厚度在约500-2000埃之间。
43.如权利要求40所述的方法,其中所述合金层充当阻挡层和蚀刻终止层的至少其中之一。
44.如权利要求33所述的方法,还包括蚀刻所述合金层和所述绝缘材料层来形成栅电极叠层。
45.如权利要求44所述的方法,还包括在所述衬底中形成源区和漏区。
全文摘要
本发明公开了过渡金属合金的实施例,这种合金的n型或p型功函数在高温下不会明显变化。所公开的过渡金属合金可用作晶体管的栅电极,或者形成为晶体管栅电极的一部分。本发明也公开了形成使用这些过渡金属合金的栅电极的方法。
文档编号H01L21/336GK1598026SQ20041005846
公开日2005年3月23日 申请日期2004年8月16日 优先权日2003年8月15日
发明者马克·多齐, 内森·巴克斯特, 罗伯特·S·周, 卡里·海尔克宁, 泰穆·朗 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1