取向性电磁钢板及其制造方法

文档序号:7252522阅读:159来源:国知局
取向性电磁钢板及其制造方法
【专利摘要】根据本发明,通过使表面具有覆膜、板厚:t(mm)的取向性电磁钢板在温度:50℃、湿度:98%的气氛中保持48小时以上而不生锈,且与电子束照射前的铁损W17/50相比,电子束照射后的铁损W17/50降低(-500t2+200t-6.5)%以上,并且该电子束照射后的铁损W17/50为(5t2-2t+1.065)W/kg以下,由此可以形成适合用于变压器的铁芯等用途的低铁损且耐腐蚀性不变差的取向性电磁钢板。
【专利说明】取向性电磁钢板及其制造方法
【技术领域】
[0001]本发明涉及适合用于变压器的铁芯等用途的、铁损特性优良且耐腐蚀性不变差的取向性电磁钢板及其制造方法。
【背景技术】
[0002]近年来,能源使用的效率化在发展,以变压器制造商等为中心,对磁通密度高、且铁损低的电磁钢板的需求不断增加。
[0003]在此,可以通过使电磁钢板的结晶取向向Goss取向集聚来使磁通密度提高,例如在专利文献I中示出了具有超过1.97T的磁通密度B8的取向性电磁钢板的制造方法。
[0004]另一方面,关于铁损,可从原材料的闻纯度化、闻取向性、降低板厚、添加Si和Al、磁畴细化等观点出发考虑其对策(例如,参照非专利文献I)。然而,对于B8超过1.9T的高磁通密度原材料而言,通常越提高磁通密度,则铁损越倾向于变差。其原因在于:若结晶取向一致则静磁能下降,因此钢板内的磁畴宽度扩大,涡流损耗升高。对此,作为降低涡流损耗的方法,存在有通过提高覆膜张力或导入热应变来实施磁畴细化的方法。通常情况下对于覆膜张力而言,利用覆膜与钢基的热膨胀差,通过使覆膜形成于在高温下发生了膨胀的钢板上,冷却至室温后而赋予覆膜张力,但不改变覆膜材质而提高张力效果的技术倾向于饱和。另一方面,对于如专利文献2所示的提高覆膜张力的方法而言,所赋予的应变在弹性区附近,而且张力只作用于钢基的表层,因此存在铁损的降低效果小的问题。
[0005]另一方面,对于热应变的导入而言,考虑使用激光、电子束或等离子体射流的方法,已知任一种通过照射改善铁损的效果均极高。
[0006]例如,在专利文献3中,示出了通过电子束照射而具有W17/5(l低于0.8W/kg的铁损的电磁钢板的制造方法。另外,在专利文献4中,示出了通过对电磁钢板实施激光照射来降低铁损的方法。
[0007]然而,使用激光、电子束或等离子体射流,在大幅改善铁损的条件下导入热应变的情况下,有时会发生照射面的覆膜被破坏、钢基露出,导致照射后钢板的耐腐蚀性显著变差。另一方面,已知有通过等离子体射流导入热应变且不损害耐腐蚀性的方法(参照专利文献5),但这样的方法需要以μ m单位控制等离子体喷出口与照射表面的距离,操作性显
著变差。
[0008]另外,使用激光时,如专利文献6、专利文献7所示存在如下技术:通过改变光束形状来降低激光功率密度从而抑制照射所致的覆膜损伤。然而,对于激光而言,即使向其照射方向扩展而增大照射面积,但在照射的速度快的情况下,照射部附近的热未充分扩散、发生蓄积而导致高温化,因此会对覆膜产生损伤。进而,利用激光欲得到如专利文献6、专利文献7所示的值以上的铁损降低效果(例如,15%以上)的情况下,需要以更高的输出功率来照射,还是无法避免覆膜的损伤。
[0009]在此,作为防止耐腐蚀性变差的方法,在对钢板表面实施了激光照射的情况下,照射后对照射面再次实施涂敷,确保耐腐蚀性。然而,照射后进行再涂敷不仅导致产品的成本上升,而且还存在板厚增加、形成铁芯时其占空系数减少这样的问题。
[0010]另一方面,照射电子束时,分别在专利文献8中示出了通过使射束为片状来抑制照射所致的覆膜损伤的方法;在专利文献9中示出了通过将电子束的光阑次数设为I次、使灯丝形状为带形来抑制照射所致的覆膜损伤的方法。进而,在专利文献10中示出了利用高加速电压/低电流的电子束,将覆膜向钢基中圧入,由此而成的无覆膜损伤的钢板。
[0011]现有技术文献
[0012]专利文献
[0013]专利文献1:日本专利第4123679号公报
[0014]专利文献2:日本特公平2-8027号公报
[0015]专利文献3:日本特公平7-65106号公报
[0016]专利文献4:日本特公平3-13293号公报
[0017]专利文献5:日本特开昭62-96617号公报
[0018]专利文献6:日本特开2002-12918号公报
[0019]专利文献7:日本特开平10-298654号公报
[0020]专利文献8:日`本特开平5-311241号公报
[0021]专利文献9:日本特开平6-2042号公报
[0022]专利文献10:日本特开平2-277780号公报
[0023]专利文献11:日本特开平4-39852号公报
[0024]非专利文献
[0025]非专利文献I 软磁性材料的最近的进步”(「软磁性材料O最近O進歩」)第155/156次西山纪念技术讲座,社团法人日本钢铁协会编,平成7年2月I日发行
[0026]非专利文献2:1chijima 等;IEEE TRANSACTIONS ON MAGNETICS, Vol.MAG-20,N0.5(1984) ,p.1558Fig.4

【发明内容】

[0027]发明所要解决的问题
[0028]然而,将电子束形成片形的方法存在如下问题:片状照射面内部的输出功率变得不均匀,对于光学系统的调整很花费工夫等。另外,在进一步降低铁损的电子束的照射条件下,即使采取灯丝的带形化、光阑的I段化,仍会出现照射所致的覆膜损伤。进而,如专利文献10所示的方法不仅在电子束照射后需要去应力退火,而且很难说铁损的降低效果充分。
[0029]本发明是鉴于上述现状而开发的,其目的在于提供一种适合供于变压器的铁芯等用途的、低铁损且耐腐蚀性不变差的取向性电磁钢板及其制造方法。
[0030]用于解决问题的方法
[0031]为了解决上述课题,发明人进行了深入研究。结果发现:通过使用由高加速电压生成的电子束,能够兼顾低铁损化和抑制覆膜损伤。即,发现电子束照射后的铁损强烈依赖于每单位面积的照射能(例如,以点状照射电子束的情况下,由一定区域所含有的照射点提供的照射能的总和除以该区域的面积的值)。另外,发现了通过调整每单位面积的照射能,即使降低电子束照射线上的每单位长度的照射能,对铁损也并不产生什么影响。进而,发现了通过如下所示来调整电子束照射条件,能够在得到良好的铁损的同时,抑制电子束照射所致的覆膜的损伤。需要说明的是,在下述(I)、(2)中,Z为照射频率(kHz)的一 0.35次方。
[0032](I)将电子束的照射能设为每单位面积:1cm2为1.0Z~3.5ZJ的范围。
[0033](2)将电子束的照射能设为每单位长度:1m为105ZJ以下的范围。
[0034]本发明基于上述见解而完成,其主旨构成如下所述。
[0035]1.一种取向性电磁钢板,其是实施了电子束照射、具有覆膜的板厚:t(mm)的取向性电磁钢板,其特征在于,在温度:50°C、湿度:98%的气氛中保持48小时的湿润试验后,钢板表面不生锈,与电子束照射前的铁损W17/5(l相比,电子束照射后的铁损W17/5(l降低(一500t2 + 200t — 6.5)%以上,并且电子束照射后的铁损W17/5Q为(5t2 — 2t + 1.065)ff/kg以下。
[0036]2.如上述I所述的取向性电磁钢板,其特征在于,所述覆膜包含由胶态二氧化硅及磷酸盐构成的覆膜和镁橄榄石覆膜,该镁橄榄石覆膜作为由胶态二氧化硅及磷酸盐构成的覆膜的基底覆膜。
[0037]3.一种取向性电磁钢板的制造方法,在对具有覆膜的取向性电磁钢板在与轧制方向相交的方向上照射电子束时,将该电子束的每照射间隔:d(mm)的照射时间设为S1 (ms)、并且设为Z = Sl°_35时,对于该电子束照射条件,将该电子束的每单位面积:Icm2的照射能设为1.0Z~3.5ZJ,并且将电子束的每单位照射长度:1m的照射能设为105ZJ以下。
[0038]4.如上述3所述 的取向性电磁钢板的制造方法,其特征在于,将上述照射间隔:d(mm)设为0.01~0.5mm的范围,并且将上述照射时间!S1(IiiS)设为0.003~0.1ms的范围。
[0039]5.如上述3或4所述的取向性电磁钢板的制造方法,其特征在于,使所述覆膜包含由胶态二氧化硅及磷酸盐构成的覆膜和镁橄榄石覆膜,该镁橄榄石覆膜作为由胶态二氧化硅及磷酸盐构成的覆膜的基底覆膜。
[0040]发明效果
[0041]根据本发明,通过电子束照射,不仅可以大幅改善取向性电磁钢板的铁损,还可以抑制照射部的覆膜的破坏,其结果是可以有效防止耐腐蚀性变差。除此以外,由于可以省略电子束照射后的覆膜的再涂敷过程,因此不仅产品的成本降低,而且不增加覆膜厚度,由此在制作变压器等的铁芯时,能够提高占空系数。
【专利附图】

【附图说明】
[0042]图1是表示频率与锈产生点数为O的最大照射能的关系的曲线图。
[0043]图2是表示频率:100kHz下、每单位长度的照射能对电子束照射后的耐腐蚀性的影响的曲线图。
[0044]图3是表示频率:IOOkHz下、由电子束的照射带来的铁损W17/5(l的变化量(照射后的铁损一照射前的铁损)与每单位面积的照射能的关系的曲线图。
【具体实施方式】
[0045]以下,对本发明具体地进行说明。
[0046]首先,关于依据本发明的取向性电磁钢板的制造条件进行说明。[0047]在本发明中,取向性电磁钢板用板坯的成分组成只要是生成二次再结晶的成分组成即可。另外,利用抑制剂时,例如若利用AlN系抑制剂时可以适量含有Al和N,另外,若利用MnS/MnSe系抑制剂时可以适量含有Mn和Se和/或S。当然,也可以合用两种抑制剂。这种情况下Al、N、S和Se的适宜含量分别为,Al:0.01~0.065质量%、N:0.005~0.012质量 %、S:0.005 ~0.03 质量 %、Se:0.005 ~0.03 质量 %。
[0048]而且,本发明对于限制了 Al、N、S、Se的含量、不使用抑制剂的取向性电磁钢板而言也可以适用。
[0049]这种情况下,Al、N、S和Se量优选分别抑制为,Al:100质量ppm以下、N:50质量ppm以下、S:50质量ppm以下、Se:50质量ppm以下。
[0050]对于上述成分以外,如下具体描述了取向性电磁钢板用板坯的基本成分和任选添加成分。
[0051](::0.08质量% 以下
[0052]C是用于改善热轧板组织而添加的,但为了将C降低至在制造工序中不会引起磁时效的50质量ppm以下,优选将C设为0.08质量%以下。需要说明的是,关于下限,即使是不含C的原材料也能够二次再结晶,因此无需特别设定。
[0053]S1:2.0 ~8.0 质量 %
[0054]Si是有效用于提高钢的电阻、改善铁损的元素,为了实现充分的铁损降低效果,优选将其含量设为2.0质量%以上。另一方面,若Si量超过8.0质量%则加工性显著下降,并且磁通密度也会下降,因此Si量优选为2.0~8.0质量%的范围。
[0055]Mn:0.005 ~1.0 质量 %
[0056]Mn是在使热加工性变得`良好方面所必须的元素,其含量若低于0.005质量%则其添加效果不足,另一方面若超过1.0质量%则产品板的磁通密度下降,因此Mn量优选设为0.005~1.0质量%的范围。
[0057]在上述的基本成分以外,可以适当含有作为磁特性改善成分的如下所述的元素。
[0058]选自Ni:0.03 ~1.50 质量 %、Sn:0.01 ~1.50 质量 %、Sb:0.005 ~1.50 质量 %、Cu:0.03 ~3.0 质量 %、P:0.03 ~0.50 质量 %、Mo:0.005 ~0.10 质量 % 和 Cr:0.03 ~1.50
质量%中的至少I种
[0059]Ni是对于改善热轧板组织从而提高磁特性有用的元素。然而,若其含量低于0.03质量%则磁特性的提高效果小,另一方面,若超过1.50质量%则二次再结晶变得不稳定,导致磁特性变差。因此,Ni量优选设为0.03~1.50质量%的范围。
[0060]另外,Sn、Sb、Cu、P、Mo和Cr分别是对于磁特性的提高有用的元素,若均不满足上述各成分的下限,则磁特性的提高效果小,另一方面若超过上述各成分的上限量,则阻碍二次再晶粒的发达,因此优选各自以上述范围而含有。
[0061]需要说明的是,上述成分以外的余量为在制造工序中混入的不可避免的杂质和Fe。
[0062]接着,具有上述成分组成的板坯按照常规方法进行加热后供至热轧,但也可以在铸造后不进行加热而直接进行热轧。薄铸片的情况下既可以进行热轧、也可以省略热轧而直接进入以后的工序中。
[0063]进而,根据需要实施热轧板退火。此时,为了使高斯组织在产品板中高度发达,作为热轧板退火温度,优选800~1100°C的范围。热轧板退火温度若低于800°C,则热轧中的带状组织有残留,难以实现整粒后的一次再结晶组织,阻碍二次再结晶的发达。另一方面,热轧板退火温度若超过1100°C,则热轧板退火后的粒径过于粗大化,因此极其难以实现整粒后的一次再结晶组织。
[0064]热轧板退火后,实施I次或夹有中间退火的2次以上的冷轧,然后进行再结晶退火,涂敷退火分离剂。涂敷退火分离剂之后,以形成二次再结晶和镁橄榄石覆膜为目的实施最终退火。
[0065]最终退火后,进行平坦化退火来矫正形状是有效的。需要说明的是,在本发明中,在平坦化退火之前或者之后对钢板表面施加绝缘涂层。此处,在本发明中,该绝缘涂层是指为了降低铁损而能够对钢板赋予张力的涂层(以下,称为张力涂层)。需要说明的是,作为张力涂层,只要是用于取向性电磁钢板的公知的张力涂层,则均能够同等地适用在本发明中,特别优选由胶态二氧化硅和磷酸盐构成的涂层。另外,还可以举出含有二氧化硅的无机系涂层或利用物理蒸镀法、化学蒸镀法等而成的陶瓷涂层等。
[0066]在本发明中,对于施加上述张力涂层后的取向性电磁钢板,按照以下所示的条件对钢板表面照射电子束,由此实施磁畴细化处理,可以在充分发挥由电子束照射带来的铁损降低效果的同时,抑制覆膜的损伤。
[0067]接着,对于依照本发明的电子束的照射方法进行说明。
[0068]首先,对电子束的产生条件进行说明。
[0069]加速电压:40~300kV
[0070]加速电压越高越好。由高加速电压生成的电子束具有透过物质、特别是由轻元素构成的物质的趋势。通常情况下镁橄榄石覆膜、张力涂层由轻元素构成,因此,若加速电压较高,则容易透过电子束,覆膜不易受到损伤。另外,若高达超过40kV,则为了得到相同输出功率所需的射束电流少,能够缩小束径,因而优选。然而,若超过300kV则射束电流变得过低,因此有可能导致其微小的调整变得困难。
[0071]照射直径:350 μ m以下
[0072]若照射直径粗至超过350 μ m,热影响区扩大,有可能导致铁损(磁滞损耗)变差,因此优选设为350 μ m以下。测定是以通过公知的狭缝法所得到的电流(或者电压)曲线的半峰宽来规定的。需要说明的是,对于照射直径的下限没有限定,但若过小,则电子束能量密度过度增高,照射所致的覆膜损伤将容易生成,因此优选设为约100 μ m以上。
[0073]电子束的照射图案
[0074]在本发明中,电子束的照射图案并不限于直线,可以具有如波形等这样的规则的图案,并且从钢板的宽度端部向另一侧宽度端部进行照射。另外,可以使用多台电子枪,划分每I台的照射区域。
[0075]对钢板的宽度方向的照射使用偏转线圈来进行,沿着照射位置,每隔一定间隔:d(mm),将照射时间设为S1,反复进行。在本发明中,将该照射点称为点(Dot)。并且此时,优选使一定间隔:d(mm)为 规定的范围。在本发明中将该间隔:d称为点距(Dot pitch)。需要说明的是,在本发明中,电子束移动间隔:d的时间极短,因此可以将S1的倒数视为照射频率。
[0076]进而,在与被照射材料的轧制方向相交的方向上隔着一定的间隔反复进行上述从宽度端向宽度端的照射,以下将该间隔称为线间隔。另外,照射方向优选相对与钢板的轧制方向成直角的方向为±30度左右的角度。
[0077]每I点的照射时间(照射频率的倒数)S1:0.003~0.1ms (3~100 μ s)
[0078]照射时间S1若比0.003ms短,则有可能无法对钢基带来足够的热影响而导致铁损未改善。另一方面,若比0.1ms长,则在照射时刻中,所照射的热会在钢中等扩散。因此,SP使以VXIXs1表示的每I点的照射能为恒定,照射部的最高到达温度倾向于变低,因此有可能导致铁损变差。因此,照射时间S1优选为0.003~0.1ms的范围。需要说明的是,V为加速电压、I为射束电流。
[0079]点距(d):0.01 ~0.5mm
[0080]点距若比0.5mm宽,则在钢基中会产生不受热影响的部分,导致磁畴未充分细化,铁损可能不会改善。另一方面,若比0.01mm窄则照射速度过度降低,照射效率下降。因此,本发明中的点距优选设为0.01~0.5mm的范围。
[0081]线间隔:1~15mm
[0082]线间隔若比Imm窄,则热影响区扩大,有可能导致铁损(磁滞损耗)变差。另一方面,若比15_宽,则未充分磁畴细化,铁损倾向于不改善。因此,本发明中的线间隔优选设为I~15mm的范围。
[0083]加工室压力:3Pa以下
[0084]加工室的压力若高`于3Pa,则从电子枪产生的电子散射,对钢基带来热影响的电子的能量减少,因此导致无法充分地磁畴细化,铁损可能不会改善。需要说明的是,对于下限没有特别规定,加工室的压力越低越好。
[0085]需要说明的是,在本发明中,关于聚焦电流,偏向于宽度方向进行照射时,为了使宽度方向的电子束变得均匀,预先对聚焦电流进行调整,这是不言而喻的。例如,即使应用动态聚焦功能(参照专利文献11)也没有任何问题。
[0086]电子束的每单位照射长度(Im)的照射能:105ZJ以下
[0087]在本发明中,Z是以Sl°_35或者照射频率(kHz)的一0.35次方表示的值。通常情况下,钢板的宽度方向的每单位长度的照射能越高,则磁畴细化越进行、涡流损耗越下降,但在过度地照射能量的情况下,不仅磁滞损耗増大,而且电子束照射部过度高温化,覆膜受到损伤。因此,正如以下说明,某个值(105ZJ/m)以下为适合条件。需要说明的是,对于下限,只要能够得到磁畴细化效果就没有特别限制,优选为60ZJ/m左右。
[0088]另外,考虑到由热照射带来的磁畴细化和覆膜损伤受到来自照射部的最高到达温度、与其相伴的铁的膨胀量等的影响,因此在低频率、即S1较大,照射中向钢中的热扩散显著的情况下,照射部不会高温化,因此若不照射更多的能量,则不仅铁损不降低,而且有可能不产生覆膜损伤,这一点需要注意。
[0089]在此,本发明中的Z是发明人基于自身所进行的实验导出的。
[0090]具体而言,准备10片按照与后述的实施例同样的条件制作的带有张力涂层的
0.23mm厚材,以表1所示的频率进行电子束照射。接着,目测确认在温度:50°C—湿度:98%的湿润环境中暴露48小时后的湿润试验后的锈产生点数,求出锈产生点数为O的试样即使只出现I片时的最小照射能。将其结果一并记于表1中。
[0091]此处,将该最大照射能的结果曲线图化,示于图1中。如该图所示,利用最小二乘法进行曲线拟合,由此导出上述上限值(105Z J/m)。
[0092]表1
[0093]
【权利要求】
1.一种取向性电磁钢板,其是实施了电子束照射、具有覆膜的板厚:t (mm)的取向性电磁钢板,其特征在于,在温度:50°C、湿度:98%的气氛中保持48小时的湿润试验后,钢板表面不生锈,与电子束照射前的铁损W17/5(l相比,电子束照射后的铁损W17/5(l降低(一 500t2 +200t - 6.5)%以上,并且电子束照射后的铁损W17/5Q为(5t2 - 2t + 1.065)ff/kg以下。
2.如权利要求1所述的取向性电磁钢板,其特征在于,所述覆膜包含由胶态二氧化硅及磷酸盐构成的覆膜和镁橄榄石覆膜,该镁橄榄石覆膜作为由胶态二氧化硅及磷酸盐构成的覆膜的基底覆膜。
3.一种取向性电磁钢板的制造方法,在对具有覆膜的取向性电磁钢板在与轧制方向相交的方向上照射电子束时,将该电子束的每照射间隔:d(mm)的照射时间设为Sl(mS)、并且设为Z = S10-35时,对于该电子束照射条件,将该电子束的每单位面积:1cm2的照射能设为1.0ZJ~3.5ZJ,并且将电子束的每单位照射长度:1m的照射能设为105ZJ以下。
4.如权利要求3所述的取向性电磁钢板的制造方法,其特征在于,将所述照射间隔:d(mm)设为0.01mm~0.5mm的范围,并且将所述照射时间=S1 (ms)设为0.003ms~0.1ms的范围。
5.如权利要求3或4所述的取向性电磁钢板的制造方法,其特征在于,使所述覆膜包含由胶态二氧化硅及磷酸盐构成的覆膜和镁橄榄石覆膜,该镁橄榄石覆膜作为由胶态二氧化硅及磷酸盐构成的覆膜 的基底覆膜。
【文档编号】H01F1/18GK103827326SQ201280047836
【公开日】2014年5月28日 申请日期:2012年9月28日 优先权日:2011年9月28日
【发明者】高城重宏, 山口广, 大村健, 井上博贵, 冈部诚司 申请人:杰富意钢铁株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1