光电转换装置的制作方法

文档序号:7155596阅读:135来源:国知局
专利名称:光电转换装置的制作方法
技术领域
本发明涉及一种光电转换组件及包含该光电转换组件的太阳能电池。
背景技术
通常,将太阳光能转换为电能的太阳能电池提案有硅系、化合物系、及有机物系电池等各种太阳能电池。另外,硅系太阳能电池因为以作为地球上的资源大量存在的硅作为原料,所以相比其它的化合物系及有机物系的太阳能电池,不用担心出现资源枯竭等问题。另外,硅太阳能电池可以分类为单晶硅、多晶硅及非晶质(amorphous)型,这些硅太阳能电池中,单晶硅及多晶硅为整体型,另一方面,非晶质型太阳能电池为薄膜型。在此, 整体型硅太阳能电池需要成膜具有100 μ m左右的厚度的膜,另一方面,薄膜型硅太阳能电池只要成膜0. 5 μ m左右的厚度的膜即可。最近,上述的各种太阳能电池中,因整体型硅太阳能电池的能量转换效率较高,制造费用也较低,所以趋向于被越来越多的使用。但已知的是,伴随整体型硅太阳能电池的需要急剧增加,需要大量的作为原料的单晶硅和多晶硅,导致成本大幅增加的同时,供应问题本身都会陷入困难状况。另一方面,提倡使用太阳能作为火力或水利的代替能源。为了将太阳能作为火力或水力的代替能源使用,需要具备一平方千米单位的大面积的可以供给大功率的太阳能电池。由于单晶型及多晶型硅太阳能电池需要成膜膜厚较厚的单晶硅或多晶硅膜,所以要构成具有大面积且大功率的太阳能电池,如上所述在成本方面乃至资源方面都是困难的。与之相对,由于可将非晶质型硅太阳能电池的非晶质硅膜厚相比单晶型及多晶型硅太阳能电池设为1/100以下,所以适合现实情况下以低成本制造大功率及大面积太阳能电池。但是,非晶质型硅太阳能电池的能量转换效率为6% 7%左右,与具有20%左右的能量转换效率的单晶型及多晶型硅太阳能电池相比显著低下,另外,需要指出的是,非晶质型硅太阳能电池存在面积越大,能量转换效率越是降低的缺点。专利文献1中,公开了一种技术,其为提高薄膜型太阳能电池的性能,而在基板上形成具有倾斜截面的透明电极,及将ZnO、SnO2、及ITO中的一种作为透明电极利用。另外,专利文献2中,公开有具备SnO2或ZnO作为透明电极层的非晶质型硅太阳能电池。现有技术文献
专利文献1 日本特表2008-533737号公报专利文献2 日本特开平5-175529号公报

发明内容
发明要解决的课题专利文献1中公开了通过使形成太阳能电池的单电池间的绝缘间隔最小化、力口宽有效面积,由此可降低制造单价的透明电极的加工方法,但是,对于改善形成非晶质型硅太阳能电池的太阳能电池层的能量转换效率没有任何考虑。专利文献2中公开有在由ZnO或SnO2形成的透明电极上形成ρ型非晶质(无定形)硅层(以下称为a-Si层),在该ρ型a-Si层上依次层叠有i型a-Si层、及η型a_Si 层的构成的非晶质硅太阳能电池。该情况下,在η型a-Si层上设有背面金属电极。但是, 专利文献2中表明上述构成的非晶质硅太阳能电池的能量转换效率止于5. 5%。本发明的目的在于,提供一种富于量产性的适合大面积太阳能电池的光电转换元件结构。本发明的目的在于,提供一种使用能够有效利用资源的ZnO电极和非晶质硅系的适合于制造大面积的太阳能电池的光电转换元件结构。另外,本发明的目的在于,得到具备超过6% (优选为10%)的能量转换效率的非晶质型硅太阳能电池。解决课题的手段根据本发明的第1方面,可得到一种光电转换元件,其特征在于,包含第一电极层、第二电极层、设于所述第一及第二电极层之间的一个或多个发电层叠体,所述发电层叠体包含ρ型半导体层、与该ρ型半导体层接触形成的i型半导体层、 与所述i型半导体层接触而形成的η型半导体层,所述一个发电层叠体或所述多个发电层叠体中的所述第一电极侧的发电层叠体的所述η型半导体层与所述第一电极层接触,所述一个发电层叠体或所述多个发电层叠体中的所述第二电极侧的发电层叠体的所述P型半导体层与所述第二电极层接触,所述第一电极层中,至少所述η型半导体层所接触的部分含有ΖηΟ。根据本发明第二方面,在第一方面的基础上得到光电转换元件,其特征在于,所述第一电极层的ZnO被掺杂Ga、Al或In而成为η型。根据本发明第三方面,在第一或第二方面的基础上得到光电转换元件,其特征在于,所述第一电极层为透明电极。根据本发明第四方面,在第一 第三方面中任一方面的基础上,得到光电转换元件,其特征在于,所述发电层叠体的至少一个中的所述i型半导体层由结晶硅、微晶非晶硅及非晶质硅中的任一个形成。根据本发明第五方面,在第一方面的基础上得到光电转换元件,其特征在于,所述第一电极层的ZnO为η型,与所述第一电极层接触的η型半导体层由非晶质硅形成。根据本发明第六方面,在第一 第五方面中任一方面的基础上得到光电转换元件,其特征在于,所述一个发电层叠体或所述多个发电层叠体中的所述第一电极侧的发电层叠体由非晶质硅形成。
根据本发明第七方面,在第一 第六方面中任一方面的基础上得到光电转换元件,其特征在于,与所述第二电极层接触的所述P型半导体层由非晶质硅形成,所述第二电极层中至少所述P型半导体层所接触的部分由Se或Pt形成。根据本发明第八方面,在第一 第六方面中任一方面的基础上得到光电转换元件,其特征在于,所述发电层叠体存在多个,该多个发电层叠体中的所述第二电极侧的发电层叠体由微晶硅形成。根据本发明第九方面,在第八方面的基础上得到光电转换元件,其特征在于,与所述第二电极层接触的所述P型半导体层由微晶硅形成,所述第二电极层中至少所述P型半导体层所接触的部分含有M而形成。根据本发明第十方面,在第七或第九方面的基础上得到光电转换元件,其特征在于,所述第二电极层还包含Al层。根据本发明第十一方面,可以得到一种太阳能电池,其包含第一 第十方面中任一方面所述的光电转换元件。根据本发明,能够容易且廉价地得到大量的即大面积的太阳能电池,而且,能够得到能量转换效率高的光电转换元件及太阳能电池。另外,本发明中,可得到地球上的资源方面没有问题且经济方面也有利的非晶质硅光电转换元件及太阳能电池。


图1是说明本发明的光电转换元件的原理的图;图2是说明本发明一实施方式的光电转换元件及太阳能电池的结构的概略图;图3A是按工序说明图2所示的光电转换元件的制造工序的图;图3B是按工序说明图2所示的光电转换元件的制造工序的图;图3C是按工序说明图2所示的光电转换元件的制造工序的图;图3D是按工序说明图2所示的光电转换元件的制造工序的图;图3E是按工序说明图2所示的光电转换元件的制造工序的图;图3F是按工序说明图2所示的光电转换元件的制造工序的图;图3G是按工序说明图2所示的光电转换元件的制造工序的图;图3H是按工序说明图2所示的光电转换元件的制造工序的图;图4是说明本发明其它实施方式的光电转换元件及太阳能电池的结构的概略图。
具体实施例方式本发明的原理首先,本发明以实现使用非晶质硅,拥有1. 3V以上的开放端电压Voc且具有10% 以上的能量转换效率的光电转换元件及太阳能电池为目标,由此,可以大面积化、大功率化
及量产化。目前,在具备pin结构的非晶质硅太阳能电池或光电转换元件中,一般采用如下构成P型非晶质硅层与透明电极接触设置,另一方面,η型非晶质硅层与背面电极接触。但是,在该结构中,根据专利文献2的提示可知,开放端电压Voc为0. 94V及能量效率为5. 5%左右,在pin结构的非晶质硅太阳能电池中不能期望进一步的改善本发明人等获知现有的非晶质硅太阳能电池的上述的问题的一个原因在于,非晶质硅膜是缺陷多的劣质膜,通过利用优良的自由基反应的CVD法,可形成缺陷少的优质非晶质硅膜。另外,作为透明电极,不采用使用ITO(In)这样的稀少材料的材料,而使用自然界中大量存在且枯竭忧虑小的材料(Zn)形成。通常,为形成透明电极而多使用铟,但铟本身作为资源是量少且昂贵的。因此,使用铟制造大面积、大功率的太阳能电池在经济性及资源的有效利用这一点上并不是上策。考虑到上述情况,在本发明中,将作为资源也能够充分确保的锌,具体而言ZnO作为透明电极使用。发明人获知下述见解通过向ZnO中掺杂杂质可使其半导体化,但掺杂ρ 型杂质是困难的,与之相对的是,掺杂Ga、Al或In等η型杂质容易,现实中能够使用的是η 型 ΖηΟ。另外,还获知下述见解,目前,与ZnO透明电极接触的非晶质硅是ρ型非晶质硅,但在P型非晶质硅中,与η型ZnO的功函数的差过大,难以流过大电流。另一方面,得到下述重要的见解,η型非晶质硅的传导带和η型ZnO的传导带的电子能量差小,电子易于流动, 因此能够流过大电流。参照图1,表示了本发明的光电转换元件的原理性的结构。该例的情况下,将η型非晶质硅(a-Si)层和通过在ZnO中添加Ga而得到的η型ZnO层接合。如图1明确所示, 成为从η型非晶质硅(a-Si)层侧容易向η型ZnO层流过电子的构成。另外,图1表示η型非晶质硅(a-Si)层和η型ZnO层(在此为η+型ZnO层)接合的情况下的能带结构。在图示的能带结构中,右侧表示的a-Si层的传导带Ec和价电子带Ev之间的带隙为1. 75eV。另一方面,图中左侧所示的η+型ZnO层的传导带Ec仅比a_Si 层的传导带Ec低0. 2eV,比费米能级Ef低。因此,如图所示,由于在a-Si层的传导体Ec和η+型ZnO层的传导带Ec之间基本上没有电子的障碍,所以电子以高的效率从a-Si层的传导体Ec流入η+型ZnO层的传导带 Ec0这样,由于在图示的a-Si层和η+型ZnO层之间基本上没有障碍,所以能使电子从a_Si 层向η+型ZnO层高效地移动,在构成光电转换元件的情况下,能够流过大电流,能改善能量效率。另一方面,如果使η型ZnO接触ρ+型非晶质硅,则传导带Ec的差也达到1. 6eV,电子难以从η型ZnO流入ρ+型非晶质硅。参照图2,表示了基于上述的本发明的原理的本发明的一实施方式的光电转换元件10。图示的光电转换元件10被设于包括防护玻璃12及设置于该防护玻璃12上的玻璃基板14的基体上。图示的玻璃基板14由含Na的廉价的钠玻璃形成,为了防止从该钠玻璃扩散Na,污染元件,在光电转换元件10和玻璃基板14之间设有钠阻隔层16。钠阻隔层16 通过例如涂布表面平坦化涂布液并干燥、烧结而形成。另外,也如图明确所示,成为太阳能电池单元的光电转换元件10与相邻的其它光电转换元件(太阳能电池单元)串联电连接, 构成太阳能电池模块。具体地说,本发明一实施方式的光电转换元件10具有第一电极层20、由a-Si形成的具备Pin结构的发电层叠体22、及经由硒层24成膜于该发电层叠体22上的Al的第二电极层26。
构成光电转换元件10的第一电极20为透明导体电极(Transparent Conductive Oxide (TCO)层),在此,由具有1 μ m膜厚的ZnO层形成。该情况下,作为第一电极20的ZnO 层为掺杂有Ga的η+型ZnO层。另外,在构成第一电极20的η+型ZnO层中,每隔规定的间隔设置有绝缘膜201 (在此为SiCN),按电池单位区划、区分。

在该第一电极20上设置有构成发电层叠体22的一部分的η+型a_Si层221,η+ 型a-Si层221与构成第一电极20的透明电极接触。图示的η+型a-Si层221具有IOnm的膜厚。在η+型a-Si层221上依次形成有形成发电层叠体22的i型a_Si222及ρ型a_Si 层223。图示的i型a-Si222及ρ型a_Si层223的膜厚分别为480n+m及IOnm的膜厚。在图示的构成发电层叠体22的η+型a-Si层221、i型a-Si层222及ρ+型a-Si层223上, 在与第一电极20的绝缘层201的位置不同的位置设有通孔224,且在该通孔的内壁上形成有SiO2层。nip结构的发电层叠体22整体具有500nm的厚度,与由单晶或多晶硅形成的光电转换元件相比,具有其百分之一以下的厚度。然后,在ρ型a-Si层223上,经由硒(Se)层24形成有由Al形成的第二电极层 26,形成该第二电极层26的Al也形成于发电层叠体22的通孔224(内壁通过SiO2绝缘) 内。通孔224内的Al与相邻的光电转换元件的第一电极20电连接。另外,构成与第二电极的P型a-Si层的接触部的硒(Se)层24是由于Se的功函数(_6. OeV)接近于ρ型a_Si 层的功函数而使用,同样地也可以替换成功函数相似的Pt (-5. 7eV)。另外,在第二电极26上形成SiCN的钝化膜28。形成钝化膜28的绝缘材料(在此为SiCN)也被埋设在经第二电极26 · 24、ρ型a-Si层223达到i型a_Si层222的孔225 内。在钝化膜28上经由由热传导性良好的材料形成的粘接剂层29安装有散热片30 (例如由Al形成)。另外,在形成第一电极层20的ZnO层中,代替Ga掺杂Al、In等,由此也能够形成 η+型ZnO层。图2所示的光电转换元件10通过该光电转换元件10的单体电池能获得约20%的能量转换效率。另外,将这些光电转换元件10连接而构成1. 15mX 1. 40m的太阳能电池模块的情况下,可获得307W的电力,模块中的能量转换效率为18. 9%。下面,参照图3A 图3H说明图2所示的光电转换元件10及太阳能电池的制造方法。在该例中,使用本发明人等以前申请的日本特愿2008-153379号说明书(日本特开 2009-302205 号公报)中提出的 MSEP (Metal Surface-wave Excited Plasma)型等离子处理装置(具备及不具备下段气嘴或下段气浴板的装置中的任一个)作为第一 第八等离子处理装置,对使用将这些等离子处理装置集群(cluster)型地配置的系统的情况进行说明。如图3A所示,首先,在由钠玻璃形成的玻璃基板14上,通过5Τοπ·左右的低压氛围在玻璃基板14表面形成厚度为0. 2 μ m的钠阻隔层16。然后,如图3B所示,将形成有钠阻隔层16的玻璃基板14导入具备下段气嘴或下段气浴板的第一等离子处理装置,作为第一电极20形成厚度为1 μ m的透明电极(TC0层)。 在第一等离子处理装置中,通过掺杂Ga而形成η+型ZnO层。掺杂Ga的η+型ZnO层在第一等离子处理装置中,从上段气嘴向腔室供给Kr及O2的混合气体而产生等离子,从下段气嘴或下段气浴板向在包括Kr及氧的氛围下生成的等离子体中喷出Ar、Zn(CH3)2及Ga(CH3)3 的混合气体,由此,在钠阻隔层16上利用等离子CVD成膜η+型ZnO层。接 着,在η+型ZnO层(20)上涂布光致抗蚀剂后,使用光刻技术,将光致抗蚀剂图案化。使光致抗蚀剂图案化后,将其导入具备下段气嘴或下段气浴板的第二等离子处理装置。在第二等离子处理装置中,以图案化的光致抗蚀剂为掩模选择性地蚀刻η+型ZnO层, 如图3C所示,在构成第一电极20的η+型ZnO层上形成达到钠阻隔层16的开口部。第二等离子处理装置的蚀刻通过从上段气嘴向腔室供给Ar气体,再向该Ar氛围下生成的等离子体中,从下段气嘴或下段气浴板向腔室供给Ar、Cl2, HBr的混合气体而进行。将具有开口部的η+型ZnO层及在该η+型ZnO层上涂布了光致抗蚀剂的状态的玻璃基板14输送到不具备下段气嘴或下段气浴板的第三等离子处理装置,在第三等离子处理装置中,在Kr/02等离子氛围下灰化除去光致抗蚀剂。除去光致抗蚀剂后,将被覆了形成有开口部的η+型ZnO层(第一电极20)的玻璃基板14导入具备下段气嘴或下段气浴板的第四等离子处理装置。在第四等离子处理装置中,首先,在开口部内及η+型ZnO层(20)表面,通过等离子CVD形成SiCN作为绝缘膜201 后,在相同的第四等离子处理装置内蚀刻除去η+型ZnO层(20)表面的SiCN。其结果是,仅在n+ZnO层(20)的开口部内埋设绝缘膜201。第四等离子处理装置内的SiCN的成膜通过从上段气嘴向腔室供给Xe及NH3气体而产生等离子,且从下段气嘴或下段气浴板向腔室导入Ar、SiH4、SiH(CH3)3的混合气体而通过CVD成膜来进行,然后,在同腔室切换导入气体,从上段气嘴向腔室供给Ar气体使等离子产生,从下段气嘴或下段气浴板向腔室导入Ar和CF4 的混合气体,蚀刻除去η+型ZnO层(20)表面的SiCN。接着,在相同的第四等离子处理装置内依次切换导入气体,由此,通过连续CVD形成具有nip结构的发电层叠体22及Se层24。如图3D所示,在第四等离子处理装置内,依次成膜η+型a-Si层221、i型a-Si层222、ρ+型a-Si层223及硒(Se)层24。具体地说明,在第四等离子处理装置中,从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生, 从下段气嘴或下段气浴板向腔室导入41~、5让4及?!13的混合气体,等离子00)成膜11+型3^ 层221,然后,从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时,将来自下段气嘴或下段气浴板的气体从Ar、SiH4、PH3气体切换为Ar+SiH4气体导入,由此成膜i型 a-Si层222,进而,从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4气体置换为Ar+SiH4+B2H6气体,由此成膜ρ+型 a-Si层223,然后,从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4, B2H6气体置换为Ar、H2Se的混合气体,由此 CVD成膜硒层24。通过这样在同一个MSEP型等离子处理装置中依次切换导入气体,进行6 层的成膜·蚀刻,因此,能够形成缺陷少的优质膜,同时大幅降低制造成本。将搭载有硒层24及发电层叠体22的玻璃基板14从第四等离子处理装置导入光致抗蚀剂涂布机(狭缝式涂布机),涂布光致抗蚀剂后,通过光刻技术对光致抗蚀剂实施图案化。在图案化光致抗蚀剂后,将搭载有硒层24及发电层叠体22的玻璃基板14与图案化的光致抗蚀剂一同导入具备下段气嘴或下段气浴板的第五等离子处理装置。在第五等离子处理装置中,将光致抗蚀剂作为掩模选择性地蚀刻硒层24及发电层叠体22,如图3E所示,形成到达第一电极20的通孔224。即,在第五等离子处理装置中,进行4层连续蚀刻。具体地说明,硒层24的蚀刻通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向等离子内喷出Ar、CH4的混合气体来进行,接着, 从上段气嘴继续向腔室供给Ar使等离子产生,同时从下段气嘴或下段气浴板喷出Ar+HBr 气体,由此进行由nip的3层构成的发电层叠体22的蚀刻。将形成有通过第五等离子处理装置内的蚀刻而形成贯通从硒层24开始的各层并到达第一电极20的通孔224的玻璃基板14从第五等离子处理装置移动到上述的不具备下段气嘴或下段气浴板的第三等离子处理装置,在从上段气嘴导入腔室的Kr/02气体的氛围下生成的等离子内灰化除去光致抗蚀剂。将除去光致抗蚀剂后的玻璃基板14移至具备下段气嘴或下段气浴板的第六等离子处理装置,如图3F所示,在硒层24上作为第二电极26成膜具有1 μ m厚度的Al层。 Al层也成膜于通孔224内。该Al层的成膜通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar/H2氛围下生成的等离子中喷出 Ar+Al (CH3)3气体来进行。接着,在第二电极26的Al层上涂布光致抗蚀剂后进行图案化,将其导入具备下段气嘴或下段气浴板的第七等离子处理装置内。在第七等离子处理装置中,通过从上段气嘴向腔室供给Ar气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar氛围下生成的等离子内喷出々!"+(^气体,由此进行Al 层的蚀刻,接着,通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar/H2氛围下生成的等离子内导入Ar+CH4气体,由此进行硒层24 的蚀刻,接着,从上段气嘴向腔室供给Ar气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体切换为Ar+HBr气体,蚀刻至ρ+型a_Si层223和到i型a_Si层222的中途。 其结果如图3G所示,形成从Al层26表面到达i型a-Si层222的中途的孔225。该工序也通过使用同一个MSEP型等离子处理装置依次切换气体来进行4层连续蚀刻,大幅降低了处理时间和成本。然后,将图3G所示的搭载有元件的玻璃基板14移动到上述不具备下段气嘴或下段气浴板的第三等离子处理装置,通过在从上段气嘴导入腔室的Kr/02气体的氛围下生成的等离子灰化除去光致抗蚀剂。将含有除去了光致抗蚀剂的Al层作为第二电极26的玻璃基板14导入具备下段气嘴或下段气浴板的第八等离子处理装置,通过由CVD形成SiCN膜,在Al层26上及孔225 内成膜绝缘层28,如图3H所示,制成所期望的光电转换元件及太阳能电池单元和/或太阳能电池模块。SiCN的成膜通过从上段气嘴向腔室供给Xe及NH3气体使等离子产生,从下段气嘴或下段气浴板喷出Ar、SiH4, SiH(CH3)3气体进行。在上述的制造方法中,可将同一个等离子处理装置用于多层成膜等。因此,能够以除去大气中的氧、杂质等引起的污染的状态,制成光电转换元件及太阳能电池单元和/或太阳能电池模块。其结果能够将单一的光电转换元件的能量转换效率提高到20 %,将由多个光电转换元件形成的模块的能量效率提高到18. 9%。在上述的实施方式中,仅说明了 nip结构的发电层叠体均由a-Si层形成的情况,但i型a-Si层也可以由结晶硅或微晶非晶质硅形成。另外,也可以在发电层叠体22上堆积另一个或其以上的发电层叠体。然后,以在发电层叠体22上堆积另一个发电层叠体为例,说明其它实施方式。

参照图4,表示基于上述的本发明原理的本发明的其它实施方式的光电转换元件 40。另外,在图4中,在与图2的元件等同的部分标注与图2相同的参考数字。关于与图2 相同的参考数字的部分省略详细说明。图4的光电转换元件40具有具备nip结构的发电层叠体22,该nip结构在由含Na的廉价的钠玻璃形成的玻璃基板14上隔着钠阻隔层16及具有Iym膜厚的作为第一电极20的η+型ZnO层,通过与前面的实施例相同的方法以a-Si 形成。图4中,在其上设有具备由微晶硅(μ c-Si)形成的nip结构的第二发电层叠体42, 在该第二发电层叠体42上具有隔着镍(Ni)层44成膜的Al的第二电极层26。具体而言,在发电层叠体22上设有构成第二发电层叠体42的一部分的η+型 μ c-Si层421,其与ρ+型a-Si层223接触。图示的η+型μ c-Si层421具有20nm的膜厚。在η+型μ c-Si层421上依次形成有形成第二发电层叠体42的i型yc_Si422及ρ型 μ c-Si 层 423。对于各自的膜厚i 型 μ c_Si422 为 1. 86 μ m,ρ 型 μ c-Si 层 423 为 20nm。 设有贯穿构成发电层叠体22的η+型a-Si层221、i型a_Si层222、ρ+型a_Si层223、及构成第二发电层叠体42的η+型μ c-Si层421、i型μ c_Si422、ρ型μ c-Si层423及Ni 层44的从Al层26到达第一电极20的通孔244,该通孔的内壁由SiO2层覆盖,在其中设置 Al层,与邻接一个光转换元件的其它光电转换元件串联连接。由微晶硅制成的第二发电层叠体42整体具有2. 26 μ m的厚度,吸收非晶硅制成的发电层叠体22不能吸收的波长的太阳光,提高整体的发电效率。其结果是,在图示的结构中发电效率达到30%。另外,构成与第二电极的ρ型μ c-Si层423的接触部的镍(Ni)层44是由于功函数接近P型μ C-Si层的功函数而被采用的,另外,由SiCN构成的绝缘孔245经第二电极 26、Ni 层 44、ρ+型 μ c-Si 层 423、i 型 yc_Si422、n 型 μ c-Si 层 421、p 型 a-Si 层 223 到达i型a-Si层222,但由于μ c-Si为高电阻,所以也可以是终止于i型μ c_Si422的结构。然后,说明图4所示的光电转换元件40及太阳能电池的制造方法。在该例中,使用本发明人等以前申请的日本特愿2008-153379号说明书(日本特开2009-302205号公报) 中提出的MSEP (Metal Surface-wave Excited Plasma)型等离子处理装置(具备及不具备下段气嘴或下段气浴板的装置中的任一个)作为第一 第八等离子处理装置,对使用将这些等离子处理装置集群(cluster)型地配置的系统的情况进行说明。首先,在由钠玻璃形成的玻璃基板14上,通过5Τοπ·程度的低压氛围在玻璃基板 14表面形成厚度为0. 2 μ m的钠阻隔层16。然后,将形成有钠阻隔层16的玻璃基板14导入具备下段气嘴或下段气浴板的第一等离子处理装置,形成厚度为Iym的透明电极(TC0层)作为第一电极20。在第一等离子处理装置中,通过掺杂Ga而形成η+型ZnO层。关于掺杂Ga的η+型ZnO层,在第一等离子处理装置中,从上段气嘴向腔室供给Kr及O2的混合气体使等离子产生,且从下段气嘴或下段气浴板向在包含Kr及氧的氛围下生成的等离子中喷出Ar、Zn(CH3)2及Ga(CH3)3的混合气体,由此,在钠阻隔层16上等离子CVD成膜η+型ZnO层。接着,在η+型ZnO层(20)上涂布光致抗蚀剂后,利用光刻技术对光致抗蚀剂进行图案化。对光致抗蚀剂图案化后,将其导入具备下段气嘴或下段气浴板的第二等离子处理装置。在第二等离子处理装置中,以图案化的光致抗蚀剂作为掩模选择性的蚀刻η+型ZnO 层,在作为第一电极20的η+型ZnO层形成到达钠阻隔层16的开口部。第二等离子处理装置的蚀刻通过从上段气嘴向腔室供给Ar气体,在该Ar氛围下生成的等离子中从下段气嘴或下段气浴板向腔室供给Ar、Cl2, HBr的混合气体来进行。

将具有开口部的η+型ZnO层及在该η+型ZnO层上涂布了光致抗蚀剂状态的玻璃基板14输送到不具备下段气嘴或下段气浴板的第三等离子处理装置,在第三等离子处理装置中,在Kr/02等离子氛围下灰化除去光致抗蚀剂。除去光致抗蚀剂后,将被覆形成有开口部的第一电极20即η+型ZnO层的玻璃基板14导入具备下段气嘴或下段气浴板的第四等离子处理装置。在第四等离子处理装置中, 首先,在开口部内及η+型ZnO层(20)表面通过等离子CVD形成SiCN作为绝缘膜201后, 在相同的第四等离子处理装置内蚀刻除去η+型ZnO层(20)表面的SiCN。其结果是,仅在 n+ZnO层(20)的开口部内埋设绝缘膜201。第四等离子处理装置内的SiCN的成膜通过从上段气嘴向腔室供给Xe及NH3气体使等离子产生,且从下段气嘴或下段气浴板向腔室导入 Ar、SiH4、SiH(CH3)3的混合气体进行CVD成膜来进行,其次,在同腔室切换导入气体,从上段气嘴向腔室供给Ar气体使等离子产生,从下段气嘴或下段气浴板向腔室导入Ar和CF4的混合气体,蚀刻除去η+型ZnO层(20)表面的SiCN。接着,在相同的第四等离子处理装置内依次切换导入气体,由此,通过连续CVD依次成膜具有nip结构的发电层叠体22、具有nip结构的第二发电层叠体42及Ni层24。具体地说明,在第四等离子处理装置中,从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,且从下段气嘴或下段气浴板向腔室导入Ar、SiH4及PH3的混合气体,等离子CVD成膜 η+型a-Si层221,然后,通过从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4, PH3气体切换为Ar+SiH4气体导入,由此成膜i型a-Si层222,进而,通过从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4气体置换为Ar+SiH4+B2H6 气体,成膜P+型a-Si层223。接着,从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,且从下段气嘴或下段气浴板向腔室导入Ar、SiH4及PH3的混合气体,等离子CVD成膜η+型μ c-Si层421,然后,通过从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4、PH3气体切换为Ar+SiH4气体导入,由此成膜i型μ c-Si 层42,进而,通过从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体由Ar、SiH4气体置换为Ar+SiH4+B2H6气体,由此成膜ρ+型 μ c-Si层423,然后,通过从上段气嘴继续向腔室供给Ar及H2的混合气体使等离子产生, 同时将来自下段气嘴或下段气浴板的气体从Ar、SiH4、B2H6气体置换为含有Ar和Ni的气体的混合气体,由此CVD成膜Ni层44。由于通过这样在同一MSEP型等离子处理装置中依次切换导入气体,进行9层的成膜·蚀刻,所以能够形成缺陷少的优质膜,同时能够大幅降低制造成本。将搭载有Ni层44及两个发电层叠体22、42的玻璃基板14从第四等离子处理装置导入光致抗蚀剂涂布机(狭缝式涂布机),涂布光致抗蚀剂后,通过光刻技术对光致抗蚀剂实施图案化。在 图案化光致抗蚀剂后,将搭载有M层44及两个发电层叠体22、42的玻璃基板 14与图案化的光致抗蚀剂一同导入具备下段气嘴或下段气浴板的第五等离子处理装置。在第五等离子处理装置中,以光致抗蚀剂为掩模选择性地蚀刻M层44及两个发电层叠体22、 42,形成到达第一电极20的通孔224。即,在第五等离子处理装置中,进行7层连续蚀刻。具体地说明,Ni层44的蚀刻通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向等离子内喷出Ar、CH4的混合气体来进行,接着,通过从上段气嘴继续向腔室供给Ar使等离子产生,同时从下段气嘴或下段气浴板喷出 Ar+HBr气体,由此进行由nip-nip的6层构成的两个发电层叠体22、42的蚀刻。将通过第五等离子处理装置内的蚀刻而形成有贯通从Ni层44开始的各层并到达第一电极20的通孔224的玻璃基板14从第五等离子处理装置移动到上述的不具备下段气嘴或下段气浴板的第三等离子处理装置,在从上段气嘴导入腔室的Kr/02气体的氛围下生成的等离子内灰化除去光致抗蚀剂。将除去光致抗蚀剂后的玻璃基板14移动到具备下段气嘴或下段气浴板的第六等离子处理装置中,在Ni层44上成膜具有1 μ m的厚度的Al层作为第二电极26。Al层也成膜于通孔224内。该Al层的成膜通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar/H2氛围下生成的等离子中喷出Ar+Al (CH3)3 气体来进行。接着,在第二电极26的Al层上涂布光致抗蚀剂后,进行图案化,且将其导入具备下段气嘴或下段气浴板的第七等离子处理装置内。在第七等离子处理装置中,通过从上段气嘴向腔室供给Ar气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar氛围下生成的等离子内喷出Ar+Cl2气体,由此进行Al 层的蚀刻,接着,通过从上段气嘴向腔室供给Ar及H2的混合气体使等离子产生,同时从下段气嘴或下段气浴板向在Ar/H2氛围下生成的等离子内导入々!"+(扎气体,由此进行Ni层44 的蚀刻,接着,从上段气嘴向腔室供给Ar气体使等离子产生,同时将来自下段气嘴或下段气浴板的气体切换为Ar+HBr气体,蚀刻ρ+型μ c_Si层423、i型μ c_Si422、η型μ c_Si 层421、ρ型a-Si层223直至i型a_Si层222的中途。其结果,形成从Al层26表面到达 i型a-Si层222的中途的绝缘孔245。该工序也通过利用同一个MSEP型等离子处理装置, 依次切换气体而进行7层连续蚀刻,从而大幅降低了处理时间和成本。然后,将搭载有元件的玻璃基板14移动到上述不具备下段气嘴或下段气浴板的第三等离子处理装置,通过在从上段气嘴导入腔室的&/02气体的氛围下生成的等离子灰化除去光致抗蚀剂。将包含除去了光致抗蚀剂的Al层作为第二电极26的玻璃基板14导入具备下段气嘴或下段气浴板的第八等离子处理装置,通过CVD形成SiCN膜,由此,在Al层26上及孔 225内成膜绝缘层28,制成期望的光电转换元件及太阳能电池单元和/或太阳能电池模块。 SiCN的成膜通过从上段气嘴向腔室供给Xe及NH3气体使等离子产生,且从下段气嘴或下段气浴板喷出Ar、SiH4, SiH(CH3)3气体来进行。产业上的可利用性本发明使用埋藏量多的硅、ZnO,同时通过膜厚薄的非晶质硅能够构成能量转换效率高的光电转换元 件及太阳能电池单元和/或太阳能电池模块。因此,能够廉价地制作大面积、大功率的太阳能电池。上述的实施方式中,仅说明了使用一组nip结构的光电转换元件和/或太阳能电池单元,但本发明不限于此,也可以适用于具备多组具有nip结构的发电层叠体的光电转换元件模块及太阳能电池模块。该情况,透明的第一电极侧的发电层叠体的η型a-Si层只要具有与作为第一电极的η+型ZnO层接触,另一方面,第二电极侧的发电层叠体的ρ型 a-Si层与第二电极接触的结构即可。符号说明10光电转换元件12防护玻璃14钠玻璃16钠阻隔膜20 第一电极(η+ 型 ZnO 层)22发电层叠体221η+型 a-Si 层222i 型 a-Si 层223p+型 a-Si 型24 硒层26 第二电极(Al 层)28 绝缘层(SiCN 层)201 绝缘层(SiCN 层)2245士02层30散热片40光电转换元素42第二发电层叠体421η+型 μ C-Si 层422iMyc-Sijf423口+型“(;^层44 镍层244 通孔245绝缘孔
权利要求
1.一种光电转换装置,其特征在于,从光的入射侧开始依次层叠有玻璃基板、透明电极、Pin结构的发电层叠体层、背面电极、SiCN层、散热片。
2.如权利要求1所述的光电转换装置,其特征在于,所述透明电极由ZnO形成。
3.如权利要求2所述的光电转换装置,其特征在于,所述ZnO被掺杂选自Ga、Al、In中的至少一种而成为n型。
4.如权利要求1所述的光电转换装置,其特征在于,所述玻璃基板由钠玻璃形成。
5.如权利要求4所述的光电转换装置,其特征在于,所述玻璃基板和所述透明电极之间设有钠阻隔层。
6.如权利要求1所述的光电转换装置,其特征在于,所述pin结构是从光的入射侧开始按照nip的顺序层叠的结构。
7.如权利要求1所述的光电转换装置,其特征在于,所述发电层叠体层由非晶硅形成。
8.如权利要求7所述的光电转换装置,其特征在于,所述非晶硅的发电层叠体层中,从光的入射侧开始依次层叠有P+型的非晶硅层、i型的非晶硅层、n+型的非晶硅层。
9.如权利要求7所述的光电转换装置,其特征在于,还设有与所述发电层叠体层邻接且具有与该发电层叠体层不同的Pin结构的第二发电层叠体层。
10.如权利要求9所述的光电转换装置,其特征在于,所述第二发电层叠体层由微晶硅形成。
全文摘要
本发明涉及光电转换装置,具备由非晶质硅形成的nip结构,利用使n+型a-Si层接触由n+型ZnO层形成的透明电极的结构,提高能量转换效率。由此,能够将对地球资源的影响抑制在最小限,能够实现大面积、大功率的光电转换装置。
文档编号H01L31/075GK102254982SQ20111021693
公开日2011年11月23日 申请日期2009年11月27日 优先权日2008年12月11日
发明者大见忠弘 申请人:国立大学法人东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1