图像传感器及其制造方法

文档序号:6850675阅读:190来源:国知局
专利名称:图像传感器及其制造方法
技术领域
本发明涉及一种将光子转换成电荷包的装置,尤其涉及一种具有金属连线的图像传感器和制造该图像传感器的方法。
背景技术
图像传感器是用于将一维或二维光学图像转换成电信号的装置。图像传感器是一种固态图像传感器,其通常分为CMOS(互补金属氧化物半导体)图像传感器和CCD(电荷耦合器件)图像传感器。
CMOS图像传感器将光学图像转换成电信号,并利用开关模式(switchmode)采用MOS晶体管一个接一个地检测输出,这些MOS晶体管采用CMOS制造技术制造且具有和像素一样多的数目。更具体而言,CMOS图像传感器具有以下优点驱动模式简单,可实现各种扫描模式,可将信号处理电路集成到单个芯片中,从而可以使芯片最小化。另外,CMOS图像传感器并不昂贵,且其功耗小,因为其采用了兼容的CMOS技术。
CMOS图像传感器通常包括像素阵列和外围电路。更具体而言,像素阵列主要由用于接收入射光的光电二极管和用于将接收到的光转换成电信号的外围单元组成。光电二极管必须确保由光电二极管占用的区域接收较多的光。
在确保该占用区域的情况下,会有一个问题,即像素阵列尺寸变大了。另外,由于在确保外围单元区域之后才确定由像素阵列占用的区域,因此限制了对像素阵列尺寸的减小。因此,目前填充因数(即光电二极管与像素阵列的比率)高达30%。
如前所述,传统的CMOS图像传感器具有一些优点,但其难于扩大将被光电二极管占用的区域,不能获得高分辨率的图像。

发明内容
因此,提供本发明以解决现有技术中包含的上述问题,且本发明的一个目的是提供一种能扩大光电二极管所占用的区域的图像传感器。
本发明的另一目的是提供一种图像传感器的制造方法,该图像传感器的光电二极管所占用的区域能够很容易地扩大。
为了实现上述目的,提供了一种图像传感器,包括其上形成有器件的衬底,所述器件包括光电二极管和栅电极;形成在衬底上、用于将器件的信号传送到电路的透明导电材料的金属连线;形成在金属连线上用于保护器件的钝化膜;形成在钝化膜上用于形成图像的滤色器;以及形成在滤色器上用于收集光的微透镜。
根据本发明的另一方面,提供了一种制造图像传感器的方法,包括以下步骤在衬底上形成包括光电二极管和栅电极的器件;在衬底上形成透明导电膜图案的下层金属连线以将器件的信号传送到电路;在下层金属连线上形成插塞,该插塞连接到下层金属连线;在该插塞上形成透明导电膜图案的上层金属连线,该上层金属连线连接到该插塞;在该上层金属连线上形成钝化膜;以及在钝化膜上形成滤色器和微透镜。
对于本发明,由下层金属连线、插塞和上层金属连线组成的金属连线的全部或一部分形成在透明导电膜图案中。这样,金属连线可形成在光电二极管上,以易于扩大由光电二极管所占用的区域。也就是说,利用了透明导电膜图案的金属连线,其不阻碍将光传送到光电二极管。


通过结合附图的以下详细描述,本发明的上述和其它目的、特征和优点将更加明显,附图中图1是示意图,表示了根据本发明优选实施例的图像传感器的像素阵列的布局图;图2是根据本发明优选实施例的图像传感器的横截面图;图3A到3F是描述了根据本发明优选实施例的图像传感器的制造过程的横截面图。
具体实施例方式
在下文中,将参照附图描述本发明的优选实施例。在下面的描述和附图中,采用相同的附图标记表示相同或相似的部件,且由此将省略对相同或相似部件的重复描述。
图1是示意图,表示了根据本发明优选实施例的图像传感器的像素阵列的布局图。
参照图1,像素二极管包括用于检测光的光电二极管10和形成单元像素的四个晶体管。在四个晶体管中,传送晶体管12是用于将存储在光电二极管中的电荷传送到浮置扩散区域,复位晶体管14用于将浮置扩散区域复位为电源电压电平,驱动晶体管16用作源极跟随器,而选择晶体管18用于接收像素数据使能信号并输出像素数据信号。
像素阵列被设计为具有用于将信号传送到器件的金属连线20。可将金属连线20设计在光电二极管10上。原因是因为金属连线20是由透明导电膜的图案制成,该透明导电膜由透明导电材料所构成。更具体而言,由于当光电二极管10接收光时金属连线20并不阻碍光,因此可将金属连线20形成在光电二极管10上。
因此,可以很容易地扩大像素阵列中由光电二极管10占用的区域。实际上,光电二极管与像素阵列的比率可以增加50%以上。
现在将描述根据本发明的由透明导电膜制成的图像传感器的制造过程。
在衬底上形成包含光电二极管和栅电极的器件。更具体而言,在衬底上形成器件隔离膜,此时,选取沟槽隔离膜作为器件隔离膜。然后,在衬底上形成光电二极管和栅电极。此时,栅电极形成为晶体管。在衬底上形成层间绝缘层,然后对衬底进行接触形成工艺以实现电连接。
在衬底上形成器件之后,对于衬底实施形成金属连线的工艺。更具体而言,在衬底上形成透明导电材料的透明导电膜。该透明导电材料选自InO、SnO、ZnO、MgO等。优选选取上述材料的任何一种,但也可采用至少两种材料的混合。在透明导电材料的透明导电膜的情况下,优选地在衬底上形成单一膜,但也可在其上形成至少两层膜。例如,透明导电膜可由第一InO膜和第二SnO膜组成。构图透明导电膜以形成透明导电膜图案,由此形成金属连线。更具体而言,在形成透明导电膜之后,在氧气氛下使衬底经受氧等离子体工艺或热退火工艺,以形成金属连线。优选的是在压强为5至10-5Torr和功率为100至1000W的条件下执行氧等离子体工艺。优选地是在约350至600℃的温度下执行热退火工艺。
金属连线由下层金属连线、上层金属连线和用于连接下层和上层金属连线的插塞组成。因此,在上述工艺中形成透明导电膜图案的下层金属连线之后,形成连接至下层金属连线的插塞,然后形成连接至下层金属连线的上层金属连线,由此完成金属连线。此时,可利用与形成下层金属连线相同的工艺形成上层金属连线。优选地,该插塞是钨插塞,且可由透明导电材料制成。优选地,在下层金属连线和上层金属连线之间插入层间绝缘膜图案,以形成插塞。
在形成金属连线之后,在金属连线上形成钝化膜,以保护下面的器件不受外部环境的影响。然后,在钝化膜上形成滤色器以实现图像。此时,滤色器主要由红R、绿G和蓝B组成。在滤色器上形成微透镜以收集入射光。
这样,如图2所示,根据本发明的图像传感器包括衬底100,其上形成有由光电二极管和栅电极组成的器件;形成在衬底100上的透明材料的金属连线120;形成在金属连线120上的钝化膜160;形成在钝化膜160上的滤色器180;以及形成在滤色器180上的微透镜200。金属连线120由下层金属连线120a、插塞120b和上层金属连线120c组成。特别地,由于该插塞120b,在下层金属连线120a和上层金属连线120c之间插入层间绝缘膜图案140。
这样,本发明的图像传感器包括由透明导电材料制成的金属连线120。在光电二极管上形成金属连线120的原因是金属连线120不阻挡入射到光电二极管上的光。因此,可以扩大由光电二极管占用的区域。光电二极管与像素阵列增大的比率允许获得高分辨率的图像。
现在将参照附图详细描述根据本发明一个优选实施例的图像传感器的制造过程。
图3A到3F是横截面图,表示了根据本发明优选实施例的图像传感器的制造过程。
参照图3A,通过前端线(front-end-of-line,FEOL)工艺,在衬底上形成器件。首先,在衬底上形成由栅电极32和源/漏电极36a与36b组成的晶体管。在其上形成有该晶体管的衬底30上形成具有接触通道的层间绝缘膜图案40,在该接触通道中形成钨插塞34。结果,提供了包括具有光电二极管和晶体管的栅电极32的器件的衬底30。
参照图3B和3C,在其上形成有所述器件的衬底30上形成下层金属连线50a。更具体而言,在衬底30上形成In2O3透明导电膜50。通过溅射在衬底上形成In2层,然后通过氧等离子体工艺氧化In2层的表面来形成透明导电膜50。此时,在压强约为5Torr和功率约为500W的条件下执行氧等离子体工艺。对于热退火工艺,其优选在约350至600℃的温度下执行。通过层叠和表面氧化在衬底30上形成In2O3透明导电膜50。然后,在透明导电膜50上形成光致抗蚀剂膜,然后对其进行光刻蚀刻工艺(photolithographyetching process),以形成光致抗蚀剂图案52。将光致抗蚀剂图案52用作蚀刻掩模对衬底进行蚀刻,以形成透明导电膜图案的下层金属连线50a。此时,通过湿法蚀刻进行蚀刻,其中其采用了以比率1∶1混合的HCl和H2O的蚀刻溶液,且在约50℃将衬底浸入该蚀刻溶液中大约1分钟。
参照图3D,在其上形成有下层金属连线50a的衬底30上形成层间绝缘膜。此时,通常选取氧化物膜作为层间绝缘膜。构图层间绝缘膜以形成具有通孔的层间绝缘膜图案60。在层间绝缘膜图案60的通孔中形成钨插塞50b。插塞50b的形成是通过层叠和抛光而实现的。更具体而言,在以将钨充分地埋入该通孔中的方式在层间绝缘膜图案60上形成钨膜之后,对钨膜抛光直到露出层间绝缘膜图案60的表面,由此获得了插塞50b。
参照图3E,在衬底上形成将连接至插塞50b的上层金属连线50c。通过与形成下层金属连线50a的工艺相同的工艺形成下层金属连线50c。即,在衬底上形成透明导电膜,然后对其构图,以形成透明导电膜图案的上层金属连线50c。
结果,在衬底30上形成了由下层金属连线50a、上层金属连线50c和连接连线50a与50c的插塞50b组成的金属连线500。
在其上形成有金属连线500的衬底30上形成钝化膜62。钝化膜62用于保护金属连线500和形成在衬底上的器件不被湿气渗透或被划伤。此时,通常选取氧化物膜作为钝化膜62。
参照图3F,在钝化膜62上形成由红、绿、蓝组成的滤色器64。通过三次层叠和三次蚀刻形成滤色器64。更具体而言,首先层叠形成红色的层并蚀刻该层,然后层叠形成绿色的层并蚀刻该层,最后层叠形成蓝色的层并蚀刻该层。
在滤色器64上形成微透镜66。此时,将微透镜66形成为半球形,从而提高收集光的效率。
这样,就在衬底上形成了由金属连线500、滤色器64和微透镜66组成的图像传感器。金属连线500可形成在光电二极管上,从而可扩大由光电二极管占用的区域。
对于以上描述,根据本发明,可在光电二极管上形成金属连线,从而能够容易地扩大由光电二极管占用的区域。因此,通过增加光电二极管与像素阵列的比率能够获得具有高分辨率的图像传感器。
尽管为了说明的目的已经描述了本发明的优选实施例,但本领域技术人员将会理解,在不脱离由所附权利要求所公开的本发明的范围和精神的前提下,可以进行各种修改、添加和替换。
权利要求
1.一种图像传感器,包括其上形成有器件的衬底,所述器件包括光电二极管和栅电极;形成在所述衬底上的透明导电材料的金属连线,其用于将所述器件的信号传送到电路;形成在所述金属连线上用于保护所述器件的钝化膜;形成在所述钝化膜上用于实现图像的滤色器;以及形成在所述滤色器上用于收集光的微透镜。
2.如权利要求1所述的图像传感器,其中所述透明导电材料是选自由InO、SnO、ZnO和MgO所构成的组中的至少一种。
3.一种图像传感器的制造方法,包括以下步骤在衬底上形成包括光电二极管和栅电极的器件;在所述衬底上形成透明导电膜图案的下层金属连线,以将所述器件的信号传送到电路;形成形成于所述下层金属连线上的插塞,所述插塞连接到所述下层金属连线;在所述插塞上形成透明导电膜图案的上层金属连线,所述上层金属连线连接到所述插塞;在所述上层金属连线上形成钝化膜;以及在所述钝化膜上形成滤色器和微透镜。
4.如权利要求3所述的方法,其中所述下层和上层金属连线的透明导电膜图案是选自由InO、SnO、ZnO和MgO所构成的组中的至少一种。
5.如权利要求4所述的方法,其中通过层叠透明导电材料的透明导电膜,然后执行氧等离子体工艺来形成所述下层和上层金属连线的透明导电膜图案。
6.如权利要求5所述的方法,其中所述氧等离子体工艺是在压强为5至10-5Torr和功率为100至1000W的条件下执行的。
7.如权利要求4所述的方法,其中通过层叠透明导电材料的透明导电膜,然后在氧气气氛下执行热退火来形成所述下层和上层金属连线的透明导电膜图案。
8.如权利要求7所述的方法,其中优选地在350至600℃的温度下执行所述热退火工艺。
9.如权利要求3所述的方法,其中所述插塞由钨或透明导电材料制成。
10.如权利要求9所述的方法,其中所述透明导电材料是选自由InO、SnO、ZnO和MgO所构成的组中的至少一种。
全文摘要
公开了一种图像传感器及其制造方法。在其上形成有器件的衬底上形成金属连线,该金属连线由下层金属连线、上层金属连线和连接下层与上层金属连线的插塞组成,其中下层与上层金属连线由透明导电膜图案制成,所述器件包括光电二极管和栅电极。然后在金属连线上依次形成钝化膜、滤色器和微透镜。金属连线的全部或一部分形成在透明导电膜图案中。这样,在光电二极管上形成了金属连线。
文档编号H01L27/14GK1758441SQ20051006565
公开日2006年4月12日 申请日期2005年2月5日 优先权日2004年2月5日
发明者金希珍 申请人:美格纳半导体有限会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1