燃料气体储存供应装置的制作方法

文档序号:6866241阅读:82来源:国知局
专利名称:燃料气体储存供应装置的制作方法
技术领域
本发明涉及向燃料电池等燃料气体供应目标装置供应燃料气体的燃料气体储存供应装置。
背景技术
在燃料电池系统中,由于压力越高则可储存的燃料量(氢量)越发增加,因而常常将高压罐用作供应燃料气体(氢气)的储存装置。例如,在专利文献1中公开了如下结构将高压罐并列配置,且并列地供应燃料气体。
在这种结构中,当系统停止时会有燃料气体残留在截止阀与调节器之间,由于残留的气体的缘故,配管内的压力较高,如果在此状态下持续停止系统的话,在安全方面不利。因而,通常在停止系统时,需要将上述残留的高压燃料气体消耗掉或者将其排出。
专利文献1日本专利文献特开2002-372197号公报。

发明内容
如图1所示,考虑燃料电池系统配备了并列配置高压罐并就每个罐设置截止阀、调节器的燃料气体储存供应装置的情况。
在该结构中,在如专利文献1所述那样并列地供应燃料气体时,由于需要针对所有罐消耗掉或者排出截止阀与调节器之间的高压燃料气体,因而消耗或排出的燃料气体量与罐个数成比例地增加,其结果是,产生了燃料效率下降的问题。另外,消耗或者排气所需的时间增加,因而又产生了无法迅速地使系统停止的问题。尤其是,由于罐压力越高则残留的燃料气体越多,因而在以使用高压罐为前提的结构中,这些都是无法忽视的问题。
因此,本发明的目的在于提供一种燃料气体储存供应装置,使得在配有并列配置高压罐并就每个罐设置排出阀(例如截止阀)、调节器的燃料气体储存供应装置的情况下,能够抑制系统停止时会消耗或者排出的燃料气体量,从而可以提高燃料效率,并且可以迅速地停止系统。
为了解决上述问题,本发明的燃料气体储存供应装置包括相对于燃料气体供应目标装置而并列连接的高压燃料罐;就每个高压燃料罐而设置的排出阀;和设置在各个排出阀下游的调节器;其中,在供应燃料气体时,至少一个排出阀是关闭的。燃料气体供应目标装置例如是燃料电池。
优选的是,燃料气体储存供应装置还包括控制单元,该控制单元对各个排出阀进行控制,使得至少在可接收系统停止要求的时刻,从并列连接的高压燃料罐中的一个高压燃料罐供应燃料气体。
优选的是,当正在供应燃料气体的高压燃料罐的罐压力变为阈值以下时,控制单元打开接下来用作燃料气体供给源的高压燃料罐的排出阀,并关闭所述正在进行供应的高压燃料罐的排出阀。
更优选的是,当全部高压燃料罐的罐压力变为阈值以下时,控制单元作出缺气的判断,更为优选的是,停止包括所述燃料气体储存供应装置的系统的动作。
根据本发明优选的一个方式,控制单元可以对各个排出阀进行控制,以将并列连接的高压燃料罐按照罐压力从高到低的顺序或从低到高的顺序用作燃料气体的供给源。
根据本发明优选的一个方式,在开始供应燃料气体时,控制单元打开一个排出阀并使剩下的排出阀保持关闭的状态。
优选的是,在开始供应燃料气体时,控制单元打开与上次系统停止时所使用的高压燃料罐相对应的排出阀,以从该高压燃料罐供应燃料气体。
更优选的是,在开始供应燃料气体时,在判断出与准备打开的排出阀相对应的高压燃料罐的罐压力为阈值以下的情况下,控制单元打开与罐压力超过阈值的高压燃料罐相对应的排出阀,以从该高压燃料罐供应燃料气体。
更为优选的是,在开始供应燃料气体时,在判断出所有高压燃料罐的罐压力为阈值以下的情况下,控制单元作出缺气的判断。
此外,根据本发明优选的一个方式,在开始供应燃料气体时,控制单元打开与并列连接的高压燃料罐中罐压力最高的高压燃料罐相对应的排出阀。
另外,根据本发明优选的一个方式,在开始供应燃料气体时,控制单元打开与并列连接的高压燃料罐中罐压力最低的高压燃料罐相对应的排出阀。
本发明其他的燃料气体储存供应装置包括相对于燃料气体供应目标装置而并列连接的高压燃料罐;就每个高压燃料罐而设置的排出阀;在连接各个排出阀与燃料气体供应目标装置的流路中,在相对于燃料气体供应目标装置并列设置的部分上,就每个高压燃料罐而设置的调节器;以及控制单元,该控制单元对各个排出阀进行控制,使得至少在可接收系统停止要求的时刻,从并列连接的高压燃料罐中的一个高压燃料罐供应燃料气体。
更优选的是,当正在供应燃料气体的高压燃料罐的罐压力变为阈值以下时,控制单元打开接下来用作燃料气体供给源的高压燃料罐的排出阀,并关闭所述正在进行供应的高压燃料罐的排出阀。
综上所述,根据本发明,在配有并列配置高压罐并就每个罐设置排出阀(例如截止阀)、调节器的燃料气体储存供应装置的情况下,能够抑制系统停止时会消耗或者排出的燃料气体量,从而可以提高燃料效率,并且可以迅速地停止系统。


图1是本实施方式中的燃料电池系统的、以配管系统为中心的结构图;图2是本实施方式的燃料电池系统的主要结构图;图3是用于说明燃料气体供应控制单元81的动作的流程图。
具体实施例方式
下面,参照附图对本发明的优选实施方式进行说明。
图2示出了安装在燃料电池电动汽车上的燃料电池系统的简要结构。
燃料电池系统10主要包括燃料气体储存供应装置42、氧化气体供应装置73、燃料电池20、以及控制部80。燃料气体例如为氢气,氧化气体例如为空气。控制部80根据由加速器传感器84检测出的加速器开度而求出燃料电池20的要求发电量,从而对燃料气体储存供应装置42和氧化气体供应装置73进行控制以获得期望的发电量,并对供应给燃料电池20的燃料气体流量与氧化气体流量进行调节。PCU 82是包括逆变器和DC/DC变流器的电力控制装置,除了将燃料电池20发出的直流电转换成交流电而供应给车辆行驶用的马达83之外,还将剩余电力蓄存在次级电池81中。次级电池81承担着制动再生时的再生能量储存源、以及载荷随着车辆加速或减速而改变时的能量缓冲器的作用。
图1示出了燃料电池系统10的、以配管系统为中心的系统结构。如图1所示,燃料电池系统10包括用于向燃料电池20供应燃料气体的系统;用于供应氧化气体的系统;以及用于冷却燃料电池20的系统。
燃料电池20包括膜/电极接合体24,所述膜/电极接合体24是通过在高分子电介质膜21的两个面上用丝网印刷等形成阳极22与阴极23而得到的,该高分子电介质膜21由以氟系树脂形成的质子传导性的离子交换膜等构成。膜/电极接合体24的两个面被具有燃料气体、氧化气体、冷却水的流路的隔板(图中未示出)夹着,在该隔板与阳极22以及阴极23之间分别形成有槽形的阳极气体通道25及阴极气体通道26。在阳极22上发生(1)式的氧化反应,在阴极23上发生(2)式的还原反应。作为燃料电池20整体则发生(3)式的起电反应。
…(1)…(2)…(3)此外,为了便于说明,在该图中简要示出了由膜/电极接合体24、阳极气体通道25、以及阴极气体通道26构成的单位电池的结构,而实际上是通过上述隔板将多个单位电池串联连接起来的堆栈结构。
在燃料电池系统10的冷却系统中设置有使冷却水循环的冷却路径31、对从燃料电池20排出的冷却水的温度进行检测的温度传感器32、将冷却水的热量散发到外部的散热器(热交换器)33、对流入散热器33的冷却水量进行调节的阀34、加压冷却水而使之循环的泵35、以及对供应给燃料电池20的冷却水的温度进行检测的温度传感器36等。
在燃料电池系统10的燃料气体供应系统中铺设有以下配管用于向阳极气体通路25供应燃料气体的燃料气体流路41、以及用于使从阳极气体通路25排出的燃料排气回流到燃料气体流路41的循环流路51。由所述气体流路41、51构成了燃料气体循环系统。
在燃料气体流路(管路)41中设置有对来自燃料气体储存供应装置42的燃料气体的压力进行调节的调节器(中压调节器44、低压调节器45);以及开闭燃料电池20的燃料气体供应口(入口)的截止阀46等。
燃料气体储存供应装置42包括相对于作为燃料气体供应目标装置的燃料电池20而并列连接的高压燃料罐A1~A4(下标表示罐的序号);就每个高压燃料罐而设置的排出阀B1~B4;在连接各个排出阀B1~B4与燃料电池20的燃料气体流路41中,相对于燃料电池20而并列配置的流路部分C1~C4;就每个高压燃料罐而设置在该并列配置的流路部分C1~C4上的调节器D1~D4。另外,排出阀可以与高压燃料罐为一体。此外,可以根据设计来决定高压燃料罐等的数量,在这里并列设置的数量为4个。
由图可知,通过打开各个排出阀B1~B4而将储存在高压燃料罐A1~A4中的燃料气体排出到流路部分C1~C4,通过调节器D1~D4对压力进行调节后,该燃料气体流入燃料气体流路41的共同流路部分,并被供应给燃料电池20。如后所述,这种与燃料气体的供应相关的控制由控制部80的功能单元来执行,因而能够包括控制部80而作为燃料气体储存供应装置42来进行把握。
在循环流路51中设置有排出燃料排气的截止阀52、从燃料排气中回收水分的气液分离器53、将回收的水分回收到图中未示出的容器内的排水阀54、由马达驱动的循环泵(加压单元)55、防止燃料气体流路41中的燃料气体逆流到循环流路51一侧的逆流阻止阀56等。循环泵55在控制部80的控制下将在通过阳极气体通道25时受到了压力损失的燃料排气压缩并升压至合适的气压,并使其回流到燃料气体流路41中。燃料排气在燃料气体流路41中与从燃料气体供应装置42供应的燃料气体汇合,并被供应给燃料电池20以再次利用。
在循环流路51中分支铺设有排气流路61,所述排气流路61用于通过稀释器(例如氢浓度降低装置)62将从燃料气体循环系统排出的燃料排气排出到车外。在排气流路61中设置有排气阀(排气单元)63,以进行燃料排气的排气控制。通过开关排气阀63,重复燃料电池内的循环,将杂质浓度增大的燃料排气排出到外部,并导入新的燃料气体以防止电池电压降低。此外,还可以除去引起循环流路51的内压的脉动的、蓄积在气体流路中的水分。
另一方面,在燃料电池系统10的氧化气体供应系统中铺设有以下配管用于向阴极气体通道26供应氧化气体的氧化气体流路71;用于将从阴极气体通道26排出的阴极排气排出的阴极排气流路72。在氧化气体流路71中设置有氧化气体供应装置73,所述氧化气体供应装置73由除去从大气中获取的空气中所包含的粉尘等的空气过滤器74、以及由马达驱动的空气压缩机75等构成,并将压缩空气作为氧化气体供应给氧化气体流路71。此外,在配置于氧化气体供应装置73下游的加湿器76中进行以下两者之间的水分交换由于在燃料电池20的电池反应中生成的生成水而变成高湿润状态的阴极排气、以及从大气中获取的低湿润状态的氧化气体。通过设置于阴极排气流路72中的压力调节阀77而将阴极气体通路26的背压调整为大致恒定的压力。根据不同的设计,流过阴极排气流路72的阴极排气经由气液分离器或消声器等被排出到车外,并且其一部分流入稀释器62,对滞留在稀释器62内的燃料排气进行混合稀释后、被排出到车外。
控制部80由图中未示出的控制计算机系统构成,按照图中未示出的控制程序来控制燃料电池系统的各个部分的动作。控制计算机系统可以由公知的、可获得的系统构成。
例如,控制部80接收来自设置于各个流路上的温度传感器T或压力传感器P(图中未示出)的传感器信号,根据电池运行的状态(例如,电力负载)来驱动各个马达,从而对循环泵55与空气压缩机74的转数进行调节,并进行各种阀的开关控制或者阀开度的调节等。
但是,本实施方式的控制部80在以下方面与以往不同在至少可接收系统停止要求的时刻,对各个排出阀B1~B4等进行控制以从并列配管连接的高压燃料罐中的一个高压燃料罐供应燃料气体。在图1中,将由该控制部80实现的、与燃料气体的供应控制相关的功能,如燃料气体供应控制单元81那样作为功能单元而示出。
下面,参照图3所示的流程图,对与燃料气体的供应有关的控制部80的动作(燃料气体供应控制单元81的动作)进行说明。
当从在控制部80中实现的其他功能单元(例如对燃料电池系统10的整体动作进行控制的系统控制单元;图中未示出)接收到燃料气体的供应要求时(S100),燃料气体供应控制单元81将指定供应燃料气体的高压罐的罐序号的下标变量N设为1(S101)。
接着,燃料气体供应控制单元81针对由变量N所指定的高压燃料罐AN,通过图中未示出的压力传感器获取罐压力(S102)。
接着,燃料气体供应控制单元81判断高压燃料罐AN的罐压力是否在作为足以供应燃料气体的最低压力而设定的规定阈值P(例如为0.3MPa)以上(S103)。
当不足规定的阈值P时,燃料气体供应控制单元81将变量N加1(S104)。然后,判断变量N是否超过了罐总数(在本实施方式中为4)(S105),当没有超过时返回到S102。
另一方面,当超过了罐总数时,燃料气体供应控制单元81判断不存在能够供应燃料气体的高压燃料罐、即缺气,并将缺气而无法执行发电动作的情况通知给系统控制单元等(S119),结束处理。接到此信息后,例如,如果燃料电池系统10处于发电动作状态,则系统控制单元执行停止处理。
当在S103中为规定的阈值P以上时,燃料气体供应控制单元81打开高压燃料罐AN的排出阀BN(S106),并将已经开始从高压燃料罐AN供应燃料气体的情况通知给系统控制单元等(S107)。接收到此信息后,例如,系统控制单元执行燃料电池系统10的启动处理(开始发电处理)。
接着,燃料气体供应控制单元81判断系统控制单元是否发出系统停止要求(S108)。
当发出系统停止要求时,燃料气体供应控制单元81执行燃料气体供应停止处理(S109~S113)。
首先,打开高压燃料罐AN的排出阀BN(S109),并对残留在流路部分CN的排出阀BN与调节器DN之间的燃料气体执行消耗或者排气处理(S110)。另外,由于能够通过例如像排气流路61那样的、与以往相同的结构来进行残留燃料气体的消耗或者排气处理,因而在图1中没有示出。
接着,燃料气体供应控制单元81通过图中未示出的压力传感器获取流路部分CN的排出阀BN与调节器DN之间的配管内部压力(S111)。
接着,燃料气体供应控制单元81判断所述获取的配管内部压力是否在作为可以确保安全性的压力而设定的规定阈值Q以下(S112),当超过规定的阈值Q时,返回到S110(即,继续进行消耗或者排气处理)。另一方面,当为规定的阈值Q以下时,将燃料气体储存供应装置42能够安全停止的情况通知给系统控制单元等(S113),结束处理。
当在S108中没有发出系统停止要求时,燃料气体供应控制单元81执行高压燃料罐的切换判断处理(S114~S118)。
首先,判断高压燃料罐AN的罐压力是否在作为足以继续供应燃料气体的最低压力而设定的规定阈值R(例如为0.3MPa)以上(S114)。
当为规定的阈值R以上时,返回到对是否接收到系统停止要求进行判断的S108。
另一方面,当不足规定的阈值R时,燃料气体供应控制单元81将变量N加1(S115)。
在本实施方式中,如上所述将指定罐序号的下标变量N加1,由此按照罐序号的顺序来选择高压燃料罐,将其作为燃料气体供应源来使用。因此,由加1之后的变量N所指定的高压燃料罐至少在这次的燃料气体供应处理中未被选择,原则上认为其罐压力超过规定的阈值R。
接着,燃料气体供应控制单元81判断变量N是否超过了罐总数(在本实施方式中为4)(S116)。
当变量N超过了罐总数时,燃料气体供应控制单元81判断不存在能够供应燃料气体的高压燃料罐、即缺气,并将缺气而无法执行发电动作的情况通知给系统控制单元等(S119)。接到此信息后,例如,系统控制单元执行燃料电池系统10的停止处理。
当变量N没有超过罐总数时,燃料气体供应控制单元81打开高压燃料罐AN的排出阀BN(S117),然后关闭高压燃料罐A(N-1)的排出阀B(N -1)(S118),由此进行供应燃料气体的高压燃料罐的切换。然后,返回到对是否接收到系统停止要求进行判断的S108。
如此,在本实施方式中,切换并列连接的高压燃料罐来供应燃料气体,并至少在可接收到系统停止要求的时刻(即S108)将供应燃料气体的高压燃料罐始终控制为一个,因而当接收到系统停止要求而停止从燃料气体储存供应装置42供应燃料气体时,在排气阀与调节器之间的流路部分中残留有燃料气体的就仅是与所述一个高压燃料罐相对应的部分。因此,和以往的、在与并列配置的所有高压燃料罐相对应的部分中残留有燃料气体的结构相比,能够大幅地减少会消耗或排气的残留燃料气体量,其结果是,可以显著地提高燃料效率。并且,还可以抑制消耗或排气所需的时间,从而能够使系统迅速地停止。
另外,在本实施方式中,仅仅将当前供应燃料气体的高压燃料罐以及随后开始供应的高压燃料罐的排出阀作为开关的对象,因而与以往每次启动/停止燃料电池系统都要开关并列配置的所有高压燃料罐的排出阀的结构相比,可以减少各个排出阀的动作次数。其结果是,能够延长各个排出阀的可使用期限,从而能够使燃料电池系统10长期地稳定工作。
(变形例)本发明并不局限于上述实施例,可以在进行各种变形之后进行应用。例如,其结构也可以是除了相对于燃料电池而并列连接的高压燃料罐之外,还包括具有贮氢合金的燃料罐(MH罐)。
此外,例如在上述实施方式中,按照罐序号的顺序来选择高压燃料罐并将其用作燃料气体的供给源,但例如也可以采用如下结构按照罐压力从高到低的顺序(或者从低到高的顺序)来选择高压燃料罐并将其用作燃料气体的供给源;或者在S101中将上次燃料电池系统停止时所使用的高压燃料罐的罐序号设定为变量N。
另外,通过减少残留于排气阀和调节器之间的流路部分中的燃料气体,本发明可以取得提高燃料效率等效果,因而例如在包括三个以上的高压燃料罐的结构中,通过进行控制以使在供应燃料气体时从至少一个高压燃料罐不进行供应(即,关闭对应的排出阀),与从所有高压燃料罐供应燃料气体的结构相比,也可以减少与所述至少一个高压燃料罐相对应的量的残留燃料气体,从而能够获得有利的效果。
此外,除了接受氢(燃料气体)的供应来进行发电的燃料电池之外,燃料气体供应目标装置也可以是接受氢气或CNG(压缩天然气)的供应而产生机械能或者热能的内燃机。此外,燃料气体供应目标装置也可以是仅将燃料气体中转给其他供应目标的罐或泵装置。
权利要求
1.一种燃料气体储存供应装置,包括相对于燃料气体供应目标装置而并列连接的高压燃料罐;就每个高压燃料罐而设置的排出阀;和设置在各个排出阀下游的调节器;其中,在供应燃料气体时,至少一个所述排出阀是关闭的。
2.如权利要求1所述的燃料气体储存供应装置,其中,还包括控制单元,对各个排出阀进行控制,使得至少在可接收系统停止要求的时刻,从并列连接的高压燃料罐中的一个高压燃料罐供应燃料气体。
3.如权利要求2所述的燃料气体储存供应装置,其中,当正在供应燃料气体的高压燃料罐的罐压力变为阈值以下时,所述控制单元打开接下来用作燃料气体供给源的高压燃料罐的排出阀,并关闭所述正在进行供应的高压燃料罐的排出阀。
4.如权利要求3所述的燃料气体储存供应装置,其中,当所有高压燃料罐的罐压力变为阈值以下时,所述控制单元作出缺气的判断。
5.如权利要求4所述的燃料气体储存供应装置,其中,在作出所述缺气的判断的情况下,所述控制单元停止包含所述燃料气体储存供应装置的系统的动作。
6.如权利要求3至5中任一项所述的燃料气体储存供应装置,其中,所述控制单元对各个排出阀进行控制,以将并列连接的高压燃料罐按照罐压力从高到低的顺序用作燃料气体的供给源。
7.如权利要求3至5中任一项所述的燃料气体储存供应装置,其中,所述控制单元对各个排出阀进行控制,以将并列连接的高压燃料罐按照罐压力从低到高的顺序用作燃料气体的供给源。
8.如权利要求2所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,所述控制单元打开一个排出阀,并使剩下的排出阀保持关闭的状态。
9.如权利要求8所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,所述控制单元打开与上次系统停止时所使用的高压燃料罐相对应的排出阀,以从该高压燃料罐供应燃料气体。
10.如权利要求8或9所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,在判断出与准备打开的排出阀相对应的高压燃料罐的罐压力为阈值以下的情况下,所述控制单元打开与罐压力超过阈值的高压燃料罐相对应的排出阀,以从该高压燃料罐供应燃料气体。
11.如权利要求10所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,在判断出所有高压燃料罐的罐压力为阈值以下的情况下,所述控制单元作出缺气的判断。
12.如权利要求8所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,所述控制单元打开与并列连接的高压燃料罐中罐压力最高的高压燃料罐相对应的排出阀。
13.如权利要求8所述的燃料气体储存供应装置,其中,在开始供应燃料气体时,所述控制单元打开与并列连接的高压燃料罐中罐压力最低的高压燃料罐相对应的排出阀。
全文摘要
本发明的目的在于提供一种燃料气体储存供应装置,使得在配有并列配置高压罐并就每个罐设置排出阀、调节器的燃料气体储存供应装置的情况下,能够抑制系统停止时会消耗或者排出的燃料气体量,从而可以提高燃料效率,并且可以迅速地停止系统。本发明的燃料气体储存供应装置包括相对于燃料气体供应目标装置而并列连接的高压燃料罐;就每个高压燃料罐而设置的排出阀;和设置在各个排出阀下游的调节器;其中,在供应燃料气体时,至少一个所述排出阀是关闭的。
文档编号H01M8/04GK1946965SQ200580012880
公开日2007年4月11日 申请日期2005年4月26日 优先权日2004年5月10日
发明者繁雅裕 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1