接触电阻低的通电部件用不锈钢及其制造方法

文档序号:6992214阅读:234来源:国知局
专利名称:接触电阻低的通电部件用不锈钢及其制造方法
技术领域
本发明涉及接触电阻值(contact resistance)低的通电部件(conductivemember)用不锈钢及其制造方法。
背景技术
不锈钢的优异的耐腐蚀性(corrosion resistance)通过在其制造过程中在表面形成钝化膜(passive film)而体现。钝化膜皮膜以轻氧化铬(oxy chrom hydroxide)为主体,所以导电性(electrically conductive)差。因此,作为通电部件使用时,需要实施镀金等来降低接触电阻。近年,一直在开发各种燃料电池(例如固体高分子型燃料电池(proton-exchangemembrane fuel cell)等),并对安装于该燃料电池的隔板(separator)广泛使用不锈钢。不锈钢具有耐腐蚀性,但隔板不仅要求耐腐蚀性还要求导电性,所以对改善不锈钢的导电性而用作隔板的技术进行了各种研究。例如,专利文献I中公开了以下技术,即通过在不锈钢(例如SUS304等)的表面实施镀金(gold plating)来降低接触电阻,用作隔板,从而提高燃料电池的输出功率。但是,由于在镀金薄时容易产生针孔(pinhole),所以很难防止腐蚀,无法稳定维持导电性。另一方面,镀金厚时,隔板的制造成本上升。另外,专利文献2中公开了通过使用在表面分散附着有碳粉末的铁素体系不锈 钢(ferritic stainless steel),从而改善隔板的导电性的技术。但是,为了附着碳粉末(carbon powder),需要进行复杂处理,隔板的制造成本上升。另外,如果在隔板的制造工序或燃料电池的组装工序中碳粉末剥离,则无法得到改善导电性的效果。专利文献3中公开了通过使具有提高导电性的作用的析出物(例如M23C6型碳化物(M23Cgtype carbide)、M2B型硼化物(M2B typeboride)等)在表面析出,从而改善隔板的导电性的技术。但是,为了得到这些析出物,必须向不锈钢添加C、B,所以不锈钢硬化,并且将不锈钢加工成钢板时的制造性、隔板的制造工序中成形性显著劣化。并且,由于不锈钢中的Cr与C或B结合生成析出物,所以固溶Cr (solid solution Cr)减少,不锈钢的耐腐蚀性劣化。现有技术文献专利文献专利文献I:日本特开平10-228914号公报专利文献2:日本特开2000-277133号公报专利文献3:日本特开2000-214186号公报

发明内容
本发明的目的在于提供一种不损害耐腐蚀性和成形性、而接触电阻(contactelectric resistance)低的(即钝化膜的电气导电性优异)通电部件用不锈钢、及其制造方法。本发明人等对形成于不锈钢的表面的钝化膜的组成和不锈钢的接触电阻的关系进行深入研究。其结果可知通过在钝化膜中含有F (氟(fluorine)),能够大幅度降低接触电阻。还发现为了使钝化膜有效地含有F,有效的是在含有F离子的酸性水溶液(acidaqueous solution)中在成为规定的溶解速度(rate of dissolution)的条件下进行浸溃处理(dipping treatment),通过控制含有F离子酸性水溶液的浓度(concentration)、温度,能够按照以规定的溶解速度溶解不锈钢的方式进行调整。本发明基于这些见解而完成。即本发明涉及(I) 一种通电部件用不锈钢,是接触电阻低的通电部件用不锈钢,在表面具有钝化膜,上述钝化膜含有氟。(2)—种通电部件用不锈钢的制造方法,是接触电阻低的通电部件用不锈钢的制造方法,以0. 002g/ Cm2 · s)以上且低于0. 50g/ Cm2 · s)的溶解速度将不锈钢浸溃于含有氟离子的溶液。(3)在上述(2)中,上述溶解速度为0.005g/ (m2 *s)以上且低于0. 30g/ (m2 *s)0(4)在上述(2)中,上述溶解速度为O. Olg/ (m2*s)以上且低于0. IOg/ (m2 · S)。根据本发明,能够不损害耐腐蚀性、成形性地得到接触电阻低的通电部件用不锈钢。该通电部件用不锈钢优选作为各种燃料电池(尤其是固体高分子型燃料电池)的隔板。现有的燃料电池中使用昂贵的碳隔板、镀金隔板,但通过使用本发明的通电部件用不锈钢,能够制造廉价的隔板。应予说明,本发明的通电部件用不锈钢不仅可用作燃料电池的隔板,还可广泛用作具有导电性的不锈钢制电气部件(electric part)。


图I是示意地表示接触电阻的测定方法的截面图。图2A是表示通过X射线光电子能谱法(X-ray photoelectron spectroscopy)得到的派射时间(sputtering time)与峰值强度(peak intensity)的关系的图(保持1000小时前)。图2B是表示通过X射线光电子能谱法得到的溅射时间与峰值强度的关系的图(保持1000小时后)。
具体实施例方式[发明的实施方式]以下,对用于实施本发明的方式进行详细说明。以下,只要没有特别说明,化学成分的%全部表示质量%的意思,但适用本发明的不锈钢成分没有特别限定。但是,优选为形成于表面的钝化膜含有Cr的铁素体系不锈钢或奥氏体系不锈钢。具体而言,本发明的铁素体系不锈钢优选为以下所示的成分。· C 0. 03质量%以下、N 0. 03质量%以下、C + N :0· 03质量%以下C和N均与铁素体系不锈钢中的Cr反应形成化合物,在晶间作为Cr碳氮化合物、析出,所以导致耐腐蚀性的降低。因此C、N的含量越小越优选,如果C为O. 03质量%以下且N :0. 03质量%以下,则不会显著降低耐腐蚀性。另外,如果C含量和N含量的总计超过O. 03质量%,则铁素体系不锈钢的延展性降低,加工时容易产生裂纹。因此,优选C为O. 03质量%以下、N为O. 03质量%以下、并且C + N为O. 03质量%以下。应予说明,优选为C为O. 015质量%以下、N为O. 015质量%以下、C + N为O. 02质量%以下。· Cr 16 45 质量 %
Cr是为了确保作为铁素体系不锈钢板的基本的耐腐蚀性所必需的元素,如果Cr含量低于16质量%,则燃料电池隔板在所暴露的环境中不能耐受长时间的使用。另一方面,如果Cr含量超过45质量%,则因σ相的析出韧性降低。因此需要使Cr含量满足16 45质量%的范围内。进一步优选为16 25质量%。本发明的通电部件用铁素体系不锈钢中,除了 C、N、Cr、C和N的总计含量的限定以外,也可以根据需要添加以下元素。以下Mo是对抑制铁素体系不锈钢的缝隙腐蚀等局部腐蚀有效的元素,根据需要进行适当地添加。为了得到该效果而添加时,优选为0.01质量%以上。添加Mo的情况下,其中,如果超过5. O质量%,则铁素体系不锈钢显著脆化,生产率降低。因此,需要使Mo满足5. O质量%以下。· Si :1. O 质量 % 以下Si是对脱氧有效的元素,在铁素体系不锈钢的熔炼阶段进行添加。为了得到这种效果,优选为0.01质量%以上。但是,如果过量含有,则铁素体系不锈钢硬质化、延展性降低。因此添加Si时,优选为1.0质量%以下。其中,更优选为O. 01、. 6质量%。· Mn : I. O 质量 % 以下Mn具有与不可避免地混入的S结合、降低铁素体系不锈钢中固溶的S的效果,所以是对抑制S的晶间偏析、防止热轧时的裂纹有效的元素。这种效果在含量为O. 001质量9Γ1.0质量%能够发挥。因此添加Mn时,优选为1.0质量%以下。其中,更优选为O. ΟΟΓΟ. 8 质量 %。· Cu 3. O 质量 % 以下Cu是对改善铁素体系不锈钢的耐腐蚀性有效果的元素,根据需要进行适当地添力口。为了得到该效果进行添加时,优选为O. 01质量%以上。但是,如果添加超过3. 0质量%,则热加工性降低、导致生产率降低。因此,添加Cu时,优选为3.0质量%以下。其中,更优选为O. 0Γ2. 5质量%。· Ti、Nb、V以及Zr的至少I种总计为O. 01 I. O质量%Ti、Nb、V以及Zr均与铁素体系不锈钢中的C、N反应形成碳氮化合物。Ti、Nb、V以及Zr以这种方式固定C、N,所以防止随着Cr碳氮化合物析出引起的耐腐蚀性的降低,尤其是对改善铁素体系不锈钢的冲压成形性有效的元素。如果C与N的含量总计为O. 03质量%以下,则添加Ti、Nb、V以及Zr任一种时的冲压成形性的改善效果能够在各自为O. 01质量%以上而发挥。同时添加Ti、Nb、V以及Zr时的冲压成形性的改善效果在Ti、Nb、V以及Zr的含量总计为O. 01质量%以上而发挥。另一方面,即便Ti、Nb、V以及Zr各自为I. O质量%而总计含有超过I. O质量%,其效果也饱和。因此添加Ti、Nb、V以及Zr的至少I种以上时,优选其总计为ο. οΓι. ο质量%的范围内。本发明中,除了上述元素以外,为了提高铁素体系不锈钢的热加工性,可以分别添加O. I质量%以下的Ca、Mg、稀土元素(所谓的REM),还可以出于在钢水阶段的脱氧的目的,添加O. 2质量%以下的范围内的Al。另外,为了提闻铁素体系不镑钢的朝性,也可以添加I质量%以下的范围内的Ni。其它元素是作为剩余部分的Fe和不可避免的杂质。接着,对本发明的铁素体系不锈钢优选的制造方法进行阐述。本发明的铁素体系不锈钢的熔炼方法可完全使用公知的熔炼方法,无需特别限 定。例如优选的是用转炉进行熔炼,通过强搅拌、真空氧脱碳处理(SS-VOD)进行2次精炼。从生产率、品质的方面出发,铸造方法优选连续铸造法。通过铸造得到的钢坯例如加热至100(Tl250°C,通过热轧得到所希望的板厚的热轧板。该热轧板优选在80(Tll50°C的热轧板退火后、酸洗后再进行冷轧从而得到规定的产品板厚,或者进一步实施80(ni50°C的退火、另外或者进一步实施酸洗处理从而得到产品。该冷轧工序中,也可以按照生产上的情况,根据需要进行包含中间退火的2次以上冷轧。另外,根据用途,在冷轧退火后增加轻度的调质轧制(skin pass rolling,平整轧制等)。通过后述的使不锈钢的钝化膜含有F的方法,对这样得到不锈钢板进行处理。接着,阐述本发明中奥氏体系不锈钢(austenitic stainless steel)的成分的优选范围。· C 0. I 质量 % 以下C与奥氏体系不锈钢中的Cr反应形成化合物,在晶间作为Cr碳氮化合物析出,所以导致耐腐蚀性的降低。因此C的含量越小越优选,如果为O. I质量%以下,则不会显著降低耐腐蚀性。因此C设为0.1质量%以下。应予说明,优选为O. 03质量%以下。· Cr: 13 30 质量 %Cr是为了确保作为奥氏体系不锈钢的基本的耐腐蚀性所必需的元素,如果Cr含量低于13质量%,则燃料电池隔板在所暴露的环境中不能耐受长时间的使用。另一方面,如果Cr含量超过30质量%,则很难得到奥氏体组织。因此需要使Cr满足13 30质量%的范围内。· Ni: 3 40 质量 %Ni是稳定奥氏体相的元素。如果Ni含量低于3质量%,则不能得到奥氏体相的稳定化的效果。另一方面,如果Ni含量超过40质量%,则由于过度消耗Ni而导致成本的上升。因此需要使Ni满足:Γ40质量%的范围内。本发明的奥氏体系不锈钢中,除了 C、Cr、Ni以外,还可以根据需要添加下述元素。· Mo 10. O 质量 % 以下Mo是对抑制奥氏体系不锈钢的缝隙腐蚀等局部腐蚀有效的元素,根据需要进行适当地添加。为了得到该效果而添加时,优选为O. 01质量%以上。但是,如果超过10. O质量%,则不锈钢显著脆化,生产率降低。因此需要使Mo满足10. O质量%以下。· N :2. O 质量 % 以下N是具有抑制奥氏体系不锈钢的局部腐蚀的作用的元素。但是,工业上很难含有N含量超过2. O质量%,因此将其作为上限。另外在通常的熔炼方法中,如果超过O. 4质量%,则为了在不锈钢的熔炼阶段添加N需要很长时间,所以导致生产率的降低。因此,从成本方面考虑进一步优选为O. 4质量%以下。更优选为O. 01" . 3质量%。· Cu 3. O 质量 % 以下Cu是具有改善奥氏体系不锈钢的耐腐蚀性的作用的元素。为了得到这种效果,优选为O. 01质量%以上。但是,如果Cu含量超过3. O质量%,则热加工性降低,导致生产率的降低。因此添加Cu时,优选为3.0质量%以下。其中,更优选为O. Of 2. 5质量%。.Si :1.5 质量 % 以下 Si是对脱氧有效的元素,在奥氏体系不锈钢的熔炼阶段进行添加。为了得到这种效果,优选为0.01质量%以上。但是,如果过量含有,则隔板用不锈钢硬质化,延展性降低。因此添加Si时,优选为I. 5质量%以下。其中,更优选为O. Ofl. O质量%。· Mn : 10 质量 % 以下Mn具有与不可避免地混入的S结合、降低奥氏体系不锈钢中固溶的S的效果,所以是对抑制S的晶间偏析、防止热轧时的裂纹有效的元素。这种效果在含量为O. 001质量%以上能够发挥。因此添加Mn时,优选为O. 001质量%以上。另外,Mn还可以出于使奥氏体相稳定化目的而添加,如果超过10%,则轧制负荷变高,导致制造性的降低,因此优选为10%以下。· Ti、Nb、V以及Zr中的至少I种总计为O. 01 2质量%Ti、Nb、V以及Zr均与奥氏体系不锈钢中的C反应形成碳化物。Ti、Nb、V以及Zr以这种方式固定C,所以是对改善奥氏体系不锈钢的耐晶间腐蚀性有效的元素。如果C的含量为O. I质量%以下,则添加Ti、Nb、V以及Zr的任一种时的耐腐蚀性的改善效果在Ti、Nb、V以及Zr添加I种以上且分别为O. 01质量%以上时能够发挥。同时添加Ti、Nb、V以及Zr时的耐腐蚀性的改善效果在Ti、Nb、V以及Zr的含量总计为O. 01质量%以上时能够发挥。另一方面,即便Ti、Nb、V以及Zr分别为2质量%,总计含有超过2质量%,其效果也饱和。因此,添加I种以上Ti、Nb、V以及Zr中任一种时,优选其总计为O. 0Γ2质量%的范围内。本发明中,除了上述元素以外,为了提高奥氏体系不锈钢的热加工性,可以添加分别为O. I质量%以下的Ca、Mg、稀土元素(所谓的REM),也可以出于钢水阶段的脱氧的目的而添加O. 2质量%以下的范围内的Al。其它元素是作为剩余部分的Fe和不可避免的杂质。接着,对本发明的奥氏体系铁素体钢优选的制造方法进行阐述。本发明的奥氏体系不锈钢的熔炼方法可完全使用公知的熔炼方法,无需特别限定。例如优选的是用转炉进行熔炼,通过强搅拌、真空氧脱碳处理(SS-VOD)进行2次精炼。从生产率、品质的方面出发,铸造方法优选连续铸造法。通过铸造得到的钢坯例如加热至100(Tl250°C,通过热轧得到所希望的板厚的热轧板。该热轧板优选在80(Tll50°C的热轧板退火后、酸洗后再进行冷轧从而得到规定的产品板厚,或者进一步实施80(ni50°C的退火、另外或者进一步实施酸洗处理从而得到产品。该冷轧工序中,也可以按照生产上的情况,根据需要进行包含中间退火的2次以上冷轧。另外,根据用途,在冷轧退火后增加轻度的调质轧制(skin pass rolling,平整轧制等)。通过后述的使不锈钢的钝化膜中含有F的方法,对这样得到的不锈钢板进行处理。接着,对于使不锈钢的钝化膜含有F的方法,在以下进行说明。为了使不锈钢的钝化膜含有F,将不锈钢浸溃在含有F离子的溶液中。使用的溶液优选酸性水溶液(例如氢氟酸(hydrofluoric acid)与硝酸(nitric acid)的混合液(compound liquid)、氟化钠(sodium fluoride)与硝酸的混合液等)。溶液中的F离子一旦破坏浸溃处理前形成于不锈钢表面的钝化膜,则之后被导入到钝化膜中。为了使钝化膜有效地含有F,有效的是在含有F离子的酸性水溶液中在成为规定的溶解速度的条件下进行浸溃处理,按照控制含有F离子的酸性水溶液的浓度、温度而以规定的溶解速度溶解不锈钢的方式进行调整。但是,为了将F导入到钝化膜,需要在规定的范围内维持不锈钢的溶解速度。 如果不锈钢的溶解速度低于0. 002g/ Cm2 · S),则延迟钝化膜的破坏,所以直至F被导入钝化膜需要很长时间,导致隔板等部件的生产率的降低。另一方面,如果不锈钢的溶解速度为0. 50g/ Cm2 · s)以上,则钝化膜在短时间被破坏而溶解,所以不产生F被导入到钝化膜中的现象。即,在钢板表面没有钝化膜的状态下引起不锈钢的溶解,因此F离子没有导入到钝化膜中的机会。并且如果溶解速度过快,则包含不锈钢中的析出物(例如碳化物、氮化物(nitride)等)、溶液中的氟化铁(ferrous fluoride)的粉状物(smut)附着在不锈钢的表面,有可能损害导电性和耐腐蚀性。因此,使不锈钢的溶解速度为0.002g/ Cm2 · s)以上且低于0. 50g/ Cm2 · s)的范围。更优选不锈钢的溶解速度为0. 005g/ Cm2 · s)且低于0.30g/ (m2*s)的范围,进一步优选不锈钢的溶解速度为0. Olg/ (m2*s)以上且低于0. IOg/ (m2*S)的范围。应予说明,溶解速度越快表面越均匀地溶解,难以产生酸洗不均等的表面缺陷,所以不锈钢的溶解速度优选为0. 05g/ Cm2 · s)以上。不锈钢的溶解速度的调整通过控制溶液中的氧化剂(例如硝酸等)的浓度或溶液的温度而进行。具体而言,通过预先求得在酸性水溶液中的浸溃条件(酸性水溶液的浓度、温度、时间)与溶解速度的关系,能够调整不锈钢的溶解速度。应予说明,酸性水溶液的浓度优选氢氟酸的浓度为Iwt°/Tl5wt%、硝酸的浓度为5wt%以下(也包含0wt%)、氢氟酸/硝酸的浓度比为2. 5倍以上。氧化剂的浓度或氢氟酸/硝酸的浓度比不在上述范围时,很难得到规定的溶解速度。将不锈钢浸溃于溶液的时间(以下,称为浸溃时间)没有特别限定。但是,为了破坏钝化膜,优选将浸溃时间设为30秒以上。如果浸溃时间为30秒以上,则在不锈钢的制造过程中即便形成稳固的钝化膜,也能够破坏钝化膜。另一方面,即便过度延长浸溃时间,钝化膜含有的F量也饱和,所以无法实现接触电阻的进一步降低,并且导致隔板的生产降低。因此,进一步优选浸溃时间为3(Γ180秒的范围内。另外,酸性水溶液的温度优选为40°C以上。如果溶液的温度为40°C以上,则在不锈钢的制造过程中即便形成稳固的钝化膜,也能够破坏钝化膜。另一方面,酸性水溶液的温度超过70°C时,结果F蒸发,所以无法使钝化膜含有F。因此,从均匀溶解的观点出发,更优选酸性水溶液的温度为4(T70°C的范围内,但并不限定于该范围。这样,形成含有F的钝化膜。根据本发明人等的实验,用X射线光电子能谱法(XPS)分析钝化膜而确认含有F的情况下,接触电阻大幅度降低。本发明中,接触电阻优选为20πιΩ · cm2以下,从用作通电部件用不锈钢的观点出发,进一步优选为IOmΩ · cm2以下。通过使钝化膜含有F从而降低不锈钢的接触电阻的机理尚不明确。可推断由于形成钝化膜的轻氧化铬是半导体(semiconductor material),所以通过含有F而电子结构(electronic structure)发生变化、体现了降低接触电阻的效果。应予说明,本发明中,钝化膜含有的F含量没有特别限定。如以上说明所述,如果将不锈钢浸溃在含有F离子的溶液中,则为了降低接触电阻,可以使钝化膜含有必要且足够量的F。另外,含有F的处理后的钝化膜的厚度,例如,可以通过X射线光电子能谱法和溅射进行测定,但本发明中,从钝化膜的电气导电性的观点出发,钝化膜的厚度优选为IOnm 以下。进一步优选为7nm以下。实施例从板厚O. Imm的不锈钢板中切出I边30mm的正方形的试验片。使用的不锈钢板为奥氏体系不锈钢、SUS304U以质量%计18%0-8%附)、铁素体系不锈钢、210钢(以质量%计21%Cr-0. 4%Cu),奥氏体系不锈钢、SUS201 (以质量%计17%Cr_4. 5%Ni_6%Mn)。将得到的试验片用丙酮(acetone)进行脱脂,接着,在表I所示的条件下浸溃于酸性水溶液,进一步用纯水(purified water)进行清洗,用冷风(cold blast)干燥。在各种条件下,分别将各4枚试验片浸溃于酸性水溶液。测定将这些试验片浸溃于酸性水溶液前后的重量,由其重量差计算溶解速度。将其平均值示于表I。另外,用X射线光电子能谱法分析浸溃于酸性水溶液后的试验片的钝化膜,调查有无含F。X射线光电子能谱法中,对于Fe、Cr、F、0,由得到的光谱(spectrum)计算各自元素的积分强度(integrated intensity)。此外,边通过派射(sputtering)除去试验片的表面、边沿深度方向测定上述元素的分布。解析这样得到的各元素光谱,F可作为峰值(peak)进行确认,判定为试验片的钝化膜中含有F。将其结果示于表I。应予说明,对于不浸溃于酸性水溶液的试验片,也同样调查钝化膜有无含F。将其结果一并不于表I。此外,对于浸溃于酸性水溶液的试验片以及不浸溃的试验片,测定接触电阻。如图I所示,接触电阻的测定如下将2枚试验片I从两面用相同大小的碳纸(carbon paper) 2(东丽制(made by Toray)TGP-H_120)交替夹持,进而接触对铜板(copper plate)实施了镀金的电极3,每单位面积施加196N/cm2 (= 20kgf/cm2)的压力,测定2枚试验片I之间的电阻,乘以接触面积(contact area),再除以接触面数(=2),将得到的值作为接触电阻值。作为通电部件用不锈钢,接触电阻值优选为20πιΩ · cm2以下,进一步更优选为ΙΟπιΩ · cm2以下。这样,改变试验片I的组合分别测定4次,将其平均值示于表I。表I所示的发明例是浸溃于溶解有F离子的酸性水溶液中的试验片I的溶解速度满足0. 002g/ Cm2 · S)以上且低于0. 50g/ Cm2 · s)的范围内且在钝化膜中含有F的例子。比较例是钝化膜不含有F的例子。由表I可知,SUS304L中,作为发明例的标号4 8的接触电阻为20πιΩ · cm2以下。在不锈钢的溶解速度为O. 093g/ (m2 -s)的标号6,0. 045g/ (m2 -s)的标号7中,接触电阻为ΙΟι Ω · cm2以下。21Cr钢中,作为发明例的标号If 16的接触电阻为20ι Ω · cm2以下。在不锈钢的溶解速度为O. 021g/ Cm2 · S) 0.098g/ Cm2 · s)的标号12 16中,接触电阻为IOmQ .cm2以下。SUS201中,作为发明例的标号21 24的接触电阻为20ι Ω · cm2以下。在不锈钢的溶解速度为O. 059g/ (m2 *s)的标号23和O. 017g/ (m2 · s)的标号24中,接触电阻为ΙΟπιΩ ^cm2以下。任何钢种的发明例的接触电阻均大幅度降低。与此相对,比较例均为20m Ω · cm2以上。接着,对于浸溃于5wt%HF + lwt%HN03的酸性水溶液的21Cr钢的试验片(表I的标号14),假定作为固体高分子型燃料电池的隔板而使用,在pH3的硫酸水溶液(sulfuricacid aqueous solution)(温度8CTC )中,保持恒定的电位(electric potential) (0.8Vvs SHE) 1000小时。其后,回收试验片,用X射线光电子能谱法调查钝化膜有无含F。调查方法如上所述。将利用该X射线光电子能谱法得到的结果示于图2A和图2B。图2A和图2B的横轴为溅射的所需时间(以下,称为溅射时间),纵轴为光谱的峰值强度。图2A是保持1000小时前的分析结果,图2B是保持1000小时后的分析结果。由图2A和图2B可知,任何试验片均能够在溅射时间为60秒以下的范围将F作为峰值进行确认。另一方面,如果溅射时间超过60秒,则钝化膜被除去,变成分析不锈钢板的基底中的F,但F的峰值强度几乎为O。换句话说,实施假定作为固体高分子型燃料电池的隔板使用的处理后,也能够确认钝化膜含有F。此外,回收试验片测定接触电阻。测定方法如上所述。其结果,接触电阻为5. 2m Ω cm2。换句话说,实施假定作为固体高分子型燃料电池的隔板使用的处理后,接触电阻也保持为较低,能够确认具有优异的导电性。应予说明,这里,对使用氢氟酸与硝酸的混合液作为浸溃不锈钢的酸性水溶液的例子进行说明,但也可以使用氟化钠、氟化I丐(calcium fluoride)、氟化锂(lithiumfluoride)等来代替氢氟酸。另外,酸性水溶液的浓度、温度等只要根据浸溃的不锈钢板的成分以成为规定的溶解速度的方式调整即可。符号说明I…试验片,2…碳纸,3…电极(electric pole)
表I
权利要求
1.一种不锈钢,其特征在于,是接触电阻低的通电部件用不锈钢,其表面具有钝化膜,所述钝化膜含有氟。
2.一种不锈钢的制造方法,其特征在于,是接触电阻低的通电部件用不锈钢的制造方法,以0. 002g/ Cm2 s)以上且低于0. 50g/ Cm2 s)的溶解速度将不锈钢浸溃于含有氟离子的溶液。
3.根据权利要求2所述的不锈钢的制造方法,其中,所述溶解速度为0.005g/Cm2-S)以上且低于0. 30g/ (m2 S)。
4.根据权利要求2所述的不锈钢的制造方法,其中,所述溶解速度为0.Olg/ Cm2 * s)以上且低于0. IOg/ Cm2 S)。
全文摘要
本发明提供具有优异的导电性的(即接触电阻低)通电部件用不锈钢及其制造方法。具体而言,以0.002g/(m2·s)以上且低于0.50g/(m2·s)的溶解速度将不锈钢浸渍于含有氟离子的溶液中,使其表面的钝化膜含有氟。
文档编号H01M8/02GK102713004SQ20108006179
公开日2012年10月3日 申请日期2010年1月20日 优先权日2010年1月20日
发明者井手信介, 加藤康, 宇城工, 石井知洋, 石川伸 申请人:杰富意钢铁株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1