背面接触太阳能电池的制造方法

文档序号:6992383阅读:99来源:国知局
专利名称:背面接触太阳能电池的制造方法
技术领域
本公开内容涉及一种背面电极型太阳能电池的制造方法,并且更具体地,涉及这样一种背面电极型太阳能电池的制造方法,这种方法通过单个湿法蚀刻工艺来同时形成选择性发射层和隔离,可改善太阳能电池的短波光学响应特性和转换效率。
背景技术
太阳能电池是太阳光发电的核心元件,太阳光发电直接将太阳光转换成电,并且可基本上将太阳能电池看作是具有P_n结的二极管。太阳能电池如下所述地将太阳光转换成电。一旦太阳光入射到太阳能电池,那么就产生电子-空穴(对),并且随着所产生的电子 和空穴扩散,由于在p-n结处形成的电场,电子向n层移动而空穴向p层移动,由此在p-n结间产生光电动势。以这种方式,如果将负载或系统连接到太阳能电池的两个终端,就会有电流从而产生电力。一般的太阳能电池是配置成在太阳能电池的前表面和背表面各具有前面和背面电极。由于前电极是设置在作为光接收表面的前表面,因此光接收面积将减少前电极面积的大小。为了解决光接收面积减少的问题,已经提出了背面电极型太阳能电池。该背面电极型太阳能电池通过在太阳能电池的背表面上设置(+)电极和(_)电极来最大化太阳能电池的前表面的光接收面积。背面电极型太阳能电池分成交错背面接触型(interdigitated backcontact (IBC))、点接触型(point contact type)、发射极穿孔卷绕型(emitter wrapthrough(EWT))、金属穿孔卷绕型(metal wrap through(MWT))等等。在这些类型中,MWT型太阳能电池是这样设置的,对于在前表面上设置的格栅指(grid finger)和汇流条(busbar),将格栅指仍留在前表面上而将汇流条移到背表面,并且将前表面上的格栅指与背表面上的汇流条通过贯通衬底而形成的通孔连接起来。MWT型太阳能电池配置如下。如在图I中示出的,在衬底101的整个表面上设有发射层102,并且在衬底101的前表面上设有抗反射膜103和前格栅电极104。另外,在衬底101的背表面设有n电极105和p电极106,并且n电极105和前格栅电极104通过贯通衬底101而形成的通孔108电连接。同时,为了防止衬底101前表面处的发射层102与衬底101背表面上的P+区域之间的电短路以及n电极105与p电极106之间的短路,分别在衬底101的前表面和后表面设有隔离沟槽107。隔离沟槽107通常通过激光辐照方式来形成。在上述配置的传统MWT型太阳能电池中,由于在衬底101的前表面和背表面分别设置隔离沟槽107,这就需要执行两个激光工艺。另外,由于隔离沟槽107设置在衬底101的前表面,因此限制了光接收面积。此外,需要形成具有均匀掺杂浓度的发射层102,并且该掺杂浓度应当很高以便最小化与格栅电极104的接触电阻。然而,以高浓度被掺杂至光接收单元的发射层增加了再结合损失,并因此短波光学响应特性低。

发明内容
技术问题本公开内容是设计用来解决上面的问题,并且本公开内容旨在提供一种背面电极型太阳能电池的制造方法,这种方法通过单个湿法蚀刻工艺来同时形成选择性发射层和隔离,可改善太阳能电池的短波光学响应特性和转换效率。技术方案在一个大体的方面,本公开内容提供了一种背面电极型太阳能电池的制造方法,所述方法包括制备具有通孔的P型硅衬底;通过扩散工艺沿着衬底的周边形成高浓度发射层;在衬底的前表面和背表面上形成蚀刻掩模从而选择性地暴露衬底;将由蚀刻掩模暴露的区域中的衬底的部分蚀刻至预定厚度以移除暴露区域的高浓度发射层;在衬底的前表面上形成抗反射膜;以及在衬底的前表面形成格栅电极和在衬底的背表面形成n电极以及P电极。
·
衬底前表面的蚀刻掩模可在将形成格栅电极的区域处形成,并且衬底背表面的蚀刻掩模可在将形成n电极的区域处形成。另外,在所述将由蚀刻掩模暴露的区域中的衬底的部分蚀刻至预定厚度以移除暴露区域的高浓度发射层中,在蚀刻衬底至预定厚度时,扩散副产物层也被一起蚀刻并移除,衬底的前表面上的未暴露区域包括高浓度发射层,而衬底的前表面上的暴露区域包括由蚀刻形成的低浓度发射层。在另一个大体的方面,本公开内容提供了一种背面电极型太阳能电池的制造方法,所述方法包括制备具有通孔的P型硅衬底;通过扩散工艺沿着衬底的周边形成高浓度发射层;除了在衬底的前表面将形成格栅电极的区域和在衬底的背表面将形成n电极的区域外,蚀刻衬底至预定厚度以移除高浓度发射层;在衬底的前表面上形成抗反射膜;以及在衬底的前表面形成格栅电极和在衬底的背表面形成n电极以及p电极。在蚀刻衬底至预定厚度以移除高浓度发射层的过程中,除了在衬底的前表面将形成格栅电极的区域和在衬底的背表面将形成n电极的区域外,通过喷墨印刷或丝网印刷将蚀刻胶施加到衬底上以蚀刻衬底至预定厚度,衬底的前表面上的非蚀刻区域包括高浓度发射层,而衬底的前表面上的蚀刻区域包括由蚀刻形成的低浓度发射层。有益效果根据本公开内容的背面电极型太阳能电池的制造方法给出了下面的效果。由于通过单个蚀刻工艺在形成发射层的特定区域处移除了一定厚度的衬底,从而可容易地实现在衬底的前表面和后表面之间的隔离。另外,由于没有通过激光辐照在衬底的前表面提供隔离沟槽,因此可最大化光接收面积。


图I是示出传统的MWT型太阳能电池的图表;图2是图示根据本公开内容实施方式的背面电极型太阳能电池的制造方法的流程图;以及图3a至3f是图示根据本公开内容实施方式的背面电极型太阳能电池的制造方法的截面图。
具体实施方式

在下文中,将结合附图详细描述根据本公开内容实施方式的背面电极型太阳能电池的制造方法。图2是图示根据本公开内容实施方式的背面电极型太阳能电池的制造方法的流程图,以及图3a至3f是图示根据本公开内容实施方式的背面电极型太阳能电池的制造方法的截面图。首先,如图2和3a所示,制备第一导电晶体硅衬底301,并以固定间隔贯通衬底301而垂直地形成通孔302 (S201)。此后,执行绒面工艺(texturing process)以在第一导电硅衬底301表面上形成不平坦部303(S202)。执行绒面工艺是为降低衬底301表面的光反射,并且可利用湿法蚀刻或诸如反应离子蚀刻的干法蚀刻来执行绒面工艺。第一导电类型可以是P型或n型,而第二导电类型与第一导电类型相反。下面的描述将基于第一导电类型是P型来进行。在完成绒面工艺的状态下,如图3b所示,执行扩散工艺以形成发射层304(n+)(S203)。具体来说,将硅衬底301置于腔室中,并且将第二导电杂质离子,即含有n型杂质离子的气体(例如POCl3),供应到腔室中使得磷(P)离子扩散进入衬底301。因此,沿着衬底301的周边形成预定厚度的发射层304,并且发射层304也同样地围绕通孔302形成在衬底
301中。除了上述使用气体的方法外,n型杂质离子的扩散工艺也可使用将硅衬底301浸入到含有n型杂质离子的溶液、接着进行热处理的方法,含有n型杂质离子的溶液如磷酸(H3PO4)溶液,这样磷(P)离子就扩散到衬底301中而形成发射层304。另外,在第二导电杂质离子是P型的情况下,形成发射层304的杂质离子可为硼(B)。由于扩散工艺,在衬底301的整个表面形成预定深度的发射层304,并且在衬底301的表面形成磷硅酸盐玻璃(PSG)膜(未示出)。PSG膜是在磷(P)离子与硅衬底301的硅(Si)或类似物反应时形成的扩散副产物层。在将p型硼(B)用作第二导电杂质离子的情况下,通过硼(B)和硅(Si)反应产生的硼硅酸盐玻璃(BSG)膜代替PSG,可作为扩散副产物层。在这种状态下,如图3c所示,在衬底301的前表面和背表面上分别形成蚀刻掩模305 (S204)。仅有衬底301的前表面和背表面的特定区域被蚀刻掩模305选择性地暴露。衬底301前表面的蚀刻掩模305是设置在将形成格栅线307的扩散副产物层的部分上,而衬底301背表面的蚀刻掩模305是设置在将形成n电极308的扩散副产物层的部分上。除了上述区域外的扩散副产物层均被暴露。在设有蚀刻掩模305的状态下,如图3d所示,执行湿法蚀刻工艺以蚀刻并移除由蚀刻掩模305选择性地暴露的扩散副产物层以及扩散副产物层下的预定厚度的衬底301(S205)。对于衬底301的前表面,可全部或部分移除发射层304。如此做,在被蚀刻掩模305保护的部分处形成了高浓度发射层304a,而被蚀刻了预定厚度的发射层的部分就转变成了低浓度发射层304b。由于不仅暴露区域中的扩散副产物层而且扩散副产物层下的发射层304 —起被移除,并且也移除了衬底侧面的发射层304,这样就在衬底301的前表面和背表面之间额外地提供了隔离效应。可通过将整个衬底301浸入蚀刻溶液或通过依次地将衬底301的一个表面和其他表面浸入蚀刻溶液来执行湿法蚀刻工艺。代替上述形成蚀刻掩模305并将衬底浸入蚀刻溶液的方法,可在不形成蚀刻掩模305的状态下将扩散副产物层和衬底301的特定区域移除预定厚度。具体来说,通过喷墨印刷或丝网印刷将蚀刻胶施加至特定区域以将扩散副产物层和衬底301的相应区域移除预定厚度。特定区域指 衬底301的前表面不形成格栅线307的部分和衬底301的背表面不形成n电极308的部分。在完成了将扩散副产物层和衬底301移除预定厚度的工艺后,移除蚀刻掩模305和残留的扩散副产物层。此后,如图3e所示,通过等离子体增强化学气相沉积(PECVD)或类似方法在衬底301的前表面上形成抗反射膜306(S206)。抗反射膜306可配置为氮化娃膜(Si3N4)。在这种状态下,通过丝网印刷或类似方法将银胶(Ag胶)施加到将形成n电极308的部分。从衬底301的背表面执行丝网印刷,并且因此,银胶也被填充到通孔302中。接下来,将铝胶(Al胶)施加到衬底301的背表面的将形成p电极309的部分。最后,将银胶施加到将形成格栅线307的抗反射膜306上。此后,一旦执行烘烤工艺形成如图3f所示的格栅线307、n电极308和p电极309,那么就完成了根据本公开内容实施方式的背面电极型太阳能电池的制造方法(S207)。通过烘烤工艺,在衬底301的前表面形成了格栅线307,而在衬底301的背表面形成了 n电极
308和p电极309。另外,由于烘烤工艺,p电极309的部分铝(Al)渗透进入衬底301,由此形成了背表面电场(P+)。工业实用性由于通过单个蚀刻工艺在形成发射层的特定区域去除了一定厚度的衬底,可容易地实现在衬底的前表面和背表面之间的隔离。另外,由于没有通过激光辐照在衬底的前表面提供隔离沟槽,可最大化光接收面积。
权利要求
1.一种背面电极型太阳能电池的制造方法,包括 制备具有通孔的P型硅衬底; 通过扩散工艺沿着所述衬底的周边形成高浓度发射层; 在所述衬底的前表面和背表面上形成蚀刻掩模以选择性地暴露所述衬底; 将由所述蚀刻掩模暴露的区域中的衬底的部分蚀刻至预定厚度以移除所述暴露的区域的高浓度发射层; 在所述衬底的前表面上形成抗反射膜;以及 在所述衬底的前表面形成格栅电极和在所述衬底的背表面形成n电极以及p电极。
2.根据权利要求I的背面电极型太阳能电池的制造方法,其中,所述衬底的前表面上的所述蚀刻掩模是在将形成所述格栅电极的区域处形成,而所述衬底的背表面的所述蚀刻掩模是在将形成所述n电极的区域处形成。
3.根据权利要求I的背面电极型太阳能电池的制造方法,在所述将由所述蚀刻掩模暴露的区域中的衬底的部分蚀刻至所述预定厚度以移除所述暴露的区域的高浓度发射层中, 其中在蚀刻所述衬底至所述预定厚度时,一起蚀刻并移除扩散副产物层, 其中所述衬底的前表面上的未暴露区域包括所述高浓度发射层,以及 其中所述衬底的前表面的所述暴露区域包括由所述蚀刻形成的低浓度发射层。
4.一种背面电极型太阳能电池的制造方法,包括 制备具有通孔的P型硅衬底; 通过扩散工艺沿着所述衬底的周边形成高浓度发射层; 除了在所述衬底的前表面将形成格栅电极的区域和在所述衬底的背表面将形成n电极的区域外,蚀刻所述衬底至预定厚度,以移除所述高浓度发射层; 在所述衬底的前表面上形成抗反射膜;以及 在所述衬底的前表面形成格栅电极和在所述衬底的背表面形成n电极以及p电极。
5.根据权利要求4的背面电极型太阳能电池的制造方法,在所述除了在所述衬底的前表面将形成格栅电极的区域和在所述衬底的背表面将形成n电极的区域外,蚀刻所述衬底至预定厚度以移除所述高浓度发射层的过程中, 其中通过喷墨印刷或丝网印刷将蚀刻胶施加到所述衬底上以蚀刻所述衬底至所述预定厚度, 其中所述衬底的前表面上的未蚀刻区域包括所述高浓度发射层,以及 其中所述衬底的前表面上的蚀刻区域包括由所述蚀刻形成的低浓度发射层。
全文摘要
根据本发明的背面接触太阳能电池的制造方法包含下面的步骤制备具有通孔的p型硅衬底;执行扩散工艺以在整个衬底表面形成发射层;在衬底的前表面和背表面上形成蚀刻掩模以选择性地暴露部分衬底;蚀刻由蚀刻掩模暴露的区域中的部分厚度的衬底以移除相应区域中的发射层;在衬底的前表面上形成抗反射膜;以及在衬底的前表面形成格栅电极,并且在衬底的背表面上形成n电极和p电极。
文档编号H01L31/042GK102770968SQ201080064053
公开日2012年11月7日 申请日期2010年12月17日 优先权日2009年12月28日
发明者文仁植, 李元载, 林钟根, 赵银喆 申请人:现代重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1