固体电解电容器及其制造方法

文档序号:6868454阅读:114来源:国知局
专利名称:固体电解电容器及其制造方法
技术领域
本发明涉及包括阀作用金属的多孔质烧结体的固体电解电容器及其制造方法。
背景技术
固体电解电容器的用途有除去由CPU等器件产生的噪声、稳定电子设备的电源供给(例如,参照专利文献1)。图21表示这样的固体电解电容器的一个例子。该固体电解电容器X包括具有阀作用的金属的多孔质烧结体90。阳极导线91是阳极导通部件的一个例子,其一部分从多孔质烧结体90突出。在多孔质烧结体90的表面,形成有构成阴极的导电层92。导体部件93、94分别与阳极导线91和导电层92导通。导体部件93、94从密封树脂95露出的部分,成为表面安装用的阳极端子93a和阴极端子94a。在此,固体电解电容器的阻抗Z的频率特性,由公式1决定。
(公式1)Z=(R2+(1/ωC-ωL)2)]]>在公式1中,ω表示角速度,相当于频率的2π倍。另外,C表示固体电解电容器的电容,R表示电阻,L表示电感。从上式可以看出,在频率比自皆振点低的低频区域,1/ωC成为阻抗Z的主要决定因素。因此,通过增大电容C,可以降低阻抗。另外,在自谐振点附近的高频区域,电阻R成为主要决定因素。因此,为了降低阻抗,需要降低ESR(等效串联电阻)。另外,在频率比自谐振点还高的超高频区域,ωL成为主要决定因素。因此,为了降低阻抗,需要降低ESL(等效串联电感)。
近年来,从时钟频率高频化的CPU等器件,产生含有高次谐波成分的高频噪声。另外,伴随着电子设备的高速化和数字化,需要能够与电力需要高速响应的电源系统。对于被用于这些用途的固体电解电容器X,强烈希望降低ESL。作为降低ESL的方法,例如考虑将多孔质烧结体90的形状形成为扁平状。然而,多孔质烧结体90越扁平,多孔质烧结体90中覆盖阳极导线91的部分的厚度就越薄。例如,在固体电解电容器X的制造工序中,如果向阳极导线91作用外力,则有可能多孔质烧结体90破损、阳极导线91从多孔质烧结体90脱落。这样,在以降低ESL为目的而减薄多孔质烧结体90的情况下,存在阳极导线90的接合强度不足的问题。
专利文献1日本特开2003-163137号公报(图15)发明内容本发明鉴于上述问题而提出,其目的在于提供一种能够在降低ESL的同时提高阳极导通部件的接合强度的固体电解电容器及其制造方法。
为了解决上述问题,在本发明中,对以下的技术手段进行讲解。
本发明的第一方面提供的一种固体电解电容器,其特征在于,包括由具有阀作用的金属构成的第一多孔质烧结体;与上述第一多孔质烧结体导通的阳极导通部件;与上述阳极导通部件导通的表面安装用的阳极端子;表面安装用的阴极端子;和由具有阀作用的金属构成、并且介于上述第一多孔质烧结体与上述阳极导通部件之间的第二多孔质烧结体。
在本发明的优选实施方式中,上述第二多孔质烧结体含有NbO。
在本发明的优选实施方式中,上述第二多孔质烧结体还含有Nb。
在本发明的优选实施方式中,上述第二多孔质烧结体的平均粒径小于上述第一多孔质烧结体的平均粒径。
在本发明的优选实施方式中,上述阳极导通部件由具有阀作用的金属制成。
在本发明的优选实施方式中,上述阳极导通部件具有板状的粘贴部,并且在该粘贴部通过上述第二多孔质烧结体粘贴在上述第一多孔质烧结体上。
在本发明的优选实施方式中,在上述第一多孔质烧结体中形成有凹部,并且上述粘贴部被粘贴在该凹部上。
在本发明的优选实施方式中,在上述粘贴部上形成有孔。
在本发明的优选实施方式中,上述孔的内面由上述第二多孔质烧结体覆盖。
在本发明的优选实施方式中,上述粘贴部,从上述孔的内面到上述第一多孔质烧结体的相反侧的面,被上述第二多孔质烧结体覆盖。
在本发明的优选实施方式中,在上述第一多孔质烧结体上形成有进入上述粘贴部的上述孔的突起。
在本发明的优选实施方式中,上述粘贴部具有锯齿状的边缘部。
在本发明的优选实施方式中,上述第一多孔质烧结体为扁平状,其厚度方向的尺寸小于与该厚度方向正交的方向上的宽度尺寸,上述阳极导通部件具有与上述粘贴部垂直连结的板状的延伸部,上述粘贴部被粘贴在上述第一多孔质烧结体中朝向与其厚度方向垂直的方向的面上,上述延伸部在与上述第一多孔质烧结体的厚度方向垂直的方向上延伸,并且上述阳极端子与该延伸部接合。
在本发明的优选实施方式中,上述第一多孔质烧结体为扁平状,其厚度方向的尺寸小于与该厚度方向正交的方向上的宽度尺寸,上述阳极导通部件具有与上述粘贴部在相同方向上连结的板状的延伸部,上述粘贴部被粘贴在上述第一多孔质烧结体中朝向其厚度方向的面上,上述延伸部在与上述第一多孔质烧结体的厚度方向垂直的方向上延伸,并且上述阳极端子与该延伸部接合。
本发明的第二方面提供的一种固体电解电容器的制造方法,其特征在于,包括使用含有具有阀作用的金属的微粉末的膏,将1个以上具有阀作用的金属的阳极导通部件粘贴在由具有阀作用的金属的多孔质体或多孔质烧结体构成的中间品上的工序;和通过对上述中间品和上述膏进行烧结,由上述中间品形成第一多孔质烧结体,并且,由上述膏形成第二多孔质烧结体的工序。
在本发明的优选实施方式中,上述膏含有NbO的微粉末。
在本发明的优选实施方式中,上述膏还含有Nb的微粉末。
在本发明的优选实施方式中,上述膏中含有的上述微粉末的平均粒径,小于构成上述中间品的上述多孔质体或上述多孔质烧结体的平均粒径。
在本发明的优选实施方式中,作为上述阳极导通部件,使用各自具有板状的延伸部的多个阳极导通部件,并且上述多个阳极导通部件中的至少一个阳极导通部件的延伸部的延伸尺寸大于其它的阳极导通部件的延伸部的延伸尺寸。
本发明的其它特征和优点,通过参照附图在以下进行的详细说明,将变得更加明显。


图1是本发明的固体电解电容器的第一实施方式的截面图。
图2是本发明的固体电解电容器的第一实施方式的主要部分立体图。
图3是表示在本发明的固体电解电容器的制造方法的一个例子中,粘贴阳极导通部件的工序的立体图。
图4是表示在本发明的固体电解电容器的制造方法的一个例子中,实施烧结后的状态的立体图。
图5是表示在本发明的固体电解电容器的制造方法的一个例子中,形成第二多孔质烧结体的工序的主要部分截面图。
图6是表示在本发明的固体电解电容器的制造方法的一个例子中,粘贴阳极端子和阴极导通部件的工序的立体图。
图7是本发明的固体电解电容器的第二实施方式的主要部分立体图。
图8是本发明的固体电解电容器的第二实施方式的主要部分立体图。
图9是本发明的固体电解电容器的第三实施方式的主要部分立体图。
图10是本发明的固体电解电容器的第三实施方式的主要部分立体图。
图11是本发明的固体电解电容器的第三实施方式的主要部分立体图。
图12是本发明的固体电解电容器的第三实施方式的主要部分立体图。
图13是本发明的固体电解电容器的第四实施方式的主要部分截面图。
图14是本发明的固体电解电容器的第四实施方式的主要部分截面图。
图15是本发明的固体电解电容器的第四实施方式的主要部分立体图。
图16是本发明的固体电解电容器的第四实施方式的截面图。
图17是本发明的固体电解电容器的第五实施方式的主要部分立体图。
图18是本发明的固体电解电容器的第六实施方式的主要部分立体图。
图19是本发明的固体电解电容器的第六实施方式的主要部分立体图。
图20是本发明的固体电解电容器的第六实施方式的主要部分立体图。
图21是现有的固体电解电容器的一个例子的截面图。
具体实施例方式
下面,参照附图,对本发明的优选实施方式具体地进行说明。
图1和图2表示本发明的固体电解电容器的第一实施方式。如图1所示,本实施方式的固体电解电容器A包括第一多孔质烧结体1A;第二多孔质烧结体1B;第一和第二阳极导通部件21A、21B;阳极端子3A、3B;阴极导通部件41;以及密封树脂7。此外,在图2中,密封树脂7被省略。
如图2所示,第一多孔质烧结体1A为扁平的矩形板状,其厚度方向尺寸小于与厚度方向正交的方向上的宽度尺寸。第一多孔质烧结体1A,通过将作为具有阀作用的金属的铌(Nb)的粉末加压成形并对其进行烧结而形成。第一多孔质烧结体1A中,铌粉末彼此烧结,具有在它们之间形成有微小间隙的结构。在上述粉末的表面形成有例如由五氧化二铌(Nb2O5)构成的电介质层(图示省略)。另外,在该电介质层的表面上,形成有固体电解质层(图示省略)。该固体电解质层例如由二氧化锰或导电性聚合物构成,优选以完全填满上述间隙整体的方式形成。作为多孔质烧结体1的材质,只要是具有阀作用的金属即可,可以使用例如钽(Ta)等代替铌。
在第一多孔质烧结体1A的侧面,形成有4个凹部1Aa。在这些凹部1Aa上,通过4个第二多孔质烧结体1B而粘贴有各两个的阳极导通部件21A、21B。
各第二多孔质烧结体1B,通过烧结作为具有阀作用的金属的氧化铌(NbO)的粉末而形成。各第二多孔质烧结体1B,与第一多孔质烧结体1A同样,具有形成有微小间隙的结构,并形成有上述电介质层和上述固体电解质层。在本实施方式中,形成第二多孔质烧结体1B的氧化铌的微粉末,其平均粒径小于形成第一多孔质烧结体1A的铌的微粉末的平均粒径。
各两个的第一和第二阳极导通部件21A、21B,为大致L字形状的板状,由具有阀作用的金属铌制成。各阳极导通部件21A、21B具有相互垂直连结的粘贴部21a和延伸部21b。各阳极导通部件21A、21B的粘贴部21a通过第二多孔质烧结体1B粘贴在第一多孔质烧结体1A的凹部1Aa中。在各粘贴部21a上形成有孔21c。如图1所示,第二多孔质烧结体1B填满各粘贴部21a与各凹部1Aa之间的空间,并且覆盖各孔21c的内面。
如图1所示,各延伸部21b沿着与第一多孔质烧结体1A的厚度方向垂直的方向(图中的左右方向)延伸。第一阳极端子3A与第一阳极导通部件21A的延伸部21b的图中下面接合。第二阳极端子3B与第二阳极导通部件21B的延伸部21b的图中下面接合。这些接合例如由导电性树脂6形成。如图2所示,第一和第二阳极端子3A、3B为长矩形状,例如由铜制成。
在第一多孔质烧结体1A的图中下面,设有阴极导通部件41。该阴极导通部件41例如通过导电层5与第一多孔质烧结体1A接合。该导电层5通过在第一多孔质烧结体1A表面上形成的上述固体电解质层(图示省略)上叠层石墨层和银膏层而形成。如图2所示,在阴极导通部件41上形成有4个延伸部,这些延伸部成为各两个的第一和第二阴极端子4A、4B。
如图1所示,密封树脂7覆盖多孔质烧结体1、阳极导通部件21A、21B等,用于保护它们。密封树脂7使用例如环氧树脂等热固性树脂形成。第一和第二阳极端子3A、3B与第一和第二阴极端子4A、4B,各自的下面从密封树脂7露出,用于固体电解电容器A的表面安装。这样,固体电解电容器A包括输入用的第一阳极端子3A和输出用的第二阳极端子3B、与输入用的第一阴极端子4A和输出用的第二阴极端子4B,由此构成为所谓的四端子型的固体电解电容器。
下面,参照图3~图6,对固体电解电容器A的制造方法的一个例子进行说明如下。
首先,如图3所示,准备铌的多孔质烧结体11。具体地说,将铌(Nb)的微粉末填充在模具中,并进行加压成形,由此形成铌的多孔质体。通过对该多孔质体进行烧结,得到多孔质烧结体11。在上述烧结中,调节烧结温度和烧结时间,使得多孔质烧结体11的烧结程度小于图1所示的第一多孔质烧结体1A。该多孔质烧结体11相当于本发明中所说的第一多孔质烧结体的中间品的一个例子。
形成多孔质烧结体11后,向其凹部11a涂敷膏12。膏12通过将氧化铌(NbO)的微粉末和例如丙烯酸等有机溶剂混合而形成。氧化铌的微粉末的平均粒径小于在形成上述多孔质体时使用的铌的微粉末的平均粒径。
涂敷膏12后,在凹部11a上粘贴大致L字形状的阳极导通部件21A、21A’、21B。阳极导通部件21A、21A’、21B的粘贴,通过将各自的粘贴部21a按压在凹部11a内的膏12上而进行。在各粘贴部21a上形成有各3个孔21c。因此,在上述粘贴时,成为各孔21c内填充有膏12的状态。在阳极导通部件21A、21A’、21B上形成有延伸部21b、21b’。其中,阳极导通部件21A’的延伸部21b’比其它的延伸部21b长。在粘贴阳极导通部件21A、21A’、21B后的状态下放置,由此,膏12中含有的上述有机溶剂蒸发,膏12进行固化。
接着,对粘贴有阳极导通部件21A、21A’、21B的多孔质烧结体11再次进行烧结。如上所述已对多孔质烧结体11实施了烧结,因此总共实施了两次烧结。结果,如图4所示,多孔质烧结体11成为第一多孔质烧结体1A。关于图3所示的膏12,上述有机溶剂通过烧结进一步蒸发,或者通过高温而分解。在该有机溶剂的蒸发和分解的过程中,膏12中含有的氧化铌的微粉末互相凝集。该氧化铌的微粉末,由于平均粒径较小,所以仅通过一次烧结就能够充分地烧结。结果,如图4所示,膏12成为第二多孔质烧结体1B。
氧化铌是比例如铌脆的材料,因此容易微细化,适于形成平均粒径小的微粉末。另外,氧化铌的微粉末的平均粒径越小,越能够在更低的烧结温度下得到第二多孔质烧结体1B。如果烧结温度低,则能够减小形成第一和第二多孔质烧结体1A、1B时的体积缩小。由此,在阳极导通部件21A、21A’、21B的粘贴部21a的粘贴面中,能够防止第二多孔质烧结体1B剥离。此外,除了氧化铌的微粉末以外,还可以向膏12中混入铌的微粉末。通过混入铌,即使平均粒径为同等程度,也能够进一步降低烧结温度。
如图5所示,孔21c内成为由膏12填充的状态。第二多孔质烧结体1B通过上述蒸发和烧结的工序而形成,因此,与膏12相比,其体积缩小。因此,第二多孔质烧结体1B以覆盖孔21a内面的方式形成。
此外,与本实施方式不同,作为第一多孔质烧结体1A的中间品,可以使用实施烧结前的多孔质体代替多孔质烧结体11。在这种情况下,在粘贴阳极导通部件21A、21B后,仅进行1次烧结处理。
形成第一和第二多孔质烧结体1A、1B之后,在第一和第二多孔质烧结体1A、1B上形成电介质层(图示省略)和固体电解质层(图示省略)。在上述电介质层的形成过程中,一边夹持图4所示的阳极导通部件21A’的延伸部21b’,一边将第一和第二多孔质烧结体1A、1B浸渍在例如磷酸水溶液的化成液中。由此,对第一和第二多孔质烧结体1A、1B实施阳极氧化处理,形成由五氧化二铌(Nb2O5)构成的上述电介质层。另外,反复进行将第一和第二多孔质烧结体1A、1B浸渍在例如硝酸锰的水溶液中后、将其提出并烧制,由此进行上述固体电解质层的形成。延伸部21b’比其它的延伸部21b长,因此能够便于将其夹持以进行上述的浸渍操作。
在形成上述固体电解质层之后,形成例如由石墨层和银膏层构成的导电层5。此时,如图6所示,通过导电层5将阴极导通部件41接合在第一多孔质烧结体1A的图中下面上。另一方面,将阳极导通部件21A’的延伸部21b’切断,使其成为与其它的延伸部21b相同的尺寸。由此,阳极导通部件21A’成为具有延伸部21b的阳极导通部件21A。使用例如导电性树脂,将第一和第二阳极端子3A、3B接合在各两个的第一和第二阳极导通部件21A、21B的延伸部21b的图中下面上。
然后,通过实施使用环氧系树脂的铸型成形,形成图1所示的密封树脂7。通过以上的过程,得到树脂封装型的固体电解电容器A。
接着,对固体电解电容器A的作用进行说明。
根据本实施方式,能够降低ESL,并且能够提高阳极导通部件21A、21B的接合强度。即,作为第一多孔质烧结体1A,其形状越扁平,越能够减小第一多孔质烧结体1A内的电感,有利于降低ESL。本实施方式的第一多孔质烧结体1A为扁平的矩形板状,是适于降低ESL的结构。另一方面,与本实施方式不同,存在使用例如金属导线作为阳极导通部件、使该金属导线的一部分进入多孔质烧结体内的结构。在这样的情况下,上述多孔质烧结体越薄,使上述金属导线进入就越困难。另外,上述金属导线的直径与上述多孔质烧结体的厚度之间的尺寸差越小,上述多孔质烧结体中覆盖上述金属导线的部分越薄。因此,在向上述金属导线施加力的情况下,会产生上述多孔质烧结体破损、上述金属导线脱落等不利情况。为了避免这样的不利情况,例如,可以缩小上述金属导线的直径。然而,上述金属导线自身的电阻变大,作为固体电解电容器整体,ESR也变大。根据本实施方式,阳极导通部件21A、21B被粘贴在第一多孔质烧结体1A上,因此,即使使第一多孔质烧结体1A变薄,也不会发生第一多孔质烧结体1A破损等情况。
另外,如图1所示,阳极导通部件21A、21B的延伸部21b,在与第一多孔质烧结体1A的图中下面同等程度的高度,沿着图中的左右方向延伸。因此,第一和第二阳极端子3A、3B与第一多孔质烧结体1A间的电流通路为大致平坦的形状,没有大的立起的部分。所以,能够减小上述电流通路中的电感,从而能够减小固体电解电容器A的ESL。
第二多孔质烧结体1B使用氧化铌的微粉末形成,由此,能够使第一多孔质烧结体1A与阳极导通部件21A、21B适当地接合。如图3所示,已预先实施烧结的多孔质烧结体11与膏12中含有的氧化铌的微粉末互相充分溶合。另外,阳极导通部件21A、21B由铌制成,因此,能够与图3所示的膏12中含有的氧化铌的微粉末充分溶合。另外,在用于形成第二多孔质烧结体1B的烧结工序中,其平均粒径小,由此,烧结温度低,烧结时间短。因此,能够减小从图5所示的膏12向第二多孔质烧结体1B的体积缩小。从而,在形成第二多孔质烧结体1B的过程中,由于上述体积缩小,能够防止阳极导通部件21A、21B剥离。
如图1所示,在阳极导通部件21A、21B的粘贴部21a上设置的孔21c,其内面被第二多孔质烧结体1B覆盖。因此,即使向阳极导通部件21A、21B施加力,也可以利用第二多孔质烧结体1B中位于孔21c内的部分,发挥所谓的固着效果。所以,适于提高阳极导通部件21A、21B的接合强度。另外,阳极导通部件21A、21B,其粘贴部21a收纳在凹部1Aa中。因此,通过与上述固着效果的协同效应,能够防止阳极导通部件21A、21B错位。
在本实施方式中,形成第二多孔质烧结体1B的氧化铌的微粉末的平均粒径越小,越有利于提高阳极导通部件21A、21B的接合强度。即,如图5所示,如果上述氧化铌的微粉末的平均粒径小,则当膏12中含有的有机溶剂蒸发时,在上述微粉末彼此之间,所谓的范德华力(分子间力)容易起作用,互相牢固地凝集。另一方面,这样的作用使第二多孔质烧结体1B的密度提高,并且使其内部的间隙缩小。然而,如图1所示,固体电解电容器A包括体积明显比第二多孔质烧结体大的第一多孔质烧结体1A。因此,如果第一多孔质烧结体1A中具有足够的间隙,则能够适当地提高固体电解电容器A的电容。
图7~图20表示本发明的固体电解电容器的其它例子。此外,在这些图中,对于与上述实施方式类似的要素,标注同一符号,适当省略说明。
在图7所示的本发明的固体电解电容器的第二实施方式中,阳极导通部件22A、22B的形状与上述的第一实施方式的阳极导通部件21A、21B不同。此外,在本图中,阳极端子、阴极端子、和密封树脂被省略。具体地说,阳极导通部件22A、22B形成各自具有两个直角部的形状。在阳极导通部件22A、22B的各个中,图中的上部和中央部分别成为粘贴部22a、22a’。各粘贴部22a、22a’通过第二多孔质烧结体1B被粘贴在第一多孔质烧结体1A的从图中上面到图中侧面的部分。
根据这样的实施方式,能够增大阳极导通部件22A、22B与第一多孔质烧结体1A的粘贴面积。另外,通过使用互相垂直连结的粘贴部22a、22a’进行粘贴,其粘贴方向为两个方向。因此,有利于提高阳极导通部件22A、22B的接合强度。
图8表示本发明的固体电解电容器的第二实施方式的变形例。在本实施方式中,作为阳极导通部件22A、22B,各使用一个宽幅的部件。根据这样的实施方式,能够进一步增大阳极导通部件22A、22B的粘贴面积。
图9表示本发明的固体电解电容器的第三实施方式。在本实施方式中,阳极导通部件23A、23B为铌制的带板。这些阳极导通部件23A、23B的靠近中央的部分成为粘贴部23a,被粘贴在第一多孔质烧结体1A的图中上面上。阳极导通部件23A、23B中夹着粘贴部23a在两侧延伸的部分,成为延伸部23b,阳极端子(图示省略)与这些延伸部接合。
根据这样的实施方式,能够降低ESL、提高阳极导通部件23A、23B的接合强度。带板状的阳极导通部件23A、23B,例如能够通过将铌的平板材料切断而容易地制成。
图10表示本发明的固体电解电容器的第三实施方式的变形例。在本实施方式中,在阳极导通部件23A、23B上分别形成有4个孔23c。由此,能够适当地发挥所谓的固着效果,从而进一步提高阳极导通部件23A、23B的接合强度。
图11表示本发明的固体电解电容器的第三实施方式的另一个变形例。在本实施方式中,阳极导通部件23A、23B中在宽度方向上分开的边缘部23d为锯齿状。这些边缘部23d被第二多孔质烧结体1B覆盖。根据这样的实施方式,能够发挥固着效果,从而提高阳极导通部件23A、23B的接合强度。
图12表示本发明的固体电解电容器的第三实施方式的又一个变形例。在本实施方式中,带板状的阳极导通部件23的粘贴部23a被收纳于在第一多孔质烧结体1A中形成的槽1Ab中。另外,槽1Ab中粘贴部23a以外的空间,由第二多孔质烧结体1B填满。根据这样的实施方式,能够提高阳极导通部件23的接合强度,并且使粘贴部23a不在其厚度方向上从第一多孔质烧结体1A突出。从而,能够实现固体电解电容器A的小型化。
图13表示本实施方式的固体电解电容器的第四实施方式。在本实施方式中,在平板状的阳极导通部件24的粘贴部24a上设置有孔24c。第二多孔质烧结体1B以覆盖阳极导通部件24中从孔24c的内面直到粘贴部24a的图中上面的区域的方式形成。根据这样的实施方式,也能够提高阳极导通部件24的接合强度。
另外,在图14所示的变形例中,在第一多孔质烧结体1A上形成有进入孔24c的突起1Ac。突起1Ac形成为圆锥的顶部被切断后的形状。根据这样的实施方式,能够进一步提高固着效果。另外,如图15所示,在将该阳极导通部件24粘贴在中间品11上的工序中,可期待由突起11c插入孔24c中而引起的定中心效果。从而,能够将阳极导通部件24相对于中间品11粘贴在更准确的位置上。
图16是具有与图14和图15所示的实施方式类似的接合结构的固体电解电容器的一个例子。在本实施力式中,在第一多孔质烧结体1A的图中下面上形成有凹部1Aa,在该凹部1Aa的底面上设有突起1Ac。突起1Ac进入在阳极导通部件24上形成的孔24c中。突起1Ac和粘贴部24a由第二多孔质烧结体1B覆盖。另外,在凹部1Aa的下方区域,填充有导电层5。由此,第一多孔质烧结体1A的下面成为平滑的面。在这样的平滑面上,能够容易地粘贴大尺寸的阴极导通部件41。另外,在本实施方式中,在阳极导通部件24中形成有台阶差部24e。因此,延伸部24b位于图中偏下方的位置。由此,与延伸部24b接合的阳极端子3,与设置在阴极导通部件41上的阴极端子(图示省略)位于同一平面上。这样的结构适于降低ESL。
图17表示本发明的固体电解电容器的第五实施方式。在本实施方式中,在阳极导通部件25A、25B上形成有直立的粘贴面25a和与该粘贴面25a垂直连结的粘贴面25a’。这些粘贴面25a、25a’粘贴在第一多孔质烧结体1A的侧面和图中下面上。延伸面25b从粘贴面25a’延伸。在该延伸部25b上形成有台阶差部25e。由此,延伸部25b的靠近前端的部分,与阴极端子4A、4B为相同高度。该部分兼作阳极端子3A、3B。根据这样的实施方式,能够将阳极端子3A、3B与阴极端子4A、4B配置成朝向相同方向。这样的结构适于紧密地配置安装有该固体电解电容器A的配线图案。
图18~图20表示本发明的固体电解电容器的第六实施方式。在这些实施方式中,在使用阳极导线作为阳极导通部件这点上与上述的实施方式不同。
在图18所示的实施方式中,作为阳极导通部件的阳极导线26A、26B被粘贴在第一多孔质烧结体1A的两侧面上。阳极导线26A、26B的两端部成为在本发明中所说的延伸部26b,阳极端子(图示省略)与该部分接合。阳极导线26A、26B与第一多孔质烧结体1A的侧面之间的区域,被第二多孔质烧结体1B填满。该区域被圆弧形状面和平面所包围,因此,成为较大的间隙。在本实施方式中,第二多孔质烧结体1B由含有氧化铌微粉末的膏形成。因此,在上述间隙中紧密地填充有第二多孔质烧结体1B,不会产生不当的空隙等。从而,第一多孔质烧结体1A与阳极导线26A、26B之间的电阻不会不当地增大,在降低固体电解电容器A的ESR方面优选。
在图19所示的实施方式中,阳极导线26,其一部分进入在第一多孔质烧结体1A中形成的凹部1Aa内,被第二多孔质烧结体覆盖。根据这样的实施方式,例如在形成相当于第一多孔质烧结体1A的中间品的多孔质体时,不需要预先使阳极导线26进入。因此,能够提高制造效率。另外,也可以如图20所示的实施方式那样,将阳极导线26A、26B设置成贯通在第一多孔质烧结体1A中形成的槽1Ab。
本发明的固体电解电容器,并不限定于上述的实施方式。本发明的固体电解电容器的各部的具体结构,能够自由地进行多种设计变更。
作为多孔质烧结体和阳极导通部件的材质,可以为铌、氧化铌或钽等具有阀作用的金属。另外,本发明的固体电解电容器,其具体的用途也没有限定。
权利要求
1.一种固体电解电容器,其特征在于,包括由具有阀作用的金属构成的第一多孔质烧结体;与所述第一多孔质烧结体导通的阳极导通部件;与所述阳极导通部件导通的表面安装用的阳极端子;表面安装用的阴极端子;和由具有阀作用的金属构成、并且介于所述第一多孔质烧结体与所述阳极导通部件之间的第二多孔质烧结体。
2.如权利要求1所述的固体电解电容器,其特征在于所述第二多孔质烧结体含有NbO。
3.如权利要求2所述的固体电解电容器,其特征在于所述第二多孔质烧结体还含有Nb。
4.如权利要求1所述的固体电解电容器,其特征在于所述第二多孔质烧结体的平均粒径小于所述第一多孔质烧结体的平均粒径。
5.如权利要求1所述的固体电解电容器,其特征在于所述阳极导通部件由具有阀作用的金属制成。
6.如权利要求1所述的固体电解电容器,其特征在于所述阳极导通部件具有板状的粘贴部,并且该粘贴部通过所述第二多孔质烧结体粘贴在所述第一多孔质烧结体上。
7.如权利要求6所述的固体电解电容器,其特征在于在所述第一多孔质烧结体中形成有凹部,并且所述粘贴部被粘贴在该凹部上。
8.如权利要求6所述的固体电解电容器,其特征在于在所述粘贴部上形成有孔。
9.如权利要求8所述的固体电解电容器,其特征在于所述孔的内面由所述第二多孔质烧结体覆盖。
10.如权利要求9所述的固体电解电容器,其特征在于所述粘贴部,从所述孔的内面到所述第一多孔质烧结体的相反侧的面,被所述第二多孔质烧结体覆盖。
11.如权利要求8所述的固体电解电容器,其特征在于在所述第一多孔质烧结体上形成有进入所述粘贴部的所述孔的突起。
12.如权利要求6所述的固体电解电容器,其特征在于所述粘贴部具有锯齿状的边缘部。
13.如权利要求6所述的固体电解电容器,其特征在于所述第一多孔质烧结体为扁平状,其厚度方向的尺寸小于与该厚度方向正交的方向上的宽度尺寸,所述阳极导通部件具有与所述粘贴部垂直连结的板状的延伸部,所述粘贴部被粘贴在所述第一多孔质烧结体中朝向与其厚度方向垂直的方向的面上,所述延伸部在与所述第一多孔质烧结体的厚度方向垂直的方向上延伸,并且所述阳极端子与该延伸部接合。
14.如权利要求6所述的固体电解电容器,其特征在于所述第一多孔质烧结体为扁平状,其厚度方向的尺寸小于与该厚度方向正交的方向上的宽度尺寸,所述阳极导通部件具有与所述粘贴部在相同方向上连结的板状的延伸部,所述粘贴部被粘贴在所述第一多孔质烧结体中朝向其厚度方向的面上,所述延伸部在与所述第一多孔质烧结体的厚度方向垂直的方向上延伸,并且所述阳极端子与该延伸部接合。
15.一种固体电解电容器的制造方法,其特征在于,包括使用含有具有阀作用的金属的微粉末的膏,将1个以上具有阀作用的金属的阳极导通部件粘贴在由具有阀作用的金属的多孔质体或多孔质烧结体构成的中间品上的工序;和通过对所述中间品和所述膏进行烧结,由所述中间品形成第一多孔质烧结体,并且,由所述膏形成第二多孔质烧结体的工序。
16.如权利要求15所述的固体电解电容器的制造方法,其特征在于所述膏含有NbO的微粉末。
17.如权利要求16所述的固体电解电容器的制造方法,其特征在于所述膏还含有Nb的微粉末。
18.如权利要求15所述的固体电解电容器的制造方法,其特征在于所述膏中含有的所述微粉末的平均粒径,小于构成所述中间品的所述多孔质体或所述多孔质烧结体的平均粒径。
19.如权利要求15所述的固体电解电容器的制造的方法,其特征在于使用各自具有板状的延伸部的多个阳极导通部件,并且所述多个阳极导通部件中的至少一个阳极导通部件的延伸部的延伸尺寸大于其它的阳极导通部件的延伸部的延伸尺寸。
全文摘要
本发明提供一种固体电解电容器(A),其包括由具有阀作用的金属构成的第一多孔质烧结体(1A);与第一多孔质烧结体(1A)导通的阳极导通部件(21A、21B);与阳极导通部件(21A、21B)导通的表面安装用的阳极端子(3A、3B);表面安装用的阴极端子;和由具有阀作用的金属构成、并且介于第一多孔质烧结体(1A)与阳极导通部件(21A、21B)之间的第二多孔质烧结体(1B)。
文档编号H01G9/008GK101065817SQ20058004057
公开日2007年10月31日 申请日期2005年11月25日 优先权日2004年11月30日
发明者栗山长治郎 申请人:罗姆股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1