一种高能量密度电容器的制备方法

文档序号:7095944阅读:170来源:国知局
专利名称:一种高能量密度电容器的制备方法
技术领域
本发明涉及电子材料元件领域,具体涉及基于大长度/直径比的孔状结构的高能量密度纳米电容器的 制备方法。
背景技术
近10年来随纳米技术的发展,各种新型的纳米材料如碳纳米管、石墨烯等新颖的电子材料被应用于高性能的储能器件中,由于这类纳米材料具有较大的比表面积及高的表面、界面活性,通过超薄化的界面结构及器件结构的微型化极大的提高了储能电容器(尤其是超级电容器)的性能,同时这些纳米材料的使用也为构筑纳米尺度的储能电容器提供了重要的技术支撑。目前下一代储能系统对微/纳米尺度储能器件的需求越来越迫切,这必然要求发展能为MEMS和纳米电子线路提供能源的纳米电池或纳米电容器,而目前的纳米储能电容器在尺寸和储能密度上远未达到要求。而且目前有关纳米结构材料应用于纳米电容器的研究大多集中于电化学电容器方面,而在传统的静电电容器方面的报道较少。由于纳米结构尤其是纳米多孔结构拥有巨大的比表面积,因此一种有效的方法是在开放的纳米结构内部构筑大面积的超薄器件结构。因此针对静电电容器的微/纳米化,采用高密度薄膜及界面体系的器件结构为主要的探索方向。近年来用有序阵列化的纳米结构来构筑纳米静电电容器已有报道。Kemell等采用电化学方法获得多孔硅纳米结构,然后在其纳米结构内制备了 Si/Al203/Zn0:Al的电容器阵列结构,在金属材料的沉积中采用了原子层沉积(ALD)方法,保证了纳米电容器的超薄结构。Roozeboom等通过刻蚀多孔娃的方法获得了一种超深多孔结构,在这种结构内部制备了高性能的MOS电容器阵列结构。在阵列纳米孔模板法中,由于多孔阳极氧化铝(AAO)模板是制备均匀有序纳米电子材料的理想无机模板,便于制作高度集成,低造价的纳米器件。Shelimov等人首先在AAO模板中构筑了金属-绝缘体-金属(MIM)结构的纳米电容器,电容器的容量达到了 13MF/cm2。Sohn等人也采用多孔氧化铝模板制备了一种MM纳米电容器器阵列结构,并采用碳纳米管作为纳米电容器的电极材料。国内刘玲等人通过在AAO模板内组建导电聚合物电极,获得了聚吡咯(PPy) /Ti02/PPy纳米电容器,利用导电聚合物纳米结构的快速氧化还原过程获得了充放电性能良好的纳米电容器,可在纳米微机电系统和纳米电子线路系统的化学电源中有良好的应用前景。最近,马里兰大学的Banerjee等人ALD沉积技术在多孔氧化铝纳米结构中制备超薄金属-绝缘体-金属纳米电容器及阵列结构。这种高度有序的阵列结构具有较大的比电容器,大大超过了以前所报道的在多孔模板中制备的纳米静电电容器的比容量。所报道的纳米电容器容量最大达到了约lOOMF/cm2,其功率密度(>1X IO6 W kg—1)达到了静电电容器的水平,而能量密度(0. 7 Wh kg4)接近电化学超级电容器的水平,这种纳米电容器阵列结构同时具有高的能量密度和功率密度的优点,可以作为一种新颖的具有高释放密度的储能电容器。
但是目前有关纳米电容器及阵列制备还有许多关键性问题有待解决,纳米电容阵列由于尺寸太小还不能储存较多能量,同时多个阵列结构的互联也存在一定问题,如何保证扩大比例同时所有电容器正常工作还有待进一步研究。如何实现纳米电容器各结构稳定组装、稳定工作以及大面积阵列的制造仍然是急需解决的问题

发明内容
本发明所要解决的问题是如何提供一种高能量密度纳米电容器的制备方法,该方法所制备的基于纳米结构的纳米电容器克服了现有技术中所存在的缺陷,并且制备方法合理简单,易于操作。本发明所提出的技术问题是这样解决的一种高能量密度电容器的制备方法,包括如下步骤
①将柔性多孔聚碳酸酯基体材料进行表面等离子体处理;
②采用真空蒸发的方法在经表面等离子体处理的多孔聚碳酸酯基体材料上制备金属纳米薄膜作为电容器的一个电极;
③采用原子层沉积方法在金属纳米薄膜表面沉积介电纳米薄膜作为电容器介质材
料;
④采用原子层沉积方法继续在介电纳米薄膜表面沉积金属纳米薄膜作为另一个电极,从而在多孔纳米结构中获得一种金属-金属氧化物-金属的电容器结构。进一步地,步骤②中所述的金属纳米薄膜为Au或Cu金属纳米薄膜。进一步地,步骤③中所述的介电纳米薄膜为HfO2或Al2O3纳米薄膜。进一步地,步骤④中所述的金属纳米薄膜为TiN或AlN纳米薄膜。更具体地,包括以下步骤
①将柔性多孔聚碳酸酯基体材料放入真空腔体中,进行表面等离子体处理,聚碳酸酯膜的厚度为20 30Mm,材料中孔尺寸长度10 15Mm,直径50 70nm ;
②将表面等离子体处理的多孔聚碳酸酯基体材料放入真空蒸发设备腔体中,采用真空蒸发沉积的方法制备Au金属纳米薄膜作为电容器一个电极,薄膜厚度为5 IOnm ;
③将制备了金属电极的多孔聚碳酸酯基体材料放入原子层沉积设备腔体中,采用原子层沉积的方法沉积Al2O3介电纳米薄膜作为电容器介质材料,薄膜的厚度为5 IOnm ;
④在介质薄膜材料表面采用原子层沉积的方法制备TiN金属纳米薄膜作为电容器电极,薄膜厚度为5 IOnm ;
由① ④步骤获得了一种基于多孔纳米结构的金属-金属氧化物-金属的高能量密度电容器结构。本发明所提供的高能量密度电容器的制备方法与现有技术相比具有如下优点 电容器基体材料为含有纳米孔结构的柔性聚碳酸酯材料,所含孔结构具有大长度/直
径比的特点,保证电极具有大的表面,同时各个电容器薄膜组成部分均为纳米薄膜结构,保证了电容器的纳米结构。这种基于多孔纳米结构及纳米薄膜结构的电容器可以有效提高静电电容器的能量密度,并具有快速释放的特点,可以满足高储能密度储能系统多方面不同的需要。制备方法合理简单,易于操作。


图I是单个电容器结构原理图。其中附图标记分别为1、聚碳酸酯基体材料,2、大长度/直径比纳米孔,3、真空沉积的电极纳米薄膜,4、原子层沉积方法沉积的介电纳米薄膜,5、原子层沉积方法制备的金属纳米薄膜。
具体实施例方式下面结合附图对本发明作进一步描述
本发明提供了一种基于柔性聚碳酸酯纳米孔结构的高能量密度电容器的制备方法,首先通过真空沉积的方法在纳米孔内部制备金属纳米薄膜作为电极,然后采用原子层沉积方法在金属电极薄膜上制备纳米介电薄膜作为电容器介质层,最后通过原子层沉积方法在介电薄膜上制备纳米金属薄膜作为另一个电极,从而获得一种金属-绝缘体-金属的纳米电容器结构。纳米电容器的容量可以通过不同孔径及长度的尺寸进行调控。该发明中的关键为采用柔性多孔聚碳酸酯为基体材料,一方面可以实现器件的柔性化,另一方面材料中含有大长度/直径比的纳米孔结构,这种大长度/直径比的孔状结构保证了纳米电容器较大的比表面积。另外,电容器的电极及介电薄膜采用真空沉积和原子沉积方法,保证了薄膜及器件的纳米结构。因此,通过新颖的纳米孔与器件超薄结构相结合,保证了获得的纳米电容器具有高能量密度。电容器的一个电极为Au、Al等金属纳米薄膜,介电层为Al2O3, HfO2等采用原子沉积方法获得的介电纳米薄膜,另一个电极为采用原子沉积方法获得的TiN,AlN等金属纳米薄膜。另外,通过将多个多孔聚碳酸酯基片互联可以获得大容量的高能量密度纳米电容器阵列结构。本发明的特点是采用柔性多孔聚碳酸酯材料为基体,通过真空沉积方法首先获得纳米厚度的金属电极薄膜,然后通过原子沉积的方法在金属薄膜表面沉积介电氧化物纳米薄膜作为电容器介电材料,最后采用原子沉积的方法在纳米介电氧化物表面沉金属纳米金属薄膜作为电容器电极,纳米电容器具有超薄结构,且电容器的容量及尺寸可以通过聚碳酸酯中纳米孔尺寸及数目进行调控。依托良好多孔性的聚碳酸酯材料及成熟的真空成膜、原子层级别薄膜沉积方法,本发明可以制备柔性的高能量密度纳米电容器结构,并实现大面积结构阵列。采用本发明制备的一些纳米电容器结构举例如下
①基于Al2O3纳米介电薄膜的孔状纳米电容器结构;
②基于HfO2纳米介电薄膜的孔状纳米电容器结构;
以下是本发明的具体实施例
实施例1
在图I中,将柔性多孔聚碳酸酯基体材料I进行表面等离子体处理,将表面等离子体处理的多孔聚碳酸酯基体材料置入真空沉积设备腔体中,采用真空沉积的方法在聚碳酸酯孔(图I中2)制备Au等金属纳米薄膜(图I中3)作为电容器的一个电极。将沉积了 Au电极薄膜的多孔聚碳酸酯基体材料置入原子薄膜沉积设备腔体中,采用原子沉积方法在Au薄膜表面沉积Al2O3等介电纳米薄膜(图I中4)。采用原子沉积方法继续在介电纳米薄膜表面沉积TiN等金属纳米薄膜作为电极(图I中5),从而在多孔纳米结构中获得一种金属-绝缘体-金属的纳米电容器结构。制备方法如下
①将柔性多孔聚碳酸酯基体材料放入真空腔体中,进行表面等离子体处理,聚碳酸酯膜的厚度为20Mm,材料中孔尺寸长度10Mm,直径50nm ;
②将表面等离子体处理的多孔聚碳酸酯基体材料放入真空腔体中,采用真空沉积的方法制备Au金属纳米薄膜作为电容器一个电极,薄膜厚度为IOnm ;
③制备了金属电极的多孔聚碳酸酯基体材料放入原子层沉积设备腔体中,采用原子层沉积的方法沉积Al2O3介电纳米薄膜作为电容器介质材料,薄膜的厚度为IOnm ;
④在介质薄膜材料表面采用原子层沉积的方法制备TiN金属纳米薄膜作为电容器电极,薄膜厚度为5nm ;
由①-④步骤获得了一种基于多孔纳米结构的Au- Al2O3-TiN的高能量密度纳米电容器结构。实施例2
如图1,电容器介电纳米薄膜为HfO2。纳米电容器的制备流程与实施方式一相似。从而获得了一种基于多孔纳米结构的Au-HfO2-TiN的高能量密度纳米电容器结构。实施例3
如图1,电容器介电纳米薄膜为HfO2。纳米电容器的两个电极材料分别为Al和TiN,制备流程与实施方式一相似。从而获得了一种基于多孔纳米结构的Al-HfO2-TiN的高能量密度纳米电容器结构。实施例4
如图1,电容器介电纳米薄膜为Al2O3。纳米电容器的两个电极材料分别为Al和TaN,制备流程与实施方式一相似。从而获得了一种基于多孔纳米结构的Al- Al2O3-TaN的高能量密度纳米电容器结构。实施例5
如图1,电容器介电纳米薄膜为HfO2。纳米电容器的两个电极材料分别为Al和TaN,制备流程与实施方式一相似。从而获得了一种基于多孔纳米结构的Al-HfO2-TaN的高能量密度纳米电容器结构。
权利要求
1.一种高能量密度电容器的制备方法,其特征在于,包括以下步骤 ①将柔性多孔聚碳酸酯基体材料进行表面等离子体处理; ②采用真空蒸发的方法在经表面等离子体处理的多孔聚碳酸酯基体材料上制备金属纳米薄膜作为电容器的一个电极; ③采用原子层沉积方法在金属纳米薄膜表面沉积介电纳米薄膜作为电容器介质材料; ④采用原子层沉积方法继续在介电纳米薄膜表面沉积金属纳米薄膜作为另一个电极,从而在多孔纳米结构中获得一种金属-金属氧化物-金属的电容器结构。
2.根据权利要求I所述的一种高能量密度电容器的制备方法,其特征在于,步骤②中所述的金属纳米薄膜为Au或Cu金属纳米薄膜。
3.根据权利要求I所述的一种高能量密度电容器的制备方法,其特征在于,步骤③中所述的介电纳米薄膜为HfO2或Al2O3纳米薄膜。
4.根据权利要求I所述的一种高能量密度电容器的制备方法,其特征在于,步骤④中所述的金属纳米薄膜为TiN或AlN纳米薄膜。
5.根据权利要求I 4任一项所述的一种高能量密度电容器的制备方法,其特征在于,具体步骤为 ①将柔性多孔聚碳酸酯基体材料放入真空腔体中,进行表面等离子体处理,聚碳酸酯膜的厚度为20 30Mm,材料中孔尺寸长度10 15Mm,直径50 70nm ; ②将表面等离子体处理的多孔聚碳酸酯基体材料放入真空蒸发设备腔体中,采用真空蒸发沉积的方法制备Au金属纳米薄膜作为电容器一个电极,薄膜厚度为5 IOnm ; ③将制备了金属电极的多孔聚碳酸酯基体材料放入原子层沉积设备腔体中,采用原子层沉积的方法沉积Al2O3介电纳米薄膜作为电容器介质材料,薄膜的厚度为5 IOnm ; ④在介质薄膜材料表面采用原子层沉积的方法制备TiN金属纳米薄膜作为电容器电极,薄膜厚度为5 IOnm ; 由① ④步骤获得了一种基于多孔纳米结构的金属-金属氧化物-金属的高能量密度电容器结构。
全文摘要
本发明公开了一种高能量密度电容器的制备方法,首先通过真空沉积方法在多孔聚碳酸酯材料内制备金属薄膜,然后在金属膜表面通过原子层沉积的方法制备纳米介电薄膜作为电容器电介质材料,最后在介电薄膜上通过原子层沉积方法获得纳米薄膜作为电极,形成一种金属-绝缘体-金属的纳米电容器结构。该方法所制备的电容器具有纳米超薄结构,使得电容器具有大的能量密度,同时该电容器制备技术克服了现有技术中所存在的缺陷,并且制备方法合理简单,易于操作。
文档编号H01G4/00GK102623174SQ201210112200
公开日2012年8月1日 申请日期2012年4月17日 优先权日2012年4月17日
发明者徐建华, 杨亚杰, 杨文耀, 蒋亚东 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1