金属源极功率晶体管及其制造方法

文档序号:6867567阅读:223来源:国知局
专利名称:金属源极功率晶体管及其制造方法
技术领域
本发明一般地涉及半导体功率晶体管领域,尤其涉及包括金属源极、并且不需要体接触就能减轻/减少寄生双极作用的金属氧化物半导体(MOS)功率晶体管以及绝缘栅双极晶体管(IGBT)。
背景技术
传统的功率晶体管是用于在电子装置和电路中调节和控制电压及电流的半导体器件。传统功率晶体管的两个例子是平面功率MOS晶体管和垂直沟槽IGBT。图1显示了传统的平面功率晶体管100的截面图。
参见图1,传统的平面功率MOS晶体管100包括一高导电性的衬底101,该衬底用作晶体管的漏极。一适度掺杂的漂移层102设置于导电衬底101之上。适度掺杂的体区域103位于漂移层102中,高掺杂的源极区域104位于体区域103之内。一包括栅极绝缘层106和栅电极105的栅叠层位于体区域103和漂移层102之上。高掺杂的体接触区域108被设置成与体接触电极109欧姆接触。对于传统的平面功率MOS晶体管100,传导发生在恰在栅电极105之下的体区域103中产生的一反型层中从源极区域104到漂移层102的横向路径中。电流的调制通过调整施加至栅电极105的电压来实现。
在传统的功率晶体管中出现的一个有害效应是寄生双极作用。在功率晶体管中的不良寄生双极作用是p+-n或n+-p结中众所周知的双极增益现象的直接结果。参见图1,为了清楚起见,显示了不良寄生双极晶体管112。对于差异显著(大于一个数量级)的各相反掺杂浓度,在结的轻掺杂侧上的多数载流子电流将引起在结的较重掺杂侧上的基本更大的多数载流子电流。这种电流增益是在传统的p-n结中起作用的漂移-扩散电荷迁移机制的结果。
在传统的功率晶体管中,通过保证对体电极或体接触的电势的适当控制减轻寄生双极作用。稳定的体电势防止具有很大双极增益的体-源p-n结正向偏置。由此避免了回跳(snap-back)效应和/或闭锁(latch-up)效应。与此形成对比,金属源极功率器件具有可以忽略的双极增益,并因此没有引起这些有害效应的危险。
这种体接触尽管减轻了寄生双极作用的效应,却导致了增加每个管芯的成本的不良后果。需要附加的处理步骤来制作顶部体接触、并还因为由顶部体接触所消耗的硅面积导致管芯尺寸增大,这些导致了上述的成本增加。
在工业中需要提供一种功率晶体管,它不需要因以处理和设计复杂性以及管芯尺寸为代价来提供体接触而导致的增加的处理步骤、增大的处理和设计复杂性、以及增大的芯片尺寸而能无条件免受寄生双极作用影响,并因此与其它功率晶体管技术相比,提供了性能、可制造性和成本上的优势。

发明内容
在一个方面,本发明提供了一种不需要体接触而能无条件免受寄生双极作用影响的功率晶体管。
在另一方面,本发明提供一种金属源极功率晶体管,它包括形成第一导电性类型的漏极层的半导体衬底;设置于所述漏极层上的相似的第一导电性类型的漂移层;设置于所述漂移层中的第二导电性类型的体区域;设置于所述体区域中的源极区域,其中所述源极区域由金属形成,并且与所述体区域形成肖特基接触;以及设置于所述体区域和所述漂移层上的柵电极。
在又一方面,本发明提供一种金属源极功率晶体管,它包括形成第一导电性类型的发射极层的半导体衬底;设置于所述发射极层上的第二导电性类型的漏极层;设置于所述漏极层上的相似的第二导电性类型的漂移层;设置于所述漂移层中的第一导电性类型的体区域;设置于所述体区域中的源极区域,其中所述源极区域由金属形成,并且与所述体区域形成肖特基接触;以及设置于所述体区域和所述漂移区域上的柵电极。
尽管公开了多个实施例,但是对于本领域普通技术人员来说,一旦阅读了下面示出和描述了本发明的说明性实施例的详细说明,本发明其它的实施例也将变得显而易见。应该认识到,本发明能够在多个显而易见的方面作出修改,而所有这些都不脱离本发明的精神和范围。因此,附图和详细说明在本质上将被认为是说明性的而不是限制性的。


图1示出了一传统的N型平面功率MOS晶体管的截面图;图2示出了根据本发明的原理的N型平面金属源极功率MOS晶体管的一示例性实施例的截面图;图3示出了根据本发明的原理的N型平面金属源极IGBT的一示例性实施例的截面图;图4示出了根据本发明的原理的N型垂直沟槽金属源极功率MOS晶体管的一示例性实施例的截面图;图5示出了显示了根据本发明的原理的N型垂直沟槽金属源极IGBT的一示例性实施例的截面图;图6示出了一平面金属源极功率晶体管的金属源极、体区域、以及介于金属源极和体区域之间的薄界面层的放大截面图;以及图7显示了一垂直沟槽金属源极功率晶体管的金属源极、体区域、以及介于金属源极和体区域之间的薄界面层的放大截面图。
具体实施例方式
总的来说,本发明提供一种金属源极功率晶体管。在一个实施例中,金属源极功率晶体管通常包括包含第一导电性类型的高掺杂漏极层的半导体衬底、第一导电性类型的适度掺杂的漂移层、第二导电性类型的适度掺杂的体区域、金属源极区域、以及在半导体衬底上的栅电极。金属源极和漂移区域界定出具有一定沟道长度的沟道区域。金属源极对体区域和沟道形成肖特基势垒。与图1所示的现有技术形成对比的是,本发明的金属源极功率晶体管并不包括体接触。再次参见图1,体接触包括高掺杂的欧姆接触区域108和体接触电极109两者。
根据本发明的原理的一种金属源极功率晶体管基本消除了寄生双极作用,从而使得能够无条件地免受闭锁、回跳效应、以及其它与寄生双极作用有关的有害效应影响,并且因此允许体漂移,从而免除了包括体接触的需要。无论电压、掺杂分布、或器件布局如何,这种对于寄生双极作用的无条件免受性均存在。并且,本发明的金属源极功率晶体管易于制造,它至少减少了用于形成源极和体接触的两个掩模,这对于五到六个掩模的制造工艺来说,大致减少了35%。同样,由于没有顶部体接触,所以允许更紧凑的布局,从而节省了大约25%的面积。
与现有技术形成对比的是,本发明的金属源极功率晶体管并不需要高导电性的路径来与体区域欧姆接触。
本发明的一个示例性实施例是金属源极IGBT器件。应该意识到,尽管在金属源极IGBT器件中无条件地消除了寄生双极作用,但是在正常工作期间,对于该器件的工作而言核心的双极作用不受金属源极的影响,因此照常工作。例如,在金属源极N型IGBT中,无条件地消除了不良寄生双极NPN晶体管,但是正常的器件工作所必需的主双极PNP晶体管仍然存在,并且其基本不受影响。类似地,对于金属源极P型IGBT,无条件地消除了不良寄生PNP晶体管,但是正常的器件工作所必需的主双极NPN晶体管仍然存在,并且其基本不受影响。参见图3和5,示出了正常的器件工作所必需的并且基本不受金属源极影响的主双极晶体管312、512。
金属源极IGBT的另一优点是漂移体区域将允许经由体效应产生MOS动态阈值电压漂移。例如,对于N型金属源极IGBT,由PNP双极注入的空穴将充满体区域,并提高其电势,从而降低N型MOS器件的阈值电压。然后,这种阈值电压的降低将更多的电子注入PNP的基极,这引起更多的空穴充满体区域。然而,这种正反馈是自限的,从而始终可保持通过栅电极对器件的控制。
金属源极IGBT的又一优点是,可在N型金属源极IGBT的PNP双极上、以及在P型金属源极IGBT的NPN双极上使用肖特基接触作为缩短开关时间的手段。
本发明的又一示例性实施例是金属源极功率MOS晶体管。对于金属源极功率MOS晶体管,在没有与体区域欧姆接触的情形中,不存在到体-漏二极管的直接通路,且因此对于某些应用可能需要一外部保护二极管。
本发明的金属源极功率MOS晶体管的另一优点是,通过允许体漂移,可使体区域适当偏置,从而利用由于体效应导致的MOS动态阈值漂移,这会导致增大驱动电流以及减小“导通(ON)”状态阻抗。并且,金属源极功率MOS晶体管的漂移区域可设置和构造成,利用通过碰撞电离导致的电流倍增,而不会有任何导通寄生双极晶体管的危险。
贯穿此讨论,将提供一些涉及在其上形成金属源极功率晶体管的半导体衬底的例子。本发明并不将半导体衬底限制于任何特定类型。本领域技术人员将容易地意识到,许多半导体衬底可用于金属源极功率晶体管,例如硅、锗化硅(silicongermanium)、砷化镓、磷化铟、碳化硅、氮化镓、应变半导体衬底、以及绝缘体上硅(SOI)。可使用这些衬底材料以及任何其它的半导体衬底,它们都在本发明示教的范围内。
贯穿此讨论,将提供一些涉及与晶体管制作有关的肖特基和类肖特基势垒和接触的例子。对于可用于实现本发明的示教的肖特基界面的类型,本发明并不认为有任何限制。因此,本发明尤其预期这些类型的接触将以任何形式的导电材料或合金来制造。
此外,尽管传统的肖特基接触是突变的,但是本发明尤其预期在一些情况下,可在硅衬底和金属之间采用一界面层。这些界面层可以是超薄的,例如具有大致10nm或以下的厚度。因此,本发明尤其预期类肖特基接触及其等效物在实施本发明时是有用的。此外,界面层可包括具有导电性、半导电性、和/或类绝缘体性质的材料。例如,可使用氧化物或氮化物绝缘体的超薄界面层,或者可使用由掺杂物分离技术形成的超薄掺杂物层,或者可使用诸如锗的半导体的超薄界面层,来形成类肖特基接触等。
尽管在此描述的本发明的示例性实施例包括N型金属源极功率MOS器件和N型金属源极IGBT器件,但是通过替换相反极性类型的杂质作掺杂物并且使用适当的金属源极材料,可实现P型金属源极功率MOS器件和P型金属源极IGBT器件。
平面金属源极功率晶体管图2示出了本发明的一示例性实施例的截面图,该实施例由一平面N型金属源极功率MOS晶体管200来例示。该实施例包括由N+漏极201构成的衬底、以及在N+漏极201上外延生长的N型漂移层202。P型体区域203位于N型漂移层202中,而金属源极区域204位于P型体区域203中。P型体区域203可通过掺杂物扩散或注入到N型漂移层202中来提供。对于平面N型金属源极功率MOS晶体管200,金属源极区域204可由对电子形成低肖特基势垒的材料形成,该材料选自诸如硅化铒、硅化镝、或硅化镱等稀土硅化物或其组合。对于平面P型金属源极功率MOS晶体管,金属源极区域可由对空穴形成低肖特基势垒的材料制成,该材料选自硅化铂、硅化钯、硅化铱和/或其合金中的任意一种或组合。
一沟道区域211横向地位于金属源极区域204和N型漂移层202之间。沟道区域211是导通态载流区域,其中,诸如空穴和电子的移动电荷载流子从金属源极区域204流动至N型漂移层202。一绝缘层206位于沟道区域211和N型漂移层202之上。绝缘层206由诸如二氧化硅之类的材料构成。一栅电极205位于绝缘层206之上,且有一薄绝缘隔离侧壁207围绕该栅电极205。栅电极205可掺杂多晶硅,其中,硼和磷掺杂物分别用于P型和N型金属源极功率MOS栅电极。栅电极205也可由一种或多种金属构成。
参见图2,金属源极区域204部分或全部由金属构成。因为金属源极区域204部分由金属构成,所以它们与P型体区域203和沟道区域211形成肖特基或类肖特基接触212。肖特基接触形成于金属和半导体之间的界面上,而类肖特基接触由金属和半导体的紧邻来形成,其中例如,金属和半导体分开大约0.1-10nm。肖特基接触或类肖特基接触或结212可通过由金属硅化物形成金属源极区域204来提供。肖特基或类肖特基接触或结212也可通过在金属源极区域204和P型体区域203之间插入薄界面层来形成。图6示出了平面金属源极功率晶体管的金属源极区域604、体区域603和介于金属源极区域604与体区域603之间的薄界面层613的放大截面图。在另一示例性实施例中,金属源极区域204还可由分层堆叠的金属构成,其中,第一金属被设置成与P型体区域203相接触,而另外的各个金属可用于遮盖或覆盖第一金属的顶面。
图3示出了本发明的另一示例性实施例的截面图,该实施例由一平面N型金属源极IGBT 300来例示。该实施例包括由P+发射极310构成的衬底、在P+发射极上外延生长的N+缓冲层301、以及在N+缓冲层301上外延生长的N型漂移层302。P型体区域303位于N型漂移层302中,而金属源极区域304位于P型体区域303中。P型体区域303可通过掺杂物扩散或注入到N型漂移层302中来提供。对于平面N型金属源极IGBT 300,金属源极区域304可由对电子形成低肖特基势垒的材料来构成,该材料选自诸如硅化铒、硅化镝、或硅化镱等稀土硅化物或其组合。对于平面P型金属源极功率IGBT,金属源极区域可由对空穴形成低肖特基势垒的材料制成,该材料选自硅化铂、硅化钯、硅化铱和/或其合金中的任意一种或组合。
一沟道区域311横向地位于金属源极区域304和N型漂移层302之间。沟道区域311是导通态载流区域,其中,诸如空穴和电子的移动电荷载流子从金属源极区域304流动至N型漂移层302。一绝缘层306位于沟道区域311和N型漂移层302之上。绝缘层306由诸如二氧化硅之类的材料构成。一栅电极305位于绝缘层306之上,并且一薄绝缘隔离侧壁307围绕栅电极305。栅电极305可掺杂多晶硅,其中,硼和磷掺杂物分别用于P型和N型金属源极IGBT栅电极。栅电极305也可由一种或多种金属构成。
再次参见图3,金属源极区域304部分或全部由金属构成。因为金属源极区域304部分由金属构成,所以它们与P型体区域303和沟道区域311形成肖特基或类肖特基接触312。肖特基接触形成于金属和半导体之间的界面上,而类肖特基接触由金属和半导体的紧邻来形成,其中例如,金属和半导体分开大致0.1-10nm。肖特基接触或类肖特基接触或结312可通过由金属硅化物形成金属源极区域304来提供。肖特基或类肖特基接触或结312也可通过在金属源极区域304和P型体区域303之间插入薄界面层来形成。图6示出了平面金属源极功率晶体管的金属源极区域604、体区域603和介于金属源极区域604与体区域603之间的薄界面层61 3的放大截面图。在另一示例性实施例中,金属源极区域304还可由分层堆叠的金属构成,其中,第一金属被设置成与P型体区域303相接触,而另外的各个金属可用于遮盖或覆盖第一金属的顶面。
平面金属源极功率晶体管的工艺/方法下面参照图2和3来描述平面金属源极功率晶体管的一个示例性制造工艺,用于分别制造金属源极功率MOS晶体管和金属源极IGBT。
首先,基于所制造的器件的类型来选择适当的起始材料。对于N型平面金属源极功率MOS晶体管200,将选择一N+衬底201,且在该N+衬底201上外延生长有一N型漂移层202。对于N型平面金属源极IGBT 300,将选择P+衬底31 0,且在该P+发射极衬底310上外延生长有一N+缓冲层301,在该N+缓冲层301上外延生长有一N型漂移层302。
然后,一将用作柵氧化物206、306的绝缘层在N型漂移层202、302之上生长。柵氧化物生长后紧跟有一掺杂的硅膜。该膜掺杂磷以例如用于N型器件的磷和用于P型器件的硼来掺杂。使用光刻技术来图案化柵电极205、305,使用对氧化物有高度选择性的硅蚀刻来去除多余的掺杂硅膜。
接着,使用柵电极205、305作为注入掩模,通过将硼掺杂物注入N型漂移层202、302中来提供P型体区域203、303。
然后,在硅柵电极205、305的顶面和侧壁上热生长薄氧化物。然后,采用各向异性蚀刻来去除水平表面上的薄氧化物以露出硅,而在柵电极205、305上保留薄的侧壁氧化物207、307。以这种方式,形成氧化物隔离侧壁207、307,并且电激活在柵电极205、305和P型体区域203、303中的掺杂物。
下一个步骤包括,在所有的曝露表面上沉积一适当的金属——例如,用于N型器件的铒和用于P型器件的铂——以作为覆盖膜。然后,在规定的温度下对晶片退火规定的时间(例如45℃下45分钟),从而在金属与硅直接接触的所有位置,均发生将金属转化成金属硅化物并形成金属源极204、304的化学反应。与非硅表面直接接触的金属不受影响。
然后,采用湿式化学蚀刻(例如,用于铂的王水、用于铒的硫酸和过氧化氢)来去除未反应的金属,而金属硅化物不受影响。因此,现在完成了一个示例性的平面金属源极功率晶体管,并且为标准的后道镀金属工艺准备就绪。
应该意识到,上述工艺是形成平面金属源极功率晶体管的许多种可能方式中的一种,可采用适当的变形或替换方式,而不会脱离本发明的范围。
垂直金属源极功率晶体管图4示出了本发明的另一示例性实施例的截面图,该实施例由垂直沟槽N型金属源极功率MOS晶体管400来例示。该实施例包括由N+漏极层401构成的衬底、在N+漏极层401之上外延生长的N型漂移层402、以及在N型漂移层402上外延生长的P型体层403。设置了从P型体层403的表面延伸进入N型漂移层402的深沟槽。诸沟槽用绝缘层406划界,并且填充了导电材料以形成柵电极405。绝缘层406由诸如二氧化硅的材料构成。栅电极405可掺杂多晶硅,其中,硼和磷掺杂物分别用于P型和N型金属源极功率MOS栅电极。栅电极405也可由一种或多种金属构成。栅电极405可以由相同的金属或不同的金属构成。
金属源极区域404位于P型体层403之上。对于垂直沟槽N型金属源极功率MOS 400,金属源极区域404可由对电子形成低肖特基势垒的材料制成,该材料选自诸如硅化铒、硅化镝、或硅化镱等稀土硅化物或其组合。对于垂直沟槽P型金属源极功率MOS,金属源极区域可由对空穴形成低肖特基势垒的材料制成,该材料选自硅化铂、硅化钯、硅化铱和/或其合金中的任意一种或组合。
一沟道区域411垂直地位于金属源极区域404与N型漂移层402之间。沟道区域411是导通态载流区域,其中,诸如空穴和电子的移动电荷载流子从金属源极区域404流动至N型漂移层402。
再次参见图4,金属源极区域404部分或全部由金属构成。因为金属源极区域404部分由金属构成,所以它们与P型体区域403和沟道区域411形成肖特基或类肖特基接触412。肖特基接触形成于金属和半导体之间的界面上,而类肖特基接触由金属和半导体的紧邻来形成,其中例如,金属和半导体分开大约0.1-10nm。肖特基接触或类肖特基接触或结412可通过由金属硅化物形成金属源极区域404来提供。肖特基或类肖特基接触或结412也可通过在金属源极区域404与P型体区域403之间插入薄界面层来形成。图7示出了垂直沟槽金属源极功率晶体管的金属源极区域704、体区域703、以及介于金属源极区域704和体区域703之间的薄界面层713的放大截面图。在另一示例性实施例中,金属源极区域404还可由分层堆叠的金属构成,其中,第一金属被设置成与P型体区域403相接触,而另外的各个金属可用于遮盖或覆盖第一金属的顶面。
图5示出了本发明的又一示例性实施例的截面图,由垂直沟槽N型金属源极IGBT 500来例示。该实施例包括由P+发射极510构成的衬底、在P+发射极510上外延生长的N+缓冲层501、在N+漏极层501上外延生长的N型漂移层502、以及在N型漂移层502上外延生长的P型体层503。设置了从P型体层503的表面延伸进入N型漂移层502的深沟槽。诸沟槽用绝缘层506划界,并且填充了导电材料以形成柵电极505。绝缘层506由诸如二氧化硅的材料构成。栅电极505可掺杂多晶硅,其中,硼和磷掺杂物分别用于P型和N型金属源极IGBT栅电极。栅电极505也可由一种或多种金属构成。
金属源极区域504位于P型体层503之上。对于垂直沟槽N型金属源极IGBT500,金属源极区域504可由对电子形成低肖特基势垒的材料形成,该材料选自诸如硅化铒、硅化镝、或硅化镱等稀土硅化物或其组合。对于垂直沟槽P型金属源极IGBT,金属源极区域可由对空穴形成低肖特基势垒的材料形成,该材料选自硅化铂、硅化钯、硅化铱和/或其合金中的任意一种或组合。
一沟道区域511垂直地位于金属源极区域504和N型漂移层502之间。沟道区域511是导通态载流区域,其中,诸如空穴和电子的移动电荷载流子从金属源极区域504流动至N型漂移层502。
再次参见图5,金属源极区域504部分或全部由金属构成。因为金属源极区域504部分由金属构成,所以它们与P型体区域503和沟道区域511形成肖特基或类肖特基接触512。肖特基接触形成于金属和半导体之间的界面上,而类肖特基接触由金属和半导体的紧邻来形成,其中例如,金属和半导体分开大约0.1-10nm。肖特基接触或类肖特基接触或结512可通过由金属硅化物形成金属源极区域504来提供。肖特基或类肖特基接触或结512也可通过在金属源极区域504和P型体区域503之间插入薄界面层来形成。图7示出了垂直沟槽金属源极功率晶体管的金属源极区域704、体区域703、以及介于金属源极区域704和体区域703之间的薄界面层713的放大截面图。在另一示例性实施例中,金属源极区域504还可由分层堆叠的金属构成,其中,第一金属被设置成与P型体区域503相接触,而另外的各个金属可用于遮盖或覆盖第一金属的顶面。
垂直沟槽金属源极功率晶体管的工艺/方法下面参照图4和5来描述垂直沟槽金属源极功率晶体管的一个示例性制造工艺,分别用于制造金属源极功率MOS晶体管和金属源极IGBT。
首先,基于要制造的器件的类型来选择适当的起始材料。对于N型垂直沟槽金属源极功率MOS晶体管400,将选择一N+衬底401,且衬底401之上外延生长有一N型漂移层402,并且N型漂移层402上外延生长有一P型体层403。对于N型垂直沟槽金属源极IGBT 500,将选择P+衬底510,且在该P+发射极衬底510上外延生长有一N+缓冲层501,在该N+缓冲层501上外延生长有一N型漂移层502,并且在该N型漂移层502上外延生长有一P型体层503。
接着,使用光刻技术和各向异性硅蚀刻,在硅中蚀刻出从P型体层403、503的顶部延伸进入N型漂移层402、502的深沟槽。
在沟槽蚀刻之后,在沟槽的所有表面上生长氧化物,以提供柵绝缘层406、506。紧跟着柵氧化物生长之后,通过沉积原位掺杂的硅膜来充填沟槽,从而提供柵电极405、505。硅膜是用例如用于N型器件的磷和用于P型器件的硼来原位掺杂的。采用标准的CMP工艺来去除位于超出P型体层表面的多余的掺杂硅。
下一个步骤包括,在表面上沉积一适当的金属(例如,用于N型器件的铒和用于P型器件的铂)以作为覆盖膜。然后,在规定的温度下对晶片退火规定的时间(例如45℃下45分钟),从而在金属与硅直接接触的所有位置,发生将金属转化成金属硅化物化学反应,并形成金属源极204、304。与非硅表面直接接触的金属不受影响。
然后,采用湿式化学蚀刻(例如,用于铂的王水、用于铒的硫酸和过氧化氢)来去除未反应的金属,而金属硅化物不受影响。因此,现在完成了一个示例性的竖直沟槽金属源极功率晶体管,并且为标准的后道镀金属工艺准备就绪。
应该意识到,上述工艺是形成平面金属源极功率晶体管的许多种可能方式中的一种,可采用适当的变体或替换方式,而不会脱离本发明的范围。
尽管已参照较佳的实施例来描述了本发明,但是本领域普通技术人员将会意识到,可在形式和细节上作出变化,而不会脱离本发明的精神和范围。本发明可应用于金属源极功率晶体管技术的任何适当用途,无论其采用Si衬底、SiGe衬底、GaAs衬底、GaN衬底、SiC衬底、还是金属柵极。以上列表并不是限制性的。采用金属源极的、用于调节电流的流动的任何功率晶体管器件可受益于本示教。
权利要求
1.一种金属源极功率晶体管,包括半导体衬底,形成第一导电性类型的漏极层;相似的第一导电性类型的漂移层,设置于所述漏极层上;第二导电性类型的体区域,设置于所述漂移层中;源极区域,设置于所述体区域中,其中,所述源极区域由金属形成,并且与所述体区域形成肖特基接触;以及栅电极,设置于所述体区域和所述漂移区域上。
2.如权利要求1所述的晶体管,其特征在于,所述漏极层由N+硅构成,所述漂移层由外延生长的N型硅构成,所述体区域由P型硅构成,以及所述源极区域由稀土硅化物形成。
3.如权利要求1所述的晶体管,其特征在于,所述漏极层由P+硅构成,所述漂移层由外延生长的P型硅构成,所述体区域由N型硅构成,以及所述源极区域由硅化铂、硅化钯或硅化铱中的任意一种或其组合形成。
4.如权利要求1所述的晶体管,其特征在于,所述金属源极功率晶体管是平面功率MOS晶体管。
5.一种金属源极功率晶体管,包括半导体衬底,形成第一导电性类型的发射极层;第二导电性类型的漏极层,设置于所述发射极层上;相似的第二导电性类型的漂移层,设置于所述漏极层上;第一导电性类型的体区域,设置于所述漂移层中;源极区域,设置于所述体区域中,其中,所述源极区域由金属形成,并且与所述体区域形成肖特基接触;以及栅电极,设置于所述体区域和所述漂移区域上。
6.如权利要求1所述的晶体管,其特征在于,所述发射极层由P+硅构成,所述漏极层由外延生长的N+硅构成,所述漂移层由外延生长的N型硅构成,所述体区域由P型硅构成,以及所述源极区域由稀土硅化物形成。
7.如权利要求1所述的晶体管,其特征在于,所述发射极层由N+硅构成,所述漏极层由外延生长的P+硅构成,所述漂移层由外延生长的P型硅构成,所述体区域由N型硅构成,以及所述源极区域由硅化铂、硅化钯或硅化铱中的任意一种或其组合形成。
8.如权利要求1所述的晶体管,其特征在于,所述金属源极功率晶体管是平面金属源极IGBT。
全文摘要
提供一种金属源极功率晶体管器件和制造方法,其中,金属源极功率晶体管具有由金属制成的源极,并且该源极与晶体管的体区域和沟道区域形成肖特基势垒。金属源极功率晶体管无条件地免受寄生双极作用影响,并且因此无需体接触就可避免回跳和闭锁效应。允许体区域在金属源极功率晶体管中漂移的能力降低了工艺复杂性,并且允许更紧凑的器件布局。
文档编号H01L29/739GK101019236SQ200580030944
公开日2007年8月15日 申请日期2005年7月15日 优先权日2004年7月15日
发明者J·P·辛德 申请人:斯平内克半导体股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1