用于生产薄膜太阳能电池的方法

文档序号:7008304阅读:153来源:国知局
用于生产薄膜太阳能电池的方法
【专利摘要】本发明提出一种生产衬顶构造或衬底构造的太阳能电池的方法。根据本发明的方法是一种使由于CdS层中的吸收而引起的损失最小化并且除去CdCl2活化处理步骤的有效方法。这通过在太阳能电池的CdS层和CdTe层之间施加金属卤化物牺牲层来实现。
【专利说明】用于生产薄膜太阳能电池的方法

【技术领域】
[0001]本发明的目的是提供一种用提高效率来生产CdTe太阳能电池的方法。
[0002]薄膜太阳能电池的分布可进一步通过提高其在光转换中的电效率来促进。基于CdTe的太阳能电池已被证明在该方面具有前途。

【背景技术】
[0003]在现有技术中,CdTe太阳能电池具有下列结构:透明导电氧化物层(TCO)被沉积在玻璃衬底上作为前接触层。TCO层可包括高阻缓冲层,该高阻缓冲层促进最小化太阳能电池中的分流效应(shunting effect)。在T⑶层上沉积硫化镉(CdS)层,并且在硫化镉(CdS)层的上面沉积碲化镉(CdTe)层。最后,金属层被施加以收集电荷载流子。该过程被称作为衬顶构造。
[0004]现有技术中已知的是,CdTe太阳能电池还可以相反的顺序构筑。这通过后侧衬底(玻璃)开始,后侧接触层被沉积在该后侧衬底上(还以相反的顺序)。在后侧接触层上生长CdTe层(或多层CdTe层),然后是CdS层。在CdS层的上面沉积TCO层。该过程被称作为衬底构造。
[0005]对本领域技术人员来说很明显的是,根据本发明的过程可用于以顶衬构造或衬底构造生产的太阳能电池。通常,支撑层(诸如防反射涂层)旨在便于光进入玻璃衬底中。此外,附加的玻璃通常被用于防止后侧损坏。根据现有技术,完成了包括激光划片或机械刻图、电触头、边缘密封等的模块生产过程。这种支撑层、防护玻璃和模块制备过程在现有技术中均是已知的,并且今后它们的出现是可选的,并且不更详细地解释。
[0006]在太阳能电池的生产中,衬底(优选是玻璃)形成基部,随后的层被依次地沉积在该基部上。
[0007]研究已经显示,CdS对于CdTe来说是特别合适的化合物伙伴。在没有CdS层的情况下,高效CdTe太阳能电池的生产几乎是不可能的。然而,CdS的光吸收是在可见光谱的蓝光范围内,且不产生有用的光电流。因此,生产CdTe太阳能电池的一个目的是使CdS层尽可能地薄。然而,如果CdS层太薄的话,则在TCO层与CdTe层之间导致短路(“针孔”),这会极大地影响太阳能电池的效率。替代地,增大CdS层的带隙能够促进降低CdS层中的蓝光吸收。
[0008]根据现有技术,在CdTe太阳能电池的生产过程中,高效太阳能电池采用被称作活化步骤的CdCl2处理步骤来生产。典型的活化步骤包括通过湿化学法或真空蒸发之后在限定温度(通常在380°C-440°c的范围中)下在空气气氛中退火来施加CdCl2到CdTe层上。活化步骤的优点包括减少CdS/CdTe层与CdTe层之间的晶界钝化的晶格失配。在CdS层和CdTe层之间引起的相互扩散的CdCl2活化促进在CdS/CdTe结处实现平滑的电子能带跃迁。这种方法的缺点是,CdCl2是潜在的有害材料并且因此难以控制。


【发明内容】

[0009]本发明的目的是使由于CdS层中的吸收而引起的损失最小化,并且除去CdCl2活化处理步骤。此外,本发明的目的是增大CdS层的带隙,从而降低其在光的可见光谱中的吸收。
[0010]CdS层中可见光的吸收能够通过增大具有选定掺杂物诸如Zn的CdS带隙而被最小化。
[0011]根据本发明,提出在生产过程期间,在CdS和CdTe层之间施加金属卤化物牺牲层,优选是ZnClJB牲层。
[0012]用于金属卤化物牺牲层的优选金属是锌(Zn)。用于金属卤化物牺牲层的优选卤化物是氟化物(F),最优选是氯化物(Cl)。因此,优选使用的化合物是ZnF2,并且最优选是ZnCl20进一步优选地是具有在金属卤化物化合物的化学计量比之上的另外的卤素(优选是氟或氯)的金属卤化物化合物的复合物。
[0013]在太阳能电池的生产中,采用包括更高温度的工艺。在这些工艺中,金属卤化物牺牲层变化为金属卤化物分成它的组分,其中金属优选地扩散到CdS层中,而卤化物优选地移动到CdTe层中。从而,金属卤化物层的大部分或者甚至整个层在生产过程期间被分解,这使得将金属卤化物层表示为牺牲层。
[0014]CdS层根据现有技术中已知的方法施加,诸如近距离升华法(CSS)或化学浴沉积(CBD)。
[0015]金属卤化物牺牲层可采用根据现有技术的方法施加。优选地,采用物理湿或干化学过程,诸如但不限于:
[0016]-在水或其它已知溶剂中溶解的金属卤化物的喷涂方法,
[0017]-旋涂,
[0018]-将衬底(或CdS层表面)浸入含有金属原子和卤化物原子的溶液中。
[0019]-海绵辊涂敷等。
[0020]根据上面提到的方法中的一个,当施加金属卤化物牺牲层时,所用溶液的浓度并不是最关心的。主要的目的是得到希望的层厚度。原则上,除了采用金属卤化物溶液的方法以外,其它的方法也是合适的,诸如蒸汽沉积、或者通过其它化合物优选地采用化学反应中的金属卤化物衍生物来形成金属卤化物层。这里应该注意的是,CdS层没有受到损坏。
[0021]金属卤化物牺牲层优选地在10°C -100°C的温度范围中施加,并且适当考虑选定方法的参数。
[0022]金属卤化物牺牲层的厚度取决于两层邻接层的尺寸。根据本发明,金属卤化物牺牲层优选地在5nm到100nm的范围中,更优选地在5nm到10nm的范围中,并且最优选地在5nm到20nm的范围中。
[0023]CdTe层生长或者后处理过程期间可用的热能使得金属卤化物牺牲层分解为它的组分,并且扩散到邻近的层中。金属原子扩散到CdS层中促进增大CdS层的带隙,从而促进使CdS层中的蓝光吸收最小化。因此,能够使太阳能电池装置的短路电流增大。CdTe层在金属卤化物牺牲层上的沉积能够根据现有技术来实现。CdTe层的厚度优选地在100nm到8000nm的范围中。
[0024]在特别优选的步骤中,在优选的约室温(20°C )到200°C特别优选是25°C到100°C的(衬底的)低温度范围中,CdTe层在金属卤化物牺牲层上生长到其最终厚度的约25%。接下来,该过程继续在优选是200°C到550°C的温度范围中执行,特别优选地在350°C到500°C的温度范围中执行,直至得到希望的层厚度。这个过程的优点在于,在ZnCl2层上生长了被较大CdTe晶体的层覆盖的较小CdTe晶体的层。生长CdTe层的方法还具有减小CdTe层中针孔形成的另外优点。在CdTe层生长的同时,金属卤化物中的大部分被热分解,并且它的成分扩散到邻接的层中。因此,由于电化学定理,金属优选地移动到CdS层中,而卤化物优选地移动到CdTe层中。在CdS层中优选地产生CdhMetalxS (x = 0...1),并且在CdTe层中优选地产生CdhMetalxTeU = 0...1),由此,金属的扩散主要地(而不是仅)发生在CdS层的方向上。这种金属扩散到CdS层和CdTe层中促进最小化晶格失配,并且还促进在该结处产生平滑的带跃迁。此外,Cl扩散到CdTe层中有助于晶界钝化。根据现有技术,卤化物的这种扩散和晶界钝化通常通过CdCl2S化过程来实现。因此,本发明中提到的过程模仿了 CdCl2活化过程。除此之外有利地,由于金属扩散到CdS层中,CdS层的带隙增大。在采用SnO2高阻缓冲层的情形中,在器件制备过程期间,来自CdS的一些Cd原子也能够扩散到SnO2层中。
[0025]由此,金属卤化物牺牲层被很大程度地或全部地耗尽,并且CdS层和CdTe层现在彼此邻接。金属卤化物牺牲层的分解可以通过附加温度步骤可选地而被提高或者被全部分解,该附加温度步骤包括将衬底加热到300°C到550°C的温度范围。
[0026]有利地,通过这种方式,可避免CdCl2S化步骤,并且可从过程中除去CdCl2。然而,这个步骤仍然可以被执行为一个选择。根据现有技术,在后接触工艺中,在基于铜的后接触工艺情形中;金属接触能够被执行而不蚀刻CdTe层。替代地,在无铜的后接触层的情形中,CdTe层也能够被蚀刻并且可进行金属接触,这些都根据现有技术来进行。
[0027]上述内容对于衬顶构造的太阳能电池是确实的。本领域技术人员能够理解的是,类似的过程能够用于衬底构造的太阳能电池。在衬底构造太阳能电池的生产过程中,这些步骤基本上被以相反的次序执行。因此,后接触层被施加到该衬底上,然后是CdTe层、金属卤化物牺牲层、CdS层和透明前接触层。有必要说明的是,如果CdS层采用CSS工艺来沉积,那么金属卤化物层会因为热而分解并且在CdS层达到足够的厚度之前蒸发。因此优选地,CdS层被在较低温度下沉积至少其设计厚度的一部分。这可通过采用CSS之外的其它工艺来执行,例如通过溅射或湿化学沉积。其余的可能是采用与在两个不同温度下的CSS —起沉积CdTe类似的两步骤过程,首先,在较低温度下而不是在较高温度下进行。通过使用CSS工艺,第一部分层(或下层)(优选地是设计厚度的25% )在100°C到200°C的温度范围中生产。优选地,其余部分在约350°C直到550°C的温度范围中生产。因为CdS层的至少第二部分层大致在与CdTe层相同的热和程序条件(CSS条件)下生产,金属卤化物牺牲层的分解以相对于衬顶构造生产工艺相同的方式发生。可选地,在衬底构造的生产工艺中,也可需要用于分解金属卤化物牺牲层的附加退火步骤。
[0028]通过采用上述方法,当入射光被转换为电流时,产量可有利地增加。观察到转换效率从12%到13%增加约1%。

【专利附图】

【附图说明】
[0029]图1示意性地示出了根据现有技术的太阳能电池的层结构。该太阳能电池在衬底
(I)上包括由前接触层(21)、CdS层(3)、CdTe层(4)和后接触层(22)组成的层顺序。
[0030]图2a到2e示意性地示出了可在根据本发明的方法的过程中观察到的层顺序。

【具体实施方式】
[0031]下面,在示出了衬顶构造的太阳能电池的形成的第一示例性实施例中解释根据本发明的方法,而不旨在对该实施例进行限制。
[0032]在图2a中,在衬底(I)上,已经通过根据现有技术的方法施加了前接触层(21)和CdS层(3)。作为前接触层(21),450nm厚的透明双层[作为导电层的掺杂锡氧化物(350nm)的氟和作为高阻缓冲层的锡氧化物(10nm)]被施加(为TCO)。CdS层(3)达到90nm的厚度并且采用CSS技术沉积。将根据本发明的ZnCl2牺牲层(5)沉积在CdS层(3)上。这是通过喷涂(溶解在水中的)ZnCl2溶液并且然后在80°C下干燥而施加的。ZnCl2层的厚度是约 15nm。
[0033]图2b和2c示意性地示出了 CdTe层上的牺牲层(5)是如何沉积的。在第一步骤(图2b)中,厚度为1500nm的CdTe层(4)通过CSS在120°C的温度下被沉积。接下来(图2c),衬底温度增加到450°C,并且沉积约3500nm的CdTe。CdTe层的总厚度是约5000nm。在CdTe于450°C下的沉积期间,牺牲层开始分解,并且Zn离子优选地移动到CdS层(3)中,而Cl离子优选地扩散到CdTe层中,并且从而有助于CdTe晶界钝化。通常,如果需要的话,可执行附加的热步骤。这可促进完全分解牺牲层(5)。在有必要的情形中,可执行定期的CdCl2活化处理,而其中CdCl2的量和/或处理时间减小。
[0034]图2d示意性地示出了在CdTe的沉积过程的热处理之后,牺牲层(5)几乎被完全地分解。
[0035]图2e示意性地示出了,作为根据本发明的方法的结果,在完成与(由Mo制成的)金属层(22)的后接触步骤之后,已经与根据现有技术已知的层顺序对应的层顺序地制成了太阳能电池。详细地,CdS层(3)中Zn离子的浓度梯度和CdTe层(4)中Cl离子的浓度梯度通过扩散过程而增大。这些扩散梯度指出了根据本发明的方法的用途。
[0036]附图标记列表:
[0037]I衬底(玻璃)
[0038]21 前接触层(透明的,TC0)
[0039]22后接触层(金属)
[0040]3CdS 层
[0041]4CdTe 层
[0042]5ZnCl2 层
【权利要求】
1.一种用于生产衬顶构造的太阳能电池的方法,其特征在于,所述方法包括如下步骤: a.提供透明衬底, b.施加透明的前接触层, c.施加CdS层, d.施加金属卤化物化合物的牺牲层, e.施加CdTe层并分解所述牺牲层,包括将金属离子中的大部分扩散到所述CdS层中并且将卤化物离子中的大部分扩散到所述CdTe层中, f.施加后接触层。
2.一种用于生产衬底构造的太阳能电池的方法,其特征在于,所述方法包括如下步骤: a.提供衬底, b.施加后接触层, c.施加CdTe层, d.施加金属卤化物化合物的牺牲层, e.施加CdS层并分解所述牺牲层,包括将金属离子中的大部分扩散到所述CdS层中并且将卤化物离子中的大部分扩散到所述CdTe层中, f.施加透明的前接触层。
3.根据权利要求1所述的方法的步骤b,或者根据权利要求2所述的步骤f,其特征在于,所述步骤采用另外的合适高阻缓冲层来执行。
4.根据权利要求1所述的方法,其特征在于,在步骤e中,来自具有高达25%的百分比的总层厚度的第一部分层的所述CdTe层在室温到200°C的温度范围中被生产,并且其余的第二 CdTe部分层在350°C到550°C的温度范围中被生产。
5.根据权利要求2所述的方法,其特征在于,在步骤e中,来自具有高达75%的百分比的总层厚度的第一部分层的所述CdTe层在350°C到550°C的温度范围中被生产,并且其余的第二 CdTe部分层在室温到200°C的温度范围中被生产。
6.根据权利要求2所述的方法,其特征在于,在步骤c中,来自具有高达25%的百分比的总层厚度的第一部分层的所述CdS层在100°C到200°C的温度范围中被生产,并且其余的第二 CdS部分层在350°C到550°C的温度范围内被生产。
7.根据前述权利要求中的任一项所述的方法,其特征在于,步骤e在100°C到小于550°C的范围中的温度下执行。
8.根据前述权利要求中的任一项所述的方法,特征在于,在步骤e之后,执行附加的CdCl2活化步骤。
9.根据前述权利要求中的任一项所述的方法,其特征在于,在步骤e之后,执行在300 V到450 °C的范围中的温度下的温度处理步骤。
10.根据前述权利要求中的任一项所述的方法,其特征在于,所述牺牲层由ZnCl2或ZnCl2衍生物形成。
11.根据权利要求10所述的方法,其特征在于,所述牺牲层还包括适于增大所述CdS层的带隙的其它合适的金属氯化物。
12.根据前述权利要求中的任一项所述的方法,其特征在于,所述牺牲层的金属卤化物化合物在步骤d中被溶解在合适的溶液中。
13.根据前述权利要求中的任一项所述的方法,其特征在于,所述牺牲层的金属卤化物化合物由作为金属的Zn和作为卤素的氟或氯组成。
14.根据前述权利要求中的任一项所述的方法,其特征在于,所述牺牲层的金属卤化物化合物含有在所述金属卤化物化合物的化学计量比之上的另外的氟或氯。
【文档编号】H01L31/18GK104425652SQ201310472442
【公开日】2015年3月18日 申请日期:2013年8月30日 优先权日:2013年8月30日
【发明者】克里什纳库马·维拉潘, 巴斯蒂安·希普欣, 贝蒂娜·斯帕特, 克里斯蒂安·德罗斯特, 彭寿 申请人:中国建材国际工程集团有限公司, Ctf太阳能有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1