标准单元、半导体集成电路和标准单元的布局生成方法

文档序号:6854511阅读:158来源:国知局
专利名称:标准单元、半导体集成电路和标准单元的布局生成方法
技术领域
本发明涉及半导体集成电路和在半导体集成电路中使用的标准单元,特别涉及内部具有电源电容的标准单元、包括该标准单元的半导体集成电路和标准单元的布局生成方法。
背景技术
在近年来的大规模半导体集成电路中,为了在短期间内设计出例如动作频率提高或耗电量低等的高性能半导体集成电路,广泛地采用了使用了标准单元的自动配置布线。另外,在上述标准单元中,包括反相电路、NAND电路、OR电路之类的逻辑单元及触发电路、锁存电路之类的顺序单元等。这里,将用于构成这样的标准单元的电路的晶体管称为功能晶体管。
以下,在图13中示出基于自动配置布线的半导体集成电路的现有设计方法的一例。在自动配置布线中,首先,进行有可能在网表(netlist)中使用的标准单元的布局生成工序S1301。这里,进行标准单元的布局生成工序S1301还包括这样一种单元的生成,该单元(以下,称为电源电容单元)不包含标准单元的功能晶体管,而只对电源布线构成电源电容分量(以下,称为电源电容)。
另外,除该工序S1301以外,还从功能描述的RTL(Resistor transferlevel)起,用工序S1303中得到的时序限制信息及耗电量信息,对设计半导体集成电路时所需的网表进行工序S1302的逻辑合成。在该工序中进行单元(标准单元或定制单元等)的映射和网表的最优化。在此时的映射中使用的标准单元,选择在工序S1301中生成的标准单元。根据如上述那样进行了逻辑合成工序S1302后的网表,在掩模上进行标准单元的配置工序S1304。接着,在工序S1305中进行标准单元间的布线,以满足各标准单元的连接关系。反复进行这样的工序S1304和工序S1305,直到符合规格(例如,时序或耗电量等)为止。最后,利用工序S1306,检测所配置的标准单元间的间隙区域,并在检测出的该间隙区域内,插入电源电容单元(工序S1307)。这样,完成半导体集成电路(工序S1308)。
以下,说明现有的IR-Drop削减方法,在用于自动配置布线的标准单元中,当上述标准单元内的功能晶体管动作时,通过从供给电源电位的电源布线施加动作所需的恒定电压,能够唯一地决定标准单元的时序。但是,这样的电源布线具有电阻分量,电流流入标准单元内的功能晶体管时将使电压瞬态地变化,因此往往不能施加恒定电压(以下,将这样的变化称为IR-Drop。将瞬时的最大IR-Drop称为峰值IR-Drop)。特别是,当在半导体集成电路内的同一电源布线上成列地构成按同一时序动作的标准单元时,从同一电源布线流入这些标准单元的电流增多,所以使IR-Drop变得显著。因此,半导体集成电路内的标准单元的时序没有唯一地决定,在逻辑上产生误动作的可能性增大。在这种情况下,以在半导体集成电路内抑制急剧的IR-Drop为目的,在用于半导体集成电路的电源布线上连接电源电容并抑制IR-Drop,是众所周知的技术。
以下,说明自动配置布线中使用的电源电容单元。在自动配置布线中,广泛地采用着这样的方法,即将电源电容单元作为在半导体集成电路中使用的标准单元预先准备好,并将上述电源电容单元插入到半导体集成电路内的没有配置标准单元的间隙区域内。但是,有可能因IR-Drop而在逻辑上产生误动作的标准单元,当如上所述地在同一电源布线上成列地连接着多个标准单元时,误动作更为严重。而这种有可能产生误动作的标准单元,在很多情况下都存在于半导体集成电路的时序最为严格的信号的路径(以下,称为关键路径)上。特别是,在关键路径上,为了减小在标准单元之间进行连接的布线负荷,标准单元之间密集地配置使其尽可能地狭窄。为抑制这样的密集部位的IR-Drop所需的电源电容单元,必须插入到密集地配置着标准单元的区域内。因此,存在着这样的问题,即在配置了标准单元和电源电容单元的半导体集成电路中,为了确保电源电容单元的配置区域,半导体集成电路的面积也增大了相当于该配置区域的面积。此外,同样,在现有技术中,虽然有一种计算标准单元的电流量并插入所需要的最低限度的电源电容单元的方法,但在该方法中也存在这样的问题,即需要确保电源电容单元的插入区域,因此半导体集成电路的面积增大相当于电源电容单元的面积。
以下,用图14A~图14D对由MOS晶体管构成的现有的电源电容进行说明。其中,图14A是现有的采用了N沟道晶体管的电源电容。在图14A中,1401是供给电源电位的电源布线,1402是供给接地电位的电源布线。使电源电容为在上述的电源布线1401及1402之间设置电容的结构。另外,1403是接触盘,1404是栅电极,1405是电源电容的漏区或源区。进而,图14B是将图14A的N沟道晶体管可生成区域用14a-14a线剖切后的电源电容的剖面图。在图14B中,电源电容的栅电极1404,通过接触盘1403与供给电源电位的电源布线1401连接,电源电容的漏区或源区1405,通过接触盘1403与供给接地电位的电源布线1402连接。通过这样的与电源电位或接地电位的连接,在1407处形成沟道区域。这里,第1衬底1409与接地电位连接,并且在栅电极1404与沟道区域1407之间设有作为绝缘体的栅极氧化膜1406,因此在栅电极1404和沟道区域1407之间形成电源电容1408。
另外,图14C是现有的采用了P沟道晶体管的电源电容。在图14C中,1401是供给电源电位的电源布线,1402是供给接地电位的电源布线。使电源电容为对这样的电源布线1401及1402设置电容的结构。另外,其中,1403是接触盘,1404是栅电极,1405是电源电容的漏区或源区。进而,图14D是将图14C的P沟道晶体管可生成区域用14b-14b线剖切后的电源电容的剖面图。在图14D中,电源电容的栅电极1404,通过接触盘1403与供给接地电位的电源布线1402连接,电源电容的漏区或源区1405,通过接触盘1403与供给电源电位的电源布线1401连接。通过这样的与电源电位或接地电位的连接,在1407处形成沟道区域。这里,衬底1410与电源电位连接,并且在栅电极1404与沟道区域1407之间设有作为绝缘体的栅极氧化膜1406,因此在栅电极1404与沟道区域1407之间形成电源电容1408。
在上述的现有技术中,与本发明最为类似的是专利文献1中所述的关于采用了电源电容的半导体装置及配置方法的技术。以下,用图15A和图15B对现有技术的标准单元进行说明。在图15A中,1501是标准单元,1502是P沟道功能晶体管区域,1503是N沟道功能晶体管区域,1504是电源电容形成区域,1505是供给电源电位的电源布线,1506是供给接地电位的电源布线,1507是功能晶体管区域1502的左端部,1508是功能晶体管区域1503的左端部,1509是第1电源布线电阻,1510是电源布线电阻,在电源电容形成区域1504内,形成有电源电容。这里,如上所述,当功能晶体管动作时,由于电流流过功能晶体管,所以电源布线具有的电阻导致在标准单元内发生IR-Drop。具体地说,当在标准单元的电源电容形成区域1504内形成了电源电容时,电流从电源电容通过供给标准单元的电源电位的电源布线1505或供给接地电位的电源布线1506,流入功能晶体管1502或功能晶体管1503。
利用如上所述的结构,能够在用于半导体集成电路的标准单元之间设置具有电源电容的电源电容单元(电源电容形成区域1504),从而能够削减标准单元的IR-Drop。但是,在从邻近标准单元的电源电容形成区域1504内所形成的电源电容、到功能晶体管的左端部1508的电流路径上,包含电源布线电阻1509,因此从电源电容到功能晶体管的电流减少。
另外,图15B是现有的配置了标准单元的半导体集成电路。这里,1511是半导体集成电路,1512a~1512f是功能晶体管区域,1513是电源电容形成区域,1514a~1514d是电源电容未形成区域,1515~1520是标准单元。这里,在半导体集成电路1511中,标准单元1515具有功能晶体管区域1512a内的功能晶体管、和电源电容形成区域1513内的电源电容,上述电源电容是这样的结构其不仅对标准单元1515内的功能晶体管区域1512a,而且对标准单元1516内的功能晶体管区域1512b也具有削减IR-Drop的效果。
这里,说明标准单元的尺寸。在自动配置布线所使用的标准单元中,为了使标准单元间的电源布线等的连接易于进行,大多采用使标准单元的高度方向或横向的任意一者固定而另一者用任意的尺寸设计的方式。这里,对使标准单元的高度方向的尺寸固定而使横向尺寸可变的情况进行说明。
以下,说明配置了标准单元的半导体集成电路的尺寸。配置了标准单元的半导体集成电路的横向尺寸,可以根据配置在半导体集成电路的左端和右端的标准单元的配置位置指定。另外,标准单元的横向尺寸,可以根据存在于内部的功能晶体管形成的区域指定。因此,配置了标准单元的半导体集成电路的横向尺寸,可以根据配置在半导体集成电路的左端和右端的标准单元内的功能晶体管形成的区域指定。进而,配置了标准单元的半导体集成电路的纵向尺寸,由沿纵向排列的标准单元的个数决定。这里,当如上所述地设标准单元的高度方向为固定的尺寸时,配置了标准单元的半导体集成电路的高度方向的尺寸唯一地确定。
日本特开2002-110798号公报(图1)发明内容但是,在图15A所示的现有的标准单元中,存在这样的问题,即标准单元1501的构成功能晶体管1502和功能晶体管1503的部分,与构成电源电容形成区域1504的部分分开,因此,当在标准单元1501内的电源电容形成区域1504内构成电源电容时,标准单元的面积增加了相当于形成该电源电容的区域的面积。
进而,在现有的结构中,电源电容形成区域1504内的电源电容,具有与配置在标准单元的外部的结构等效的结构,因此,例如,将从电源电容形成区域1504内的电源电容到标准单元1501内的功能晶体管的左端部1507的电源布线电阻1509的区间,与同样从电源电容形成区域1504内的电源电容到标准单元1501内的功能晶体管的左端部1508的电源布线电阻1510的区间进行比较后,与功能晶体管区域1502与电源电容形成区域1504之间相比,在功能晶体管区域1503与电源电容形成区域1504之间,有一个未形成晶体管的间隙区域,因而无益地增加了与该区域部分相当的布线电阻。即,产生了使削减功能晶体管左端部1508的峰值IR-Drop的效果减低的问题。
另外,当象现有技术那样在半导体集成电路中采用了在标准单元内具有电源电容的上述标准单元时,存在将使整个半导体集成电路的面积增加的问题。
本发明,是为解决上述现有技术中的问题而进行的,其第1目的在于通过削减从电源电容元件到P沟道功能晶体管或N沟道功能晶体管的距离,削减成为IR-Drop的原因的电阻;另外,第2目的在于防止因电源电容的形成而使标准单元及半导体集成电路的面积增加。
为了达到上述第1和第2目的,本发明提供一种标准单元、包括该标准单元的半导体集成电路及标准单元的布局生成方法,在基于自动配置布线的LSI设计中,通过检测出现在标准单元内的功能晶体管之间的间隙区域,并在该标准单元的间隙区域内构成电源电容,从而提供不需要独立的电源电容形成区域、且标准单元的尺寸与未构成电源电容时相同的标准单元。
在图15B中示出具体例子。图15B示出由多个标准单元1515~1520构成的半导体集成电路1511,1512a~f表示功能晶体管形成区域,1513表示现有的电源电容形成区域,另外,1514a~d表示本发明的电源电容形成区域。将电源电容形成在下述区域如标准单元1516内所示,由非矩形的功能晶体管形成区域1512b所围成的电源电容未形成区域1514a;同样在标准单元1517和第4标准单元1518之间的电源电容未形成区域1514b;如标准单元1519所示,因功能晶体管区域1512e的上下宽度不同而形成的电源电容未形成区域1514c、在第6标准单元1520内的上下的功能晶体管区域1512f之间,或第4标准单元1518内的功能晶体管区域1512d与第6标准单元1520内的上部的功能晶体管区域1512f之间,示出的现有的电源电容未形成区域1514d。
另外,本发明提供一种标准单元,用MOS晶体管构成标准单元内部具有的电源电容,并将衬底电位用作对该MOS晶体管的栅电极供给的反电位。
进而,本发明提供一种包括电源电容的标准单元,该电源电容将构成电源电容的MOS晶体管的源区或漏区,与功能晶体管的连接于电源布线的源区共用。
另外,本发明提供一种由自动配置布线设计的半导体集成电路,在配置了标准单元后,在上述半导体集成电路内构成电源电容,上述半导体集成电路的尺寸与未构成上述电源电容时相同。
即,第1技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在与上述P沟道功能晶体管形成区域相对且位于上述N沟道晶体管区域内的上述N沟道功能晶体管形成区域以外的区域,及与上述N沟道功能晶体管形成区域相对且位于上述P沟道晶体管区域内的上述P沟道功能晶体管形成区域以外的区域的至少一个区域内形成电源电容元件。
第2技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在由上述P沟道功能晶体管形成区域和上述N沟道功能晶体管形成区域所围成的区域内形成电源电容元件。
第3技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在由上述P沟道功能晶体管形成区域、上述N沟道功能晶体管形成区域、以及上述标准单元的端部所围成的区域内形成电源电容元件。
第4技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在多个上述功能晶体管形成区域以外的间隙区域内形成电源电容元件。
第5技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;该标准单元还具有形成衬底接触盘(substrate contact)的衬底接触盘形成区域;在由上述衬底接触盘形成区域、和上述P沟道功能晶体管形成区域及上述N沟道功能晶体管形成区域的至少一个区域所围成的区域内形成电源电容元件。
第6技术方案所述的发明的标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;该标准单元还具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域、上述P沟道功能晶体管形成区域和上述N沟道功能晶体管形成区域的至少一个区域、以及上述标准单元的端部所围成的区域内形成电源电容元件。
第7技术方案所述的发明,根据在第1、2、3、4、5或第6技术方案所述的标准单元,其特征在于上述电源电容元件,形成在结构与上述功能晶体管相同的P沟道或N沟道MOS晶体管的栅电极与其衬底之间,在上述栅电极上施加上述衬底电位的反电位。
第8技术方案所述的发明,根据第7技术方案所述的标准单元,其特征在于形成上述电源电容元件的P沟道或N沟道的上述MOS晶体管的源区和漏区的至少一个的电位,与上述衬底电位相同。
第9技术方案所述的发明,根据第7技术方案所述的标准单元,其特征在于形成上述电源电容元件的P沟道或N沟道的上述MOS晶体管的源区和漏区的至少一个区域,与P沟道或N沟道的上述功能晶体管的源区为共用区域。
第10技术方案所述的发明,根据在第1、2、3、4、5或第6技术方案所述的标准单元,其特征在于在对上述标准单元供给电源电位或接地电位的电源布线、和上述电源电容元件所包含的与上述功能晶体管相同的P沟道或N沟道MOS晶体管的栅电极、源电极或漏电极之间形成的连接布线中,至少一条与上述电源布线垂直配置。
第11技术方案所述的发明的半导体集成电路,包括多个在基于自动配置布线的LSI设计中使用、并具有P沟道晶体管区域和N沟道晶体管区域的标准单元,该半导体集成电路的特征在于上述各标准单元的P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述各标准单元的N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在P沟道或N沟道的上述晶体管区域彼此相对地配置在其中的多个上述标准单元中,至少1个标准单元,在P沟道或N沟道的上述晶体管区域内的P沟道或N沟道的上述功能晶体管形成区域以外的间隙区域内具有电源电容元件。
第12技术方案所述的发明,根据第11技术方案所述的半导体集成电路,其特征在于上述间隙区域包括与上述P沟道晶体管区域相对的上述N沟道晶体管区域内的上述N沟道功能晶体管形成区域以外的间隙区域,和与上述N沟道晶体管区域相对的上述P沟道晶体管区域内的上述P沟道功能晶体管形成区域以外的间隙区域;在这些间隙区域的至少一个区域内形成上述电源电容元件。
第13技术方案所述的发明,根据第11或12技术方案所述的半导体集成电路,其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域和P沟道或N沟道的上述功能晶体管形成区域所围成的区域内形成上述电源电容元件。
第14技术方案所述的发明,根据第11或12技术方案所述的半导体集成电路其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域,在由P沟道或N沟道的上述功能晶体管形成区域和上述半导体集成电路的端部所围成的区域内形成上述电源电容元件。
第15技术方案所述的发明,根据第11或12技术方案所述的半导体集成电路,其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域、P沟道或N沟道的上述功能晶体管形成区域、以及上述半导体集成电路的端部所围成的区域内形成上述电源电容元件。
第16技术方案所述的发明的标准单元的布局生成方法,该标准单元,在基于自动配置布线的LSI设计中使用,并包括具有形成P沟道功能晶体管的P沟道功能晶体管形成区域的P沟道晶体管区域,和具有形成N沟道功能晶体管的N沟道功能晶体管形成区域的N沟道晶体管区域,该标准单元的布局生成方法的特征在于,包括电源电容形成区域检测步骤,在所配置的上述标准单元内检测P沟道和N沟道的上述功能晶体管形成区域以外的区域即能够形成电源电容元件的间隙区域;和电源电容形成步骤,在由上述电源电容形成区域检测步骤检测出的上述间隙区域的至少一者内形成上述电源电容元件。
如上所述,在第1~16技术方案所述的发明中,在标准单元内,将电源电容元件形成在形成功能晶体管的区域以外的间隙区域内,因此,能够不增加面积地构成电源电容元件,另外,能够削减电源电容元件与功能晶体管的距离。
另外,在第9技术方案所述的发明中,将标准单元内的功能晶体管的源区和电源电容元件的MOS晶体管的源区或漏区作为一个共用区域共用,因此能够进一步实现面积的削减。
如上所述,根据第1~16技术方案所述的发明,能够在标准单元内形成电源电容元件,而且标准单元的尺寸与未形成电源电容元件时相同,并且,由于可以将电源电容元件配置在标准单元内的功能晶体管的近旁,能够使电源电容元件与功能晶体管之间的电源布线电阻构成得比现有技术的小,因此能够有效地抑制峰值IR-Drop。
另外,根据第9技术方案所述的发明,将功能晶体管的源区与采用了MOS晶体管的电源电容元件的源区或漏区作为共用的区域,从而能够将元件面积设定得更小,因此能够进一步实现面积的削减。
特别是,根据第11~15技术方案所述的发明,在将如上所述的标准单元应用于半导体集成电路从而削减了峰值IR-Drop后,能够实现不增加面积的半导体集成电路。此外,在自动配置布线中配置了仅由功能晶体管构成的标准单元后,能够对未构成功能晶体管的区域追加形成电源电容元件,而无需进行任何修正。进而,由于能够将电源电容元件配置在半导体集成电路内的功能晶体管的近旁,能够使电源电容与上述功能晶体管之间的电源布线电阻构成得比现有技术的小,因此能够有效地抑制半导体集成电路的峰值IR-Drop。


图1A是表示在本发明的第1实施方式中在N沟道晶体管区域内形成了电源电容的标准单元的结构图,图1B是表示在本发明的第1实施方式中在P沟道晶体管区域内形成了电源电容的标准单元的结构图。
图2是本发明第2实施方式中的标准单元的结构图。
图3是本发明第3实施方式中的标准单元的结构图。
图4是本发明第4实施方式中的标准单元的结构图。
图5A是表示在本发明的第5实施方式中在N沟道晶体管区域内形成了电源电容的标准单元的结构图,图5B是图5A的电源电容的剖面图,图5C是表示在本发明的第5实施方式中在P沟道晶体管区域内形成了电源电容的标准单元的结构图,图5D是图5C的电源电容的剖面图。
图6A是表示在本发明的第6实施方式中在N沟道晶体管区域内形成了电源电容的标准单元的结构图,图6B是图6A的电源电容的剖面图,图6C是表示在本发明的第6实施方式中在P沟道晶体管区域内形成了电源电容的标准单元的结构图,图6D是图6C的电源电容的剖面图。
图7A是表示在本发明的第7实施方式中在N沟道晶体管区域内形成了电源电容的标准单元的结构图,图7B是表示在本发明的第7实施方式中在P沟道晶体管区域内形成了电源电容的标准单元的结构图。
图8是本发明第8实施方式中的标准单元的结构图。
图9A是表示在本发明的第9实施方式中自动配置布线方法的流程图,图9B是本发明第9实施方式中的半导体集成电路的结构图。
图10是本发明第10实施方式中的半导体集成电路的结构图。
图11是本发明第11实施方式中的半导体集成电路的结构图。
图12是本发明第12实施方式中的半导体集成电路的结构图。
图13是现有的自动配置布线方法的流程图,图14A是表示在现有的电源电容结构中采用了N沟道晶体管的电源电容的结构图,图14B是图14A的电源电容的剖面图,14C是表示在现有的电源电容结构中采用了P沟道晶体管的电源电容的结构图,14D是14C的电源电容的剖面图。
图15A是现有的标准单元的结构图,图15B是配置了现有的标准单元的半导体集成电路的结构图。
具体实施例方式
以下,参照

本发明的一实施方式。
(第1实施方式)图1A、图1B是表示本发明第1实施方式的标准单元。为简化说明,关于标准单元内的电源布线、信号布线说明从略。
这里,首先,说明标准单元的尺寸。在LSI的设计中,在自动配置布线所使用的标准单元内,为使标准单元间的电源布线等的连接易于进行,大多采用使标准单元的高度方向或横向的任意一者固定而另一者以任意的尺寸设计的方式。在本实施方式中,对使标准单元的高度方向的尺寸固定而使横向尺寸可变的情况进行说明。
以下,说明配置了标准单元的半导体集成电路的尺寸。配置了标准单元的半导体集成电路的横向尺寸,可以根据配置在半导体集成电路的左端及右端的标准单元的配置位置指定。另外,标准单元的横向尺寸,可以根据功能晶体管形成在其内部的区域指定。因此,配置了标准单元的半导体集成电路的横向尺寸,可以根据配置在半导体集成电路的左端及右端的标准单元内的功能晶体管形成的区域指定。进而,配置了标准单元的半导体集成电路的纵向尺寸,由沿纵向排列的标准单元的个数决定。这里,当如上所述设标准单元的高度方向为固定的尺寸时,配置了标准单元的半导体集成电路的高度方向的尺寸唯一地确定。
图1A和图1B是第1技术方案所述的标准单元的一实施方式。在图1A中,102是P沟道晶体管区域,103是N沟道晶体管区域,104是形成P沟道功能晶体管的P沟道功能晶体管形成区域,105是形成N沟道功能晶体管的N沟道功能晶体管形成区域,106是形成电源电容的电源电容形成区域,在电源电容形成区域106的全部或一部分上形成有电源电容元件。这里,101是标准单元,包括具有P沟道功能晶体管形成区域104的P沟道晶体管区域102,和具有N沟道功能晶体管形成区域105及电源电容形成区域106的N沟道晶体管区域103。
另外,在图1B中,108是P沟道晶体管区域,109是N沟道晶体管区域,110是形成P沟道功能晶体管的P沟道功能晶体管形成区域,111是形成N沟道功能晶体管的N沟道功能晶体管形成区域,112是形成电源电容的电源电容形成区域,在电源电容形成区域112的全部或一部分上形成有电源电容元件。这里,107是标准单元,包括具有P沟道功能晶体管形成区域110及电源电容形成区域112的P沟道晶体管区域108,和具有N沟道功能晶体管形成区域111的N沟道晶体管区域109。
以下,对如以上那样构成的标准单元进行说明。在图1A中,标准单元101,为了形成P沟道及N沟道功能晶体管,在P沟道晶体管区域102内具有P沟道功能晶体管形成区域104,在N沟道晶体管区域103内具有N沟道功能晶体管形成区域105。这里,上述标准单元101,由于P沟道功能晶体管形成区域104的横向尺寸大于N沟道功能晶体管形成区域105的横向尺寸,所以标准单元101的横向尺寸由P沟道功能晶体管形成区域104的横向尺寸决定。进而,在标准单元101内设有电源电容形成区域106,但该区域是在P沟道功能晶体管形成区域104的横向尺寸的范围内,即,电源电容,设置在与P沟道功能晶体管形成区域104相对的N沟道晶体管区域103中的不是N沟道功能晶体管形成区域105的间隙区域内,因此,形成不会因设置了电源电容而使标准单元101的尺寸增加的标准单元的结构。
另外,同样,标准单元107,为了形成P沟道及N沟道功能晶体管,在P沟道晶体管区域108内具有P沟道功能晶体管形成区域110,并在N沟道晶体管区域109内具有N沟道功能晶体管形成区域111。这里,上述标准单元107,由于N沟道功能晶体管形成区域111的横向尺寸大于P沟道功能晶体管形成区域110的横向尺寸,所以标准单元107的横向尺寸由N沟道功能晶体管形成区域111的横向尺寸决定。进而,在标准单元107内设有电源电容形成区域112,但该区域是在N沟道功能晶体管形成区域111的横向尺寸的范围内,即,电源电容设置在与N沟道功能晶体管形成区域111相对的P沟道晶体管区域108中的不是P沟道功能晶体管形成区域110的间隙区域内,因此,形成不会因设置了电源电容而使标准单元107的尺寸增加的标准单元的结构。
以下,说明因具有如上所述的结构而取得的本发明的效果。如本实施方式所示,通过将电源电容形成区域106或电源电容形成区域112设置在标准单元的横向尺寸范围内,并在电源电容形成区域106或电源电容形成区域112的全部或一部分上设置电源电容,能够实现不使标准单元101的尺寸增加的标准单元。
另外,通过在半导体集成电路中使用本实施方式提出的标准单元,形成不会因追加电源电容而使半导体集成电路的面积增加的结构。
现有的标准单元具有与将电源电容配置在标准单元的外部的情况等效的结构,即将电源电容设置在电源电容形成区域113内,为了方便用图1A和图1B进行说明,该电源电容形成区域113是,在图1A中位于彼此相对的P沟道晶体管区域102及N沟道晶体管区域103旁边,在图1B中位于彼此相对的P沟道晶体管区域108及N沟道晶体管区域109旁边,且高度与由彼此相对的两个晶体管区域构成的标准单元的高度相同的范围内的区域。这里,在图1A中,从设置在现有的形成电源电容的区域113内的电源电容、流向P沟道功能晶体管形成区域104中的功能晶体管的电流,因电源布线电阻114而减少。但是,在本实施方式中,因为电源电容形成在电源电容形成区域106内,其与现有的形成电源电容的区域113相比,更接近P沟道功能晶体管形成区域104内的功能晶体管,所以得到比电源布线电阻114小的电源布线电阻115。因此,与P沟道功能晶体管形成区域104中的功能晶体管与电源电容形成区域113中的电源电容之间的电源布线电阻114相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。同样,在图1B中,从设置在现有的形成电源电容的区域113内的电源电容、流向P沟道功能晶体管形成区域110的功能晶体管的电流,因电源布线电阻114而减少。但是,在本发明中,在与现有的形成电源电容的区域113相比,在标准单元的内侧的区域112内形成电源电容,所以得到比电源布线电阻114小的电源布线电阻115。因此,与P沟道功能晶体管形成区域110的功能晶体管与电源电容形成区域113的电源电容之间的电源布线电阻114相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
另外,当N沟道功能晶体管形成区域105或P沟道功能晶体管形成区域110的功能晶体管的端部、为形成电源电容的MOS晶体管的与电源布线连接的源区时,可以将电源电容的源区或漏区和位于功能晶体管的端部的连接于电源的源区共用。根据这种结构,能够削减标准单元内的电源电容的源区,因此使电源电容形成区域扩大,与不共用功能晶体管的源区时相比,能够将电源电容增大到与共用了电源电容的源区和功能晶体管的源区后的尺寸相应的程度。
(第2实施方式)以下,用图2说明本发明第2实施方式的标准单元。本实施方式将本发明应用于,具有将2个P沟道晶体管区域和1个N沟道晶体管区域合在一起的3个以上的晶体管区域的标准单元。
在图2中,201是标准单元,202是P沟道晶体管区域,203、204是形成P沟道功能晶体管的P沟道功能晶体管形成区域,205是N沟道晶体管区域,206是形成N沟道功能晶体管的N沟道功能晶体管形成区域,207、209是形成电源电容的电源电容形成区域,208是标准单元201的左端部,另外,在标准单元201中,形成2个P沟道晶体管区域202和1个N沟道晶体管区域205的总计3个区域。进而,在标准单元201中,形成矩形形状的电源电容形成区域207和矩形形状的电源电容形成区域209,其中,所述电源电容形成区域207由P沟道晶体管区域202内的P沟道功能晶体管形成区域203和N沟道晶体管区域205内的N沟道功能晶体管形成区域206围成,所述电源电容形成区域209由P沟道晶体管区域202内的P沟道功能晶体管形成区域204、N沟道晶体管区域205内的N沟道功能晶体管形成区域206及标准单元201的左端部208围成,在电源电容形成区域207及电源电容形成区域209的全部或一部分上形成着电源电容。
对如上述那样构成的标准单元201进行更详细的说明。标准单元201的横向尺寸,由横向上所有功能晶体管中最大的N沟道功能晶体管形成区域206决定。在这种情况下,例如,如图2所示,P沟道功能晶体管形成区域203为矩形形状,但N沟道功能晶体管形成区域206为凹入的形状,将存在于凹入形状的内部的N沟道功能晶体管形成区域206的3边和P沟道功能晶体管形成区域203的下边总计4边的全部或一部分连接,通过在这样连接而围成的电源电容形成区域207内设置电源电容,形成使标准单元的横向尺寸不变的标准单元的结构。
另外,同样,将P沟道功能晶体管形成区域204的上边、N沟道功能晶体管形成区域206的2边和标准单元201的左端部208总计4边的全部或一部分连接,在这样连接而围成的电源电容形成区域209内设置电源电容时,也形成使标准单元的横向尺寸不变的标准单元的结构。
以下,说明因具有如上所述的结构而取得的本发明的效果。如本实施方式所示,通过将电源电容形成区域207及电源电容形成区域209设置在标准单元的横向尺寸范围内,并在电源电容形成区域207及电源电容形成区域209的全部或一部分上设置电源电容,能够实现不使标准单元201的尺寸增加的标准单元。
另外,通过在半导体集成电路中使用本实施方式的标准单元201,形成不会因追加电源电容而使半导体集成电路的面积增加的结构。
进而,在现有的标准单元中,具有与在标准单元的外部配置了电源电容时等效的结构,因此,若用图2进行说明,则是在标准单元201的图中右侧旁边配置现有的形成电源电容的区域210。这里,从设在现有的形成电源电容的区域210内的电源电容、流向配置在N沟道功能晶体管形成区域206的左侧部的功能晶体管的电流,因图中示出的电源布线电阻211而减少。但是,在本实施方式中,由于在N沟道功能晶体管形成区域206内的凹部形成了电源电容形成区域207,所以与现有的形成电源电容的区域210相比,电源电容—功能晶体管之间的距离减小。在图2的例子中,示出得到比电源布线电阻211小的电源布线电阻212的情况。因此,与功能晶体管与电源电容之间的电源布线电阻211相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
另外,在本实施方式中,说明了在电源电容形成区域207内形成了电源电容元件的情况,但在电源电容形成区域209内形成的电源电容元件,也能够取得同样的效果。
另外,在本实施方式中,说明了从上而下按P沟道晶体管区域202、N沟道晶体管区域205、P沟道晶体管区域202的顺序设有晶体管区域的标准单元,但是作为标准单元,即使是从上而下按N沟道晶体管区域、P沟道晶体管区域、N沟道晶体管区域的顺序构成的标准单元,也能够应用本发明。
(第3实施方式)以下,用图3说明表示本发明第3实施方式的标准单元。
在图3中,301是标准单元,302、303、305是形成功能晶体管的功能晶体管形成区域,其中,功能晶体管形成区域302、303是在同一晶体管区域中所包含的同类型的区域,是与功能晶体管形成区域305不同的功能晶体管形成区域。304、306是形成电源电容的电源电容形成区域。这里,电源电容形成区域304形成在功能晶体管形成区域302与功能晶体管形成区域303之间;电源电容形成区域306,是形成在功能晶体管形成区域302与功能晶体管形成区域305之间及功能晶体管形成区域303与功能晶体管形成区域305之间的区域。另外,在电源电容形成区域304及电源电容形成区域306的全部或一部分上形成了电源电容。进而,307是现有的形成电源电容的区域,308是电源布线电阻,309是电源布线电阻。
以下,对如上述那样构成的标准单元进行说明。标准单元301,为构成功能晶体管,具有形成功能晶体管的区域302、303、305。这里,上述标准单元301的横向尺寸,由在横向上最大的功能晶体管形成区域305决定。因此,虽然将电源电容设置在功能晶体管形成区域302与功能晶体管形成区域303之间的电源电容形成区域304内,但由于功能晶体管形成区域302和功能晶体管形成区域303设置在功能晶体管形成区域305的尺寸范围内,所以形成不会因在电源电容形成区域304内设置了电源电容而使标准单元301的横向尺寸增加的标准单元的结构。
以下,说明因具有如上所述的结构而取得的本发明的效果。如本实施方式所示,通过将电源电容形成区域304及电源电容形成区域306设置在标准单元的横向尺寸范围内,即使在电源电容形成区域304及电源电容形成区域306的全部或一部分上设置了电源电容的情况下,也能够实现不使标准单元301的尺寸增加的标准单元。
另外,通过在半导体集成电路中使用本发明提出的标准单元,形成不会因追加电源电容而使半导体集成电路的面积增加的结构。
另外,在现有的标准单元中,具有与在标准单元的外部配置了电源电容时等效的结构,因此,在现有的形成电源电容的区域307内设置有电源电容。这里,从设置在现有的形成电源电容的区域307内的电源电容、流向区域302的功能晶体管的电流,因电源布线电阻308而减少。但在本发明中,与现有的形成电源电容的区域307相比,在离区域302内的功能晶体管更近的区域形成了电源电容,因此,电源电容被设置在得到比电源布线电阻308小的电源布线电阻309的、功能晶体管附近的区域。因此,与功能晶体管与电源电容之间的电源布线电阻308相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
进而,在现有的标准单元中,具有与在标准单元的外部配置了电源电容时等效的结构,因此,即使在功能晶体管形成区域302与功能晶体管形成区域303之间具有能够形成电源电容的区域,但因与形成电源电容的区域304相对的功能晶体管形成区域305存在,而没能设置电源电容。与此不同,在本实施方式中,能够对以现有技术不能构成的电源电容形成区域304内构成电源电容。
另外,即使将电源电容设置在位于功能晶体管形成区域302的上边与功能晶体管形成区域305的下边之间的电源电容的区域306内,及位于功能晶体管形成区域303的上边与功能晶体管形成区域305的下边之间的电源电容的区域306内,也仍能够应用本实施方式而不改变标准单元301的尺寸。
(第4实施方式)以下,用图4说明表示本发明第4实施方式的标准单元。
在图4中,401是标准单元,402、405是形成类型互不相同的功能晶体管的功能晶体管形成区域,403是形成衬底接触盘(substratecontact)的衬底接触盘形成区域,404、407、409是形成电源电容的电源电容形成区域,406是标准单元的左端部,408是标准单元的右端部。其中,位于衬底接触盘形成区域403内的衬底接触盘,是为稳定标准单元401内的晶体管的衬底电位而设置的。此外,在衬底接触盘形成区域内,具有用于连接晶体管衬底的电位与电源电位或接地电位的任何一者的接触盘、扩散区域、电源布线。进而,形成由功能晶体管形成区域402和衬底接触盘形成区域403围成的电源电容形成区域404,形成由功能晶体管形成区域405和标准单元的左端部406围成的电源电容形成区域407,并形成由功能晶体管形成区域405、衬底接触盘形成区域403和标准单元的右端部408围成的电源电容形成区域409。并且,在电源电容形成区域404、电源电容形成区域407及电源电容形成区域409的全部或一部分上形成电源电容。进而,410是现有的形成电源电容的区域,411是电源布线电阻,412是电源布线电阻。
以下,对如上述那样构成的标准单元进行说明。标准单元401的横向尺寸,由功能晶体管形成区域405决定。因此,具有非矩形形状的功能晶体管形成区域402,与衬底接触盘形成区域403相对地形成凹入的结构;将衬底接触盘形成区域403的下边和由功能晶体管形成区域402的凹部的凹口部的3边形成的右边、左边及下边总计4边的全部或一部分连接,这样连接而围成的电源电容形成区域404,在功能晶体管形成区域405的横向尺寸的范围内,形成不会因在电源电容形成区域404内设置电源电容而使标准单元401的横向尺寸变化的标准单元的结构。此外,同样,由于标准单元401的横向尺寸由功能晶体管形成区域405决定,功能晶体管形成区域405与标准单元的左端部406相对地形成凹入的结构;将功能晶体管形成区域405的凹口部的3边和标准单元的左端部406的1边形成的总计4边的全部或一部分连接,这样连接而围成的电源电容形成区域407,在功能晶体管形成区域405的横向尺寸的范围内,形成不会因在电源电容形成区域407内设置电源电容而使标准单元401的横向尺寸变化的标准单元的结构。进而,由于标准单元401的横向尺寸由功能晶体管形成区域405决定,将由衬底接触盘形成区域403的上边、标准单元的右端部406的1边及功能晶体管形成区域405的右下部的1边形成的总计4边的全部或一部分连接,这样连接的区域所围成的电源电容形成区域409,在功能晶体管形成区域405的横向尺寸的范围内,形成不会因在电源电容形成区域409内设置电源电容而使标准单元401的横向尺寸变化的标准单元。
以下,说明因具有如上所述的结构而取得的本实施方式的效果。如本实施方式所示,通过将电源电容形成区域404、电源电容形成区域407及电源电容形成区域409设置在标准单元的横向尺寸范围内,并在电源电容形成区域404、电源电容形成区域407及电源电容形成区域409的全部或一部分上设置电源电容,能够实现不使标准单元401的尺寸增加的标准单元。
另外,通过在半导体集成电路中使用本发明提出的标准单元,形成不会因追加电源电容而使半导体集成电路的面积增加的半导体集成电路的结构。
另外,即使对于功能晶体管的形状为非矩形的情况,也能够如本实施方式那样应用本发明。
另外,在衬底接触盘形成区域403的上层设有供给功能晶体管的电源电位或接地电位的电源布线。因此,通过将电源电容设置在衬底接触盘形成区域403附近的电源电容形成区域404及电源电容形成区域409内,使连接存在于衬底接触盘形成区域403的上层的电源布线与电源电容的电源布线的距离,短于不配置在衬底接触盘形成区域403附近的情况,因此,与不配置在衬底接触盘附近的情况相比,增大了削减从电源布线到功能晶体管的布线电阻、削减标准单元的IR-Drop的效果。
在现有的标准单元中,具有与在标准单元的外部配置了电源电容时等效的结构,图4中在现有的形成电源电容的区域410内设置有电源电容。这里,从设置在现有的形成电源电容的区域410内的电源电容流向配置在功能晶体管形成区域402的左侧的功能晶体管的电流,由于电源布线电阻411而减少。但是,在本发明中,与现有的形成电源电容的区域410相比,在离功能晶体管形成区域402内的功能晶体管更近的区域形成了电源电容,所以电源电容被设置在得到比电源布线电阻411小的电源布线电阻412的功能晶体管的附近区域。因此,与功能晶体管与电源电容之间的电源布线电阻411相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
(第5实施方式)接着,用图5A~图5D说明表示本发明第5实施方式的标准单元。
在图5A、图5B中,550是可生成P沟道晶体管的P沟道晶体管区域,551是可生成N沟道晶体管的N沟道晶体管区域,501是供给电源电位的电源布线,502是供给接地电位的电源布线,503是N沟道晶体管的衬底电位,504是由N沟道晶体管构成的电源电容。此外,图5B是沿图5A的电源电容504的剖切部5a-5a的剖面图,505和506表示MOS晶体管中的源区或漏区,507表示栅极氧化膜,508表示电源电容的栅电极,509表示接触盘,512表示衬底,513表示电容。此外,同样,在图5C中,550是可生成P沟道晶体管的P沟道晶体管区域,551是可生成N沟道晶体管的N沟道晶体管区域,511是由P沟道晶体管构成的电源电容。此外,图5D是沿图5C的电源电容511的剖切部5b-5b的剖面图,510是P沟道晶体管的衬底电位。
以下,对如上述那样构成的标准单元内的电源电容504及电源电容511进行说明。在图5A中,通过接触盘509与供给电源电位的电源布线501连接的电源电容504的栅电极508与N沟道晶体管的衬底电位503,因电源电容504的栅电极508为电源电位,而衬底电位503为接地电位,所以处于反电位的关系。进而,在两者之间存在着作为绝缘体的栅极氧化膜507,因此在电源电容504的栅电极508与衬底512之间形成电容513。此外,同样,在图5C中,通过接触盘509与供给接地电位的电源布线502连接的电源电容511的栅电极508,与P沟道晶体管的衬底电位510处于反电位的关系。进而,在两者之间存在着作为绝缘体的栅极氧化膜507,因此在电源电容511的栅电极508与衬底512之间形成电容513。以上示出的电容513,是在本发明的标准单元内构成的电源电容的结构。此外,仅通过将电源布线与MOS晶体管的栅电极连接就能形成上述电源电容,因此,形成能够将与电源电容的源区或漏区(505和506)连接的电源布线514及与源区和漏区连接的接触盘515去掉的结构。
以下,说明因具有如上所述的结构而取得的本实施方式的效果。在标准单元中,当信号布线决定着标准单元的面积时,由于不使用与电源电容的源区或漏区(505和506)连接的电源布线514及连接该电源布线514、源区及漏区的接触盘515的区域,所以能够将其分配给标准单元的信号布线区域,因此能够节省标准单元的面积。
(第6实施方式)以下,用图6A~图6D说明表示本发明第6实施方式的标准单元。
图6A和图6C是本实施方式的标准单元。在图6A中,650是可生成P沟道晶体管的P沟道晶体管区域,651是可生成N沟道晶体管的N沟道晶体管区域,601是供给电源电位的电源布线,602是供给接地电位的电源布线,603是N沟道晶体管的衬底电位,604是由N沟道晶体管构成的电源电容。此外,图6B是沿图6A的由N沟道晶体管构成的电源电容604的剖切部6a-6a的剖面图,605和606是电源电容的源区或漏区,607是栅极氧化膜,608是电源电容的栅电极,609是连接栅电极和电源电位的接触盘,610是连接电源电容的源区或漏区和接地电位的接触盘,613是沟道区域,614是电容,617是衬底。此外,在图6C中,650是可生成P沟道晶体管的P沟道晶体管区域,651是可生成N沟道晶体管的N沟道晶体管区域,611是P沟道晶体管衬底电位,612是由P沟道晶体管构成的电源电容。此外,图6D是沿图6C的由P沟道晶体管构成的电源电容612的剖切部6b-6b的剖面图。在图6D中,615是连接栅电位和接地电位的接触盘,616是连接电源电容的源区或漏区和电源电位的接触盘。
以下,对图6A和图6B所示的上述标准单元内的由N沟道晶体管构成的电源电容进行说明。通过接触盘609与供给电源电位的电源布线601连接的电源电容604的栅电极608和N沟道晶体管的衬底电位603,处于反电位的关系。进而,在电源电容604的栅电极608和衬底617之间存在作为绝缘体的栅极氧化膜607,因此在电源电容604的栅电极608与衬底617之间形成电容614。进而,电源电容604的源区或漏区605,通过接触盘610与供给接地电位的电源布线602连接,所以在衬底617内形成沟道区域613。因此,在电源电容604的栅电极608与衬底617之间形成电容614。
另外,同样,以下对图6C和图6D所示的标准单元内的由P沟道晶体管构成的电源电容进行说明。通过接触盘615与供给接地电位的电源布线602连接的电源电容612的栅电极608和P沟道晶体管的衬底电位611,处于反电位的关系。进而,在电源电容612的栅电极608与衬底617之间存在作为绝缘体的栅极氧化膜607,因此在电源电容612的栅电极608与衬底617之间形成电容614。进而,电源电容612的源区或漏区605,通过接触盘616与供给电源电位的电源布线601连接,所以在衬底617内形成沟道区域613。因此,在电源电容612的栅电极608与衬底617之间形成电容614。
如上所述,根据本实施方式,在标准单元中,当信号布线决定了标准单元的面积时,能够将与标准单元内的电源电容的源区或漏区连接的电源布线618及与源区和漏区连接的接触盘619的区域,分配给标准单元的信号布线区域,因此能够节省标准单元的面积。
另外,由于使供给电源电位的电源布线601或供给接地电位的电源布线602,与电源电容的源区或漏区605电连接,所以能够在衬底617内形成沟道区域613,并能够形成高的与电源布线连接的电源电容值,从而能够有效地削减标准单元内的IR-Drop。
(第7实施方式)以下,用图7A和图7B说明表示本发明第7实施方式的标准单元。
在图7A和图7B中,750是可生成P沟道晶体管的P沟道晶体管区域,751是可生成N沟道晶体管的N沟道晶体管区域。用虚线围成的701是形成电源电容的电源电容形成区域,用点线围成的702是形成功能晶体管的功能晶体管形成区域,703是功能晶体管的与电源布线连接的源区和电源电容的源区或漏区的共用部,704是电源电容的源区或漏区。此外,图7A是用N沟道晶体管构成电源电容,图7A是用P沟道晶体管构成电源电容。
以下,对形成在图7A和图7B的标准单元内的电源电容进行说明。存在于图7A和图7B中的功能晶体管形成区域702内的功能晶体管的与电源布线连接的源区,与电源电容形成区域701内的电源电容的源区或漏区704具有相同的电位,所以能够将两者连接。因此,构成共用部703,该共用部703将电源电容形成区域701内的电源电容的源区或漏区704,和功能晶体管形成区域702内的功能晶体管的与电源布线连接的源区,作为共用区域。
如上所述,根据本实施方式,通过将电源电容形成区域701内的电源电容的源区或漏区704、和功能晶体管形成区域702内的功能晶体管的与电源布线连接的源区作为共用区域,能够削减电源电容的源区或漏区704。在如上述那样削减后的区域内,能够构成比未将电源电容形成区域701内的电源电容的源区或漏区704和功能晶体管形成区域702内的功能晶体管的与电源布线连接的源区作为共用区域时大的电源电容。此外,通过将共用部703作为共用区域,能够削减从电源电容的源区或漏区704到功能晶体管的与电源布线连接的源区的电源布线电阻,与未将电源电容形成区域701内的电源电容的源区或漏区704、和功能晶体管形成区域702内的功能晶体管的与电源布线连接的源区作为共用区域时相比,能够有效地削减IR-Drop。
(第8实施方式)接着,用图8说明表示本发明第8实施方式的标准单元。
在图8中,801是供给电源电位的电源布线,802是供给接地电位的电源布线,803是与电源电容连接的电源布线。
以下,对如上述那样构成的标准单元内的电源电容进行说明。配置连接于电源电容的电源布线803,使得电源布线803垂直地连接于供给电源电位的电源布线801、和供给接地电位的电源布线802。
如上所述,根据本实施方式,将连接于电源电容的电源布线803,与由供给电源电位的电源布线801和供给接地电位的电源布线802示出的标准单元的电源布线,相互垂直地配置,从而使与电源电容连接的电源布线803长度缩短,因此使连接于电源电容的电源布线的电源布线电阻减小,与曲折地配置电源电容和标准单元的电源布线时相比,能够提高由电源电容产生的削减IR-Drop的效果。
(第9实施方式)用图9A和图9B表示本发明的第9实施方式。
图9A是自动配置布线方法的一实施方式,图9B是由多个标准单元构成的半导体集成电路的一实施方式。在图9A中,为进行基于自动配置布线的半导体集成电路设计,首先,在工序S901中,生成有可能在网表(netlist)中使用的标准单元的布局。然后,除该工序以外,在工序S903中得到时序信息及耗电量信息等网表最优化所需的信息,并在工序S902中,利用上述信息,从功能描述的RTL(Resistortransfer level)起,对设计半导体集成电路时所需的网表进行逻辑合成。在逻辑合成工序S902中,根据单元的映射以及时序信息、耗电量信息等工序S903提供的指标,进行网表的最优化。此外,在逻辑合成工序S902中,选择在标准单元的布局生成工序S901中生成的标准单元。根据在工序S902中按上述方式进行了逻辑合成的网表,在工序S904中进行标准单元的配置。接着,在工序S905中进行标准单元间的布线,使其满足各标准单元的连接关系。然后,不是像以往那样检测标准单元与标准单元的间隙区域,而是在工序S906(电源电容形成区域检测工序)中、在配置了标准单元的半导体集成电路内、检测功能晶体管区域与功能晶体管区域的间隙区域即电源电容可形成区域,并在电源电容形成工序S907中在半导体集成电路内构成电源电容。在上述电源电容形成工序S907中,以现有技术,对于在半导体集成电路内无间隙区域地配置有标准单元的情况,除配置了标准单元的区域外,还另外需要用于形成电源电容的区域,因此使半导体集成电路的面积增加。与此不同,通过检测功能晶体管区域与功能晶体管区域的间隙区域,即使对于无间隙区域地配置了标准单元的半导体集成电路,也能利用功能晶体管区域之间的间隙区域构成电源电容,从而能够构成面积不增加的半导体集成电路。反复进行如上所述的工序,直到符合标准(例如,时序或耗电量等)为止,并在将标准单元配置在半导体集成电路内之后,构成不使半导体集成电路的面积增加的电源电容。
以下,说明在如上所述的自动配置布线方法中进行到标准单元的配置工序S904或布线工序S905之后,由电源电容形成工序S907形成的半导体集成电路的结构。
图9B表示本实施方式中的构成了电源电容的半导体集成电路的一例。在图9B中,909是半导体集成电路,910a~h是形成有功能晶体管的功能晶体管形成区域,从半导体集成电路909除去区域910a~h后的911是能够形成电源电容的电源电容形成区域,912~917是标准单元。另外,在半导体集成电路909内,配置有未形成电源电容而只由功能晶体管构成的标准单元912及916。进而,在半导体集成电路909内的除功能晶体管形成区域910a~h以外的电源电容形成区域911的全部或一部分上形成有电源电容。进而,920是现有的形成电源电容的区域,921是现有的电源布线电阻,922是电源布线电阻。
这里,说明在将电源电容配置在半导体集成电路内之前的工序中,配置了只由功能晶体管形成的标准单元912~917的半导体集成电路909。如果在配置在半导体集成电路909最右端的标准单元912内的功能晶体管形成区域的最右边918的右侧区域内未构成电源电容,则半导体集成电路909的横向尺寸,不会向半导体集成电路909的右侧增加。进而,如果在配置在半导体集成电路909内的标准单元914内区域的最左边919的左侧区域内未构成电源电容,则半导体集成电路909的横向尺寸,不会向半导体集成电路909的左侧方向增加。因此,将电源电容设置在半导体集成电路909的最左边919的右侧区域、且最右边918的左侧区域即电源电容形成区域911内,都能够构成不会使半导体集成电路909的尺寸在横向上增加的半导体集成电路。
进而,配置了标准单元的半导体集成电路的纵向尺寸,由沿纵向排列的标准单元的个数决定,所以半导体集成电路909由标准单元912和标准单元913、标准单元914和第4标准单元915、及第5标准单元916和第6标准单元917决定。因此,就半导体集成电路的纵向尺寸来说,将电源电容设置在标准单元913下端的上侧、且标准单元912上端的下侧的区域即电源电容形成区域911内,都能够构成不会使半导体集成电路909的尺寸在纵向上增加的半导体集成电路。
另外,在由本实施方式举例说明的自动配置布线方法中,在标准单元的配置之后包括一个进行布线处理的工序,但构成电源电容的工序,只要是在标准单元的配置工序904之后,在任何工序中都可以配置电源电容。
以下,说明因具有以上的结构而取得的本实施方式的效果。在现有技术中,当对无间隙区域地配置了标准单元的半导体集成电路909形成电源电容时,成为与在标准单元912及标准单元913的邻接区域形成了电源电容的结构等效的结构,因而必需增加半导体集成电路的面积。与此不同,在本实施方式中,对于无间隙区域地配置了标准单元的半导体集成电路909,通过在电源电容形成区域911的全部或一部分上设置电源电容,能够实现不使半导体集成电路909的尺寸增加的半导体集成电路,所述电源电容形成区域911由决定着半导体集成电路909的尺寸的最左边919的右侧区域、功能晶体管形成区域的最右边918的左侧区域、且由标准单元913下端的上侧、标准单元912上端的下侧示出。
另外,在现有技术中,如图15B的半导体集成电路1511中的电源电容形成区域1513所示,是与在半导体集成电路内的标准单元1515~1520的邻接区域内形成了电源电容的结构等效的结构。与此不同,仍如图15B所示,能够将电源电容设置在标准单元内的电源电容未形成区域1514a~d内。因此,在图15A所示的标准单元中,例如,当在功能晶体管1503的右侧形成的间隙区域内形成了电源电容时,电源布线电阻1510采用虚线示出的箭头的路径,因此能够减低布线的电阻值。
进而,如果用图9B说明布线的电阻值,则在现有的半导体集成电路中,具有与在配置于半导体集成电路内的标准单元的邻接区域内配置了电源电容时等效的结构,因此将电源电容设置在现有的形成电源电容的区域920内。这里,从设置在现有的形成电源电容的区域920内的电源电容、流向配置在标准单元912内的形成了功能晶体管的区域910中的功能晶体管的电流,因电源布线电阻921而减少。但是,在本发明中,与现有的形成电源电容的区域920相比,在离配置在标准单元912中的形成了功能晶体管的区域910内的功能晶体管更近的区域内,形成电源电容,因此,电源电容被设置在得到比电源布线电阻921小的电源布线电阻922的功能晶体管的附近区域。因此,与功能晶体管和电源电容之间的电源布线电阻921相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
(第10实施方式)接着,用图10说明表示本发明第10实施方式的半导体集成电路。
在图10中,1001是半导体集成电路,1002是形成了P沟道晶体管区域1050内的所有功能晶体管的P沟道功能晶体管形成区域,1003是形成了N沟道晶体管区域1051内的所有功能晶体管的N沟道功能晶体管形成区域,1004是形成电源电容的电源电容形成区域,1005是P沟道晶体管区域1050内的形成P沟道功能晶体管的P沟道功能晶体管形成区域,1006是N沟道晶体管区域1051内的形成N沟道功能晶体管的N沟道功能晶体管形成区域,1007和1008是形成电源电容元件的电源电容形成区域,在这些电源电容形成区域1004、电源电容形成区域1007及电源电容形成区域1008的全部或一部分上形成了电源电容。1009~1012是由各P沟道晶体管区域1050及N沟道晶体管区域1051构成的标准单元。进而,1016是现有的形成电源电容的区域,1017是从现有的电源电容连接到标准单元1011内的P沟道晶体管的电源布线的电源布线电阻,1018是从在标准单元1011中的P沟道晶体管区域1050内形成的电源电容连接到同一P沟道晶体管区域1050内的P沟道晶体管的电源布线的电源布线电阻。
以下,对如上述那样构成的半导体集成电路进行说明。在图10中,配置电源电容前的半导体集成电路1001的横向尺寸,由只形成了功能晶体管的标准单元1009和标准单元1010、及标准单元1011和标准单元1012决定。这里,在仅由功能晶体管所形成的标准单元1009内,P沟道晶体管区域内的区域1002的横向尺寸,与N沟道晶体管区域内的形成功能晶体管的区域1003的横向尺寸相比,P沟道晶体管区域内的第1区域1002的横向尺寸大,因此,标准单元1009由P沟道晶体管区域内的第1区域1002的横向尺寸决定。进而,在标准单元1009内,设置有电源电容形成区域1004,但该区域设置在P沟道晶体管区域内的P沟道功能晶体管形成区域1002的横向尺寸范围内,因此,不会因在电源电容形成区域1004内设置了电源电容而使标准单元的横向尺寸增加。
另外,同样,在仅由功能晶体管所形成的标准单元1010内,N沟道晶体管区域1051内的N沟道功能晶体管形成区域1006的横向尺寸,与P沟道晶体管区域1050内的P沟道功能晶体管形成区域1005的横向尺寸相比,N沟道功能晶体管形成区域1006的横向尺寸大,因此,标准单元1010由N沟道功能晶体管形成区域1006的横向尺寸决定。进而,在标准单元1010内,设置有电源电容形成区域1007,但该区域设置在N沟道功能晶体管形成区域1006的横向尺寸范围内,因此,不会因在电源电容形成区域1007内设置了电源电容而使标准单元1010的横向尺寸增加。同样,也能应用于标准单元1011及标准单元1012,即使在电源电容形成区域1008内设置了电源电容,也不会使标准单元1011及标准单元1012的横向尺寸增加。即,半导体集成电路由标准单元1009~1012构成,即使在电源电容形成区域1004、电源电容形成区域1007及电源电容形成区域1008的全部或一部分上形成电源电容,也不会使半导体集成电路1001的横向尺寸增加。
如上所述,因为半导体集成电路1001由标准单元1009~1012构成,所以,即使在电源电容形成区域1004、电源电容形成区域1007及电源电容形成区域1008的全部或一部分上形成电源电容,也不会增加半导体集成电路1001的横向尺寸。
另外,在现有的半导体集成电路中,具有与在配置于半导体集成电路内的标准单元的邻接区域内设置了电源电容时等效的结构,因此,在现有的形成电源电容的区域1016内,设置了电源电容。这里,从设置在现有的形成电源电容的区域1016内的电源电容、流向配置在标准单元1011中的P沟道功能晶体管形成区域1002内的P沟道功能晶体管的电流,因电源布线电阻1017而减少。但是,在本实施方式中,与现有的形成电源电容的区域1016相比,在离配置在标准单元1011中的P沟道功能晶体管形成区域1002内的P沟道功能晶体管更近的区域内,形成了电源电容,因此,电源布线电阻为比电源布线电阻1017小的电源布线电阻1018。因此,与功能晶体管与电源电容之间的电源布线电阻1017相比,能够削减电源布线电阻,从而能够有效地抑制峰值IR-Drop。
进而,在本实施方式中,也与第9实施方式所示一样,取得能够在防止面积增加的同时配置电源电容的效果。
另外,在本实施方式中,为了简化说明,对配置了标准单元后在仅由功能晶体管形成的标准单元内的区域形成电源电容的情况进行了说明,然而,对于仅由N沟道晶体管形成的标准单元1013、或仅由P沟道晶体管构成的标准单元1014、或非矩形的标准单元1015,也同样能够在与P沟道晶体管区域内的P沟道功能晶体管形成区域相对的N沟道晶体管区域、或与上述N沟道晶体管区域内的N沟道功能晶体管形成区域相对的P沟道晶体管区域的至少一者中,构成电源电容。
(第11实施方式)以下,用图11说明表示本发明第11实施方式的半导体集成电路。
在图11中,1101是半导体集成电路,1109是构成半导体集成电路1101的一个晶体管区域,1102和1103是晶体管区域1109内的功能晶体管形成区域,1004是晶体管区域1109以外的晶体管区域中的功能晶体管形成区域,1105是在晶体管区域1109内形成电源电容的电源电容形成区域,1106是晶体管区域1109以外的形成电源电容的其他电源电容形成区域。在半导体集成电路1101中,在电源电容形成区域1105及电源电容形成区域1106的全部或其一部分上形成有电源电容。
以下,对如上述那样构成的半导体集成电路进行说明。半导体集成电路1101,为了构成功能晶体管,具有功能晶体管形成区域1102和1103及其他的功能晶体管形成区域1104。这里,半导体集成电路1101的横向尺寸的左边,由晶体管区域1109的左端部1107决定、右边由同一晶体管区域1109的右端部1108决定。因此,即使在位于功能晶体管形成区域1102的横向右边的电源电容形成区域1105或1106内设置了电源电容,也不会使任何晶体管区域的左端部1107超出,因此不会使半导体集成电路1101向横向左边扩展。此外,同样,即使在位于功能晶体管形成区域1103的横向左边的电源电容形成区域1105或1106内设置了电源电容,也不会使任何晶体管区域的右端部1108超出,因此不会使半导体集成电路1101向右边扩展。即,成为这样的结构在功能晶体管形成区域1102和1103之间的电源电容形成区域1105内设置电源电容、或在其他的电源电容形成区域1106内设置电源电容,即使这样,也不会使半导体集成电路1101的面积增加。
以下,用图15B说明因具有如上所述的结构而取得的本实施方式的效果。在图15B所示的配置了现有的标准单元的半导体集成电路1511的结构中,具有与在标准单元的外部配置了电源电容形成区域1513的结构等效的结构,因此,即使在标准单元1517和标准单元1518之间具有电源电容未形成区域1514,也由于标准单元1517内的功能晶体管和与其邻接的标准单元1518内的功能晶体管都配置成在纵向上与电源电容未形成区域1514b相对,因而不能设置电源电容。与此不同,在本实施方式中,能够在这样的功能晶体管之间的电源电容未形成区域1514b构成电源电容。
另外,在图11中,以现有技术,由于在与电源电容形成区域1105的上下相对的区域内设有功能晶体管区域1104,所以要构成电源电容,就必须将电源电容配置在半导体集成电路1101的外部。与此不同,在本实施方式中,设置在电源电容形成区域1105内的电源电容,存在于功能晶体管形成区域1102和1103之间,因此能以比现有技术小的半导体集成电路面积形成电源电容。
进而,在本实施方式中,也与第9实施方式所示一样,取得能够在防止面积增加的同时配置电源电容的效果。
另外,即使将电源电容设置在晶体管区域1109以外的晶体管区域的功能晶体管形成区域1104间的电源电容形成区域1106内,也不会超出决定着半导体集成电路的横向尺寸的功能晶体管形成区域1102和1103的左端或右端,因此,形成不会使半导体集成电路1101的面积增加的半导体集成电路的结构。
(第12实施方式)以下,用图12说明表示本发明第12实施方式的半导体集成电路。
在图12中,1201是半导体集成电路,由标准单元1218及标准单元1219构成。1202~1207都是形成功能晶体管的功能晶体管形成区域,其中,功能晶体管形成区域1202、1203及1205设置在标准单元1218内,功能晶体管形成区域1204、1206及1207设置在标准单元1219内。
进而,在标准单元1218内,功能晶体管形成区域1202和1205位于同一类型的晶体管区域内,与包括功能晶体管形成区域1203的晶体管区域不同。此外,在标准单元1219内,功能晶体管形成区域1206和1207位于同一类型的晶体管区域内,与包括功能晶体管形成区域1204的晶体管区域不同。
另外,1209~1213都是形成电源电容的电源电容形成区域,其中,电源电容形成区域1209形成在由衬底接触盘形成区域1208和功能晶体管形成区域1202包围的间隙区域内,电源电容形成区域1210形成在功能晶体管形成区域1203中的间隙区域内,电源电容形成区域1211形成在由衬底接触盘形成区域1208和功能晶体管形成区域1204包围的间隙区域内,电源电容形成区域1212形成在由衬底接触盘形成区域1208和功能晶体管形成区域1205包围的间隙区域内,此外,电源电容形成区域1213形成在由衬底接触盘形成区域1208、功能晶体管形成区域1206及功能晶体管形成区域1207包围的间隙区域内。在这些电源电容形成区域1209~1213的全部或一部分上形成有电源电容。
另外,1214是功能晶体管形成区域1204的右端部,1215是功能晶体管形成区域1203的左端部,1216是半导体集成电路1201的右端部,1217是半导体集成电路1201的左端部。
以下,对如上述那样构成的半导体集成电路1201进行说明。半导体集成电路1201,具有功能晶体管形成区域1202~1207、衬底接触盘形成区域1208。这里,半导体集成电路1201的横向尺寸的左端部1217,由功能晶体管形成区域1203的左端部1215决定,右端部1216由功能晶体管形成区域1204的右端部1214决定。因此,将由具有非矩形形状的功能晶体管形成区域1202的凹入部分的内侧形成的3边、和衬底接触盘形成区域1208的下边总计4边连接围成间隙区域,在利用了该间隙区域的电源电容形成区域1209内设置电源电容,从而使半导体集成电路1201的横向尺寸不会增加。此外,同样,半导体集成电路1201的左端部1217,由功能晶体管形成区域1203的左端部1215决定,因此,将由非矩形的功能晶体管形成区域1203在凹入部分的内侧形成的3边、和半导体集成电路1201的左端的1边总计4边围成间隙区域,在利用了该间隙区域的电源电容形成区域1210内设置电源电容,从而不会使半导体集成电路1201的横向尺寸增加。进而,半导体集成电路1201的右端部1216,由功能晶体管形成区域1204的右端部1214决定,因此,将由非矩形的功能晶体管形成区域1204的凹入部分的内侧形成的2边、衬底接触盘形成区域1208的上边、及半导体集成电路1201的右端部1216形成的边,总计4边围成间隙区域,在利用了该间隙区域的电源电容形成区域1211内设置电源电容,从而不会使半导体集成电路1201的横向尺寸增加。如上所述,即使将电源电容设置在夹在决定半导体集成电路1201的横向尺寸的区域的左端部1215、和功能晶体管形成区域1204的右端部1214之间的功能晶体管以外的间隙区域,即电源电容形成区域1209~1213内,也不会使半导体集成电路1201的横向尺寸增加。
以下,说明因具有如上所述的结构而取得的本实施方式的效果。即使是对功能晶体管的形状为非矩形的情况,也能够应用本发明。此外,供给功能晶体管的电源电位或接地电位的电源布线,位于衬底接触盘形成区域1208的上层。因此,通过将电源电容设置在衬底接触盘形成区域1208附近的电源电容形成区域1209~1213的全部或任何一个内,使连接存在于衬底接触盘形成区域1208的上层的电源布线与电源电容的电源布线的长度,比不配置在衬底接触盘形成区域1208附近时短,因此,能够削减从电源电容到功能晶体管的电源布线电阻,从而增大削减标准单元的IR-Drop的效果。
进而,在本实施方式中,也与第9实施方式所示一样,取得能够在防止面积增加的同时配置电源电容的效果。
另外,将功能晶体管形成区域1202的右边的一部分、功能晶体管形成区域1205的上边的一部分、及衬底接触盘的下边的一部分连接,在这样连接的区域所围成的电源电容形成区域1212内设置了电源电容,从而不会使半导体集成电路1201的横向尺寸增加。本发明也能够应用于,具有这样的由分离的功能晶体管形成区域和衬底接触盘形成区域围成的结构的半导体集成电路。
本发明的标准单元、设置有该标准单元的半导体集成电路及标准单元的布局生成方法,能够不增加面积地削减在标准单元及半导体集成电路的设计中成为问题的IR-Drop,并能实现有效的电源电容配置,因此,对由具有电源电容的半导体集成电路或具有电源电容的标准单元构成的LSI、以及LSI的基于自动配置布线的生成是有用的。
权利要求
1.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在与上述P沟道功能晶体管形成区域相对、且位于上述N沟道晶体管区域内的上述N沟道功能晶体管形成区域以外的区域,和与上述N沟道功能晶体管形成区域相对、且位于上述P沟道晶体管区域内的上述P沟道功能晶体管形成区域以外的区域的至少一个区域内形成电源电容元件。
2.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在由上述P沟道功能晶体管形成区域和上述N沟道功能晶体管形成区域围成的区域内形成电源电容元件。
3.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在由上述P沟道功能晶体管形成区域、上述N沟道功能晶体管形成区域、以及上述标准单元的端部所围成的区域内形成电源电容元件。
4.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在多个上述功能晶体管形成区域以外的间隙区域内形成电源电容元件。
5.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;该标准单元还具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域与上述P沟道功能晶体管形成区域和上述N沟道功能晶体管形成区域的至少一个区域所围成的区域内形成电源电容元件。
6.一种标准单元,在基于自动配置布线的LSI设计中使用,并具有P沟道晶体管区域和N沟道晶体管区域,该标准单元的特征在于上述P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;该标准单元还具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域、上述P沟道功能晶体管形成区域和上述N沟道功能晶体管形成区域的至少一个区域、以及上述标准单元的端部所围成的区域内形成电源电容元件。
7.根据权利要求1、2、3、4、5或6所述的标准单元,其特征在于上述电源电容元件,形成在结构与上述功能晶体管相同的P沟道或N沟道MOS晶体管的栅电极和其衬底之间,在上述栅电极上施加上述衬底电位的反电位。
8.根据权利要求7所述的标准单元,其特征在于形成上述电源电容元件的P沟道或N沟道的上述MOS晶体管的源区和漏区的至少一者的电位,与上述衬底电位相同。
9.根据权利要求7所述的标准单元,其特征在于形成上述电源电容元件的P沟道或N沟道的上述MOS晶体管的源区和漏区的至少一者、与P沟道或N沟道的上述功能晶体管的源区为共用区域。
10.根据权利要求1、2、3、4、5或6所述的标准单元,其特征在于在对上述标准单元供给电源电位或接地电位的电源布线、和上述电源电容元件所包含的与上述功能晶体管相同的P沟道或N沟道MOS晶体管的栅电极、源电极或漏电极之间形成的连接布线中,至少一条与上述电源布线垂直配置。
11.一种半导体集成电路,包括多个在基于自动配置布线的LSI设计中使用并具有P沟道晶体管区域和N沟道晶体管区域的标准单元,该半导体集成电路的特征在于上述各标准单元的P沟道晶体管区域具有形成P沟道功能晶体管的P沟道功能晶体管形成区域,上述各标准单元的N沟道晶体管区域具有形成N沟道功能晶体管的N沟道功能晶体管形成区域;在P沟道或N沟道的上述晶体管区域彼此相对地配置在其中的多个上述标准单元中,至少1个标准单元,在P沟道或N沟道的上述晶体管区域内的P沟道或N沟道的上述功能晶体管形成区域以外的间隙区域内包括电源电容元件。
12.根据权利要求11所述的半导体集成电路,其特征在于上述间隙区域包括与上述P沟道晶体管区域相对的上述N沟道晶体管区域内的上述N沟道功能晶体管形成区域以外的间隙区域,和与上述N沟道晶体管区域相对的上述P沟道晶体管区域内的上述P沟道功能晶体管形成区域以外的间隙区域;在这些间隙区域的至少一个区域内形成上述电源电容元件。
13.根据权利要求11或12所述的半导体集成电路,其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域和P沟道或N沟道的上述功能晶体管形成区域所围成的区域内形成上述电源电容元件。
14.根据权利要求11或12所述的半导体集成电路,其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域;在由P沟道或N沟道的上述功能晶体管形成区域和上述半导体集成电路的端部所围成的区域内形成上述电源电容元件。
15.根据权利要求11或12所述的半导体集成电路,其特征在于预定的上述标准单元,具有形成衬底接触盘的衬底接触盘形成区域;在由上述衬底接触盘形成区域、P沟道或N沟道的上述功能晶体管形成区域、以及上述半导体集成电路的端部所围成的区域内形成上述电源电容元件。
16.一种标准单元的布局生成方法,该标准单元,在基于自动配置布线的LSI设计中使用,并包括具有形成P沟道功能晶体管的P沟道功能晶体管形成区域的P沟道晶体管区域,和具有形成N沟道功能晶体管的N沟道功能晶体管形成区域的N沟道晶体管区域,该标准单元的布局生成方法的特征在于,包括电源电容形成区域检测步骤,在所配置的上述标准单元内检测P沟道和N沟道的上述功能晶体管形成区域以外的区域即能够形成电源电容元件的间隙区域;和电源电容形成步骤,在由上述电源电容形成区域检测步骤检测出的上述间隙区域的至少一者内形成上述电源电容元件。
全文摘要
本发明提供一种标准单元、半导体集成电路和标准单元的布局生成方法。对在自动配置布线中使用的标准单元,在标准单元的内部而不是外部形成为了抑制供给电源电位的电源布线的IR-Drop而形成的电源电容,并防止面积的增大。在由P沟道晶体管区域(102)和N沟道晶体管区域(103)构成的标准单元(101)中,在与P沟道晶体管区域(102)的P沟道功能晶体管形成区域(104)相对且除N沟道晶体管区域(103)内的N沟道功能晶体管形成区域(105)以外的间隙区域内,形成电源电容形成区域(106),并将布线电阻(114)削减为布线电阻(115)。
文档编号H01L21/70GK1750012SQ200510103450
公开日2006年3月22日 申请日期2005年9月15日 优先权日2004年9月16日
发明者高田敦志 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1