改良的热处理腔室的制作方法

文档序号:19365967发布日期:2019-12-10 20:50阅读:149来源:国知局
改良的热处理腔室的制作方法

在此披露用于半导体处理的设备。更具体地,披露于此的实施方式涉及用于在沉积处理中加热基板的设备。



背景技术:

在集成电路的制造中,使用沉积处理(诸如化学气相沉积(cvd)、或外延处理)以在半导体基板上沉积多种材料的薄膜。外延是广泛使用于半导体处理的工艺以在半导体基板上形成非常薄的材料层。这些层频繁地界定半导体装置的一些最小特征,且若需要结晶材料的电性特性,这些层可具有高品质结晶结构。通常提供沉积前驱物(precursor)至处理腔室,所述处理腔室中设置有基板,所述基板被加热至利于具有需要特性的材料层成长的温度。

通常需要这些层具有非常均匀的厚度、组成及结构。由于局部基板温度、气体流动及前驱物浓度的变动,形成具有均匀且可重复特性的层是十分有挑战性的。处理腔室通常为能够维持高度真空(典型地低于10torr)的容器,且通常由置于所述容器外部的非准直源(诸如,加热灯)提供热,以避免导入污染。基板温度的控制以及局部形成层的条件的控制因为以下因素而复杂:来自加热灯的高度扩散的热能、腔室部件的热吸收及发射、及传感器及腔室表面的暴露于处理腔室内部形成层的条件。保持对具有改良的温度控制的沉积腔室的需要。



技术实现要素:

描述于此的实施方式提供一种基板处理设备,所述基板处理设备包括:真空腔室,所述真空腔室包括第一拱形结构(dome)和面对所述第一拱形结构的第二拱形结构;基板支撑件,所述基板支撑件设置于所述真空腔室内部的所述第一拱形结构与所述第二拱形结构之间;准直(collimated)能量源,所述准直能量源被布置于分隔壳体中且接近所述第二拱形结构放置,其中所述第二拱形结构介于所述准直能量源与所述基板支撑件之间。所述第二拱形结构的至少一部分及所述基板支撑件可对来自所述准直能量源的准直能量为光学透明的。

在一个实施方式中,披露了一种基板处理设备。所述基板处理设备包括:真空腔室,所述真空腔室包括第一拱形结构及第二拱形结构;基板支撑件,所述基板支撑件设置于所述真空腔室内部的所述第一拱形结构与所述第二拱形结构之间且面对所述第一拱形结构,其中所述基板支撑件经配置以支撑具有沉积表面的基板;和准直能量源,所述准直能量源位于分隔壳体中,所述分隔壳体接近所述真空腔室的所述第二拱形结构放置,其中所述第二拱形结构的至少一部分及所述基板支撑件对来自所述准直能量源的准直能量为光学透明的。

在另一实施方式中,披露了一种基板处理设备。所述基板处理设备包括:真空腔室,所述真空腔室包括第一拱形结构及第二拱形结构;基板支撑件,所述基板支撑件设置于所述真空腔室内部的所述第一拱形结构与所述第二拱形结构之间且面对所述第一拱形结构,其中所述基板支撑件经配置以支撑具有沉积表面的基板;准直能量源,所述准直能量源位于分隔壳体中,所述分隔壳体接近所述真空腔室的所述第二拱形结构放置;和金属构件,所述金属构件设置于所述真空腔室的所述第二拱形结构与所述准直能量源之间。

在另一实施方式中,披露了一种基板处理设备。所述基板处理设备包括:真空腔室,所述真空腔室包括第一拱形结构及第二拱形结构;基板支撑件,所述基板支撑件设置于所述真空腔室内部的所述第一拱形结构与所述第二拱形结构之间且面对所述第一拱形结构,其中所述基板支撑件经配置以支撑具有沉积表面的基板;准直能量源,所述准直能量源位于分隔壳体中,所述分隔壳体接近所述真空腔室的所述第二拱形结构放置;和反射器,所述反射器设置于所述准直能量源与所述第二拱形结构之间。

附图说明

可通过参照实施方式(其中一些实施方式图示于附图中)来详细理解本发明的上述特征以及以上简要概述的有关本发明的更特定描述。然而,注意附图仅图式本发明典型的实施方式,因此不应被视为限制其范围,因为本发明可允许其他等效的实施方式。

图1a至1d为根据描述于此的多种实施方式的处理腔室的示意性截面图。

图2为根据描述于此的一个实施方式的设置于下拱形结构与准直能量源之间的金属板的平面图。

图3为根据描述于此的一个实施方式的处理腔室的一部分的示意性截面图。

图4为根据描述于此的一个实施方式的处理腔室的一部分的示意性截面图。

图5a至5c为根据描述于此的多种实施方式的处理腔室的一部分的示意性截面图。

图6为根据描述于此的一个实施方式的折射器的侧视图。

为了便于理解,尽可能使用相同的参考标记,以标示各图中共有的相同元件。预期披露于一个实施方式中的元件可有利地使用于其他实施方式中,而无需特定叙述。

具体实施方式

在实施沉积处理时能够实现基板的区域温度控制的处理腔室具有第一拱形结构、侧面部分、及第二拱形结构均由一材料制成,所述材料具有在容器内建立高度真空时维持所述材料的形状的能力。基板设置于处理腔室内部的基板支撑件上且位于第二拱形结构上方。准直能量源可设置于接近第二拱形结构的分隔壳体中,且第二拱形结构可放置于准直能量源与基板支撑件之间。第二拱形结构的至少一部分及基板支撑件可对来自所述准直能量源的准直能量为光学透明的或光学透射的。

图1a为根据一个实施方式的处理腔室100的示意性截面图。处理腔室100可用于处理一个或更多个基板,包括沉积材料于基板108的沉积表面116上。处理腔室100包括准直能量源102,准直能量源102用以在除其他部件以外还加热设置于处理腔室100内的基板108的背侧104。准直能量源102可为多个激光器,诸如激光二极管、光纤激光器、光纤耦合激光器或多个发光二极管(led)。具有准直的能量传递至基板108的好处为:即便在源102并非接近基板108时,改良对辐射图案的控制。准直能量源102发射具有已知发散性(divergence)的能量。准直能量源102的发散性程度可为低于约15度半峰全宽(full-widthathalf-width,fwhm)。可使用光学元件以控制具有已知发散性的辐射,所述光学元件有效地传递辐射至选定的图像平面(诸如基板108)的选定区域。基板支撑件107可为漏斗状的基板支撑件,可支撑边缘环105。边缘环105由基板108的边缘支撑基板108。可设置多个销(pin)110于基板支撑件107上,且边缘环105可由销110支撑。在一个实施方式中,有三个销110。在一个实施方式中,没有边缘环105而基板108由多个销110支撑。基板支撑件107可由对来自准直能量源102的准直能量为光学透射的或光学透明的材料所制成,使得来自准直能量源102的准直能量(诸如多个激光束)可加热基板108的背侧104而不损失能量。用于基板支撑件107的材料可依据准直能量源102。在一个实施方式中,基板支撑件107由对来自准直能量源102的准直能量为光学透明的石英所制成。光学透明意指:材料传送多数辐射而非常微量的辐射被反射和/或吸收。在一个实施方式中,基板支撑件107包括引导准直能量至基板108的背侧104的光学特征结构或光学元件。

示出了基板支撑件107位于升高的处理位置,但可通过致动器(未示出)垂直地穿越至所述处理位置下方的负载位置,以允许升降销109接触突出部分或突出物111,穿过基板支撑件107中的孔而将基板108从基板支撑件107升起。接着机械手(未示出)可进入处理腔室100以接合基板108并经由负载口103移除基板108。接着基板支撑件107可被致动至处理位置,以放置基板108于销110上,其中基板108的装置侧116背离背侧104。

基板支撑件107位于处理腔室100内的第一拱形结构128与第二拱形结构114之间。基板108(未以比例绘制)可经由负载口103被带入处理腔室100中且放置于基板支撑件107上。基板支撑件107在位于处理位置时将处理腔室100的内容积分割成处理气体区域156(基板上方)和净化气体区域158(基板支撑件107下方)。基板支撑件107在处理期间可通过中央轴132旋转,以最小化处理腔室100内的热及处理气体流动空间异常的影响,因而有助于基板108的均匀处理。基板支撑件107由中央轴132支撑,中央轴132在装载及卸载期间(而在一些范例中,在基板108处理期间)将基板108以轴向134移动。基板支撑件107典型地由具有低热质量或低热容量的材料形成,使得被基板支撑件107吸收及发射的能量最小化。

一般而言,第一拱形结构128及第二拱形结构114由光学透明材料形成,诸如石英。第一拱形结构128及第二拱形结构114为薄的,以最小化热记忆(thermalmemory),典型地具有约3mm与约10mm之间的厚度,例如约4mm。可通过导入热控制流体(诸如,冷却气体)穿过入口126进入热控制空间136、及经由出口130抽出热控制流体而对热性地控制第一拱形结构128进行热控制。在一些实施方式中,经由热控制空间136的冷却流体循环可减少第一拱形结构128的内表面上的沉积。在第二拱形结构114由薄石英制成时,第二拱形结构114可具有锥形以便于承受处理腔室100内部的真空条件。在一个实施方式中,整体第二拱形结构114为石英所制成,而对来自准直能量源102的准直能量为光学透明的。

反射器122可可选地放置于第一拱形结构128外部,以将由基板108辐射出的辐射反射回到基板108上。由于反射的辐射,通过包含热(否则可逃逸出处理腔室100)将改良加热的效率。反射器122可由金属制成,诸如铝或不锈钢。反射器122可具有加工的沟道以携带用于冷却反射器122的流体(诸如水)的流动。若需要,可通过以高度反射性涂层(例如以金涂层)来涂覆反射器区域来改良反射的效率。

可以一特定方式绕着中央轴132将准直能量源102(例如,激光器阵列)设置于第二拱形结构114下方,以在处理气体通过基板108时加热基板108,因而有助于沉积材料于基板108的沉积表面116上。在多种范例中,沉积于基板108上的材料可为iii族、iv族和/或v族的材料,或可为包括iii族、iv族和/或v族掺杂剂的材料。例如,所沉积的材料可包括硅、锗、砷化镓、砷化铟镓、氮化镓、氮化铟镓、氮化铝镓、或其他化合物半导体或半导体合金。准直能量源102产生准直辐射,所述准直辐射对在基板108上产生多个控制区域及空间上较小的控制区域而言为有用的。结果,实现对基板108较好的温度控制。

准直能量源102可适于加热基板108至范围约200摄氏度至约1400摄氏度内的温度,诸如约300摄氏度至约1350摄氏度。准直能量源102的各能量发射器耦接至功率分配板(未示出),功率经由所述功率分配板供应至各发射器。这些发射器(可为激光器)放置于分隔壳体145内,分隔壳体145可或不可在处理期间或处理后通过例如导入位于这些发射器之间的沟道149的冷却流体而冷却。各发射器可设置于纤维(fiber)或管子143内部。这些发射器可为激光二极管、光纤激光器或光纤耦合激光器。各发射器为了均匀的照射而典型地支撑于管子143的中央处。在一个实施方式中,各发射器可位于管子143的底部,例如穿过管子143底部中的开口插入且固定至(或靠于)管子143的底部。在另一实施方式中,各发射器可通过支撑件(未示出)支撑于管子143的底部上方,所述支撑件可为销或突出物。所述支撑件可包括管道以提供功率至设置于所述支撑件上的发射器。在一个实施方式中,可在管子中设置光纤激光器,使得所述光纤激光器的发射端置于靠近壳体管子的中央,而与所述壳体管子的底部间隔开来。

可在壳体145中设置多个热辐射传感器140(可为高温计),以测量基板108的热发射。传感器140典型地设置于壳体145中的不同位置处,以便于处理期间观察基板108的不同位置。感测来自基板108的不同位置的热辐射便于比较基板108的不同位置处的热能量含量(例如,温度),以确定是否出现温度异常或非均匀性。所述非均匀性可导致膜形成的非均匀性,诸如厚度及组成。典型地使用至少两个传感器140,但可使用多于两个。不同实施方式可使用三个、四个、五个、六个、七个或更多个传感器140。

因为准直能量源102典型地产生单色光,传感器140可被调谐至与准直能量源102的单色光波长相异的一波长,所以可获得更精确的温度读数。使用宽频谱能量源(诸如,加热灯),来自能量源的辐射并非单色的且可影响传感器140的温度读数。

可在反射器122中设置热传感器118,以监控第一拱形结构128的热状态(若需要),或从与传感器140相对的观察点监控基板108的热状态。所述监控对于比较从传感器140接收的数据而言可为有用的,例如,确定从传感器140接收的数据中是否存在缺陷。在一些例子中,热传感器118可为传感器的组件,特征为多于一个个别的传感器。因此,处理腔室100的特征可为设置一个或更多个传感器以接收从基板的第一侧所发射的辐射,及设置一个或更多个传感器以接收从相对于所述第一侧的基板的第二侧所发射的辐射。

控制器160接收来自传感器140的数据,且基于所述数据分别调整传递至准直能量源102的各发射器或各个发射器组的功率。控制器160可包括独立对多种发射器供电的功率供应器162。控制器160可以所需要的温度分布(temperatureprofile)来配置,且基于比较接收自传感器140的数据,控制器160调整至发射器的功率,以使所观察到的热数据符合所需要的温度分布。在腔室性能随着时间漂移(drift)的情况下,控制器160也可调整至发射器的功率,以使一个基板的热处理符合另一基板的热处理。

金属构件150可设置于第二拱形结构114与准直能量源102之间。金属构件150可包括用于控制第二拱形结构114的温度的冷却沟道152。因为一些处理气体可出现于净化气体区域158中,因此在第二拱形结构114的温度太冷或太热时,可发生第二拱形结构114上的沉积。此外,加热的基板108可加热第二拱形结构114,且加热的第二拱形结构114可花费较基板108更久的时间来冷却,进而可增加基板108的冷却时间。因此,第二拱形结构114可有利地通过金属构件150冷却,以减少基板108的冷却时间。如图1a中所示,金属构件150与第二拱形结构114的锥形可为共形的(conformal),以提供金属构件150的有效热耦合至第二拱形结构114。准直能量源102(诸如多个激光二极管)可形成与构件150实质共形的平面,如图1a中所示。或者,准直能量源102可形成与基板108的沉积表面116实质平行的平面。可选地,可通过在第二拱形结构114和金属构件150或壳体145之间流动冷却剂流体而冷却第二拱形结构114。

图1b为根据描述于此的一个实施方式的处理腔室100的示意性截面图。处理腔室100包括具有多个轮辐166的基板支撑件164,以取代漏斗状的基板支撑件107。销110由轮辐166支撑,且这些销直接支撑基板108或经由边缘环105支撑基板108。轮辐166可由光学透明材料制成,诸如石英。在操作期间,轮辐166可旋转且结果可形成阴影于基板108的背侧上。为了最小化阴影效应,可布置准直能量源102(诸如多个激光器)使得基板108的背侧104上的任何区域p被至少两个激光束(诸如束l1及l2)照射。在一个实施方式中,基板108的背侧104上的各区域p被10个激光束照射。

图1c为根据描述于此的一个实施方式的处理腔室100的示意性截面图。处理腔室100包括具有漏斗状部分170和从漏斗状部分170径向向外延伸的多个轮辐172的基板支撑件168。漏斗状部分170和轮辐172可由光学透明材料制成,诸如石英。在操作期间,所有激光束可穿过光学透明的漏斗状部分170,且可以一角度将这些光束传递至基板108的背侧104,如图1c中所示的l3及l4,使得旋转的轮辐172不会在基板108的背侧104上形成阴影。

图1d为根据描述于此的一个实施方式的处理腔室100的示意性截面图。处理腔室100包括耦合至盘(disk)106的基板支撑件174。基板支撑件174可包括多个托架176。在一个实施方式中,有三个托架176支撑着边缘环105。在此配置中,可通过机械手(未示出)经由负载口103从处理腔室100移除基板108或将基板108导入处理腔室100。机械手可能够产生力,例如柏努利力(bernoulliforce)或气体浮动力,以提高基板108离开边缘环105,而不接触基板108。盘106耦接至延伸穿过第一拱形结构128和反射器122的轴113。轴113可能够通过永久磁铁115及电磁铁117垂直地移动或旋转。在操作期间,电磁铁117磁性耦合至永久磁铁115以移动永久磁铁115。电磁铁117由驱动控制器119控制,驱动控制器119经配置以产生并控制电磁铁117中的磁场。电磁铁117中的磁场与永久磁铁115交互作用以垂直移动永久磁铁115和/或旋转永久磁铁115,进而引起边缘环105及基板108垂直移动和/或旋转。

图2为根据一个实施方式的金属构件150的平面图。构件150可具有与基板108相同的形状,诸如圆形,如图2中所示。构件150可由金属制成,诸如铜、铝或不锈钢。可在构件150中央形成开口201以使轴中央轴132穿过。可在构件150中形成多个孔隙202,且各孔隙202与激光器或其他发射器对齐。可于各孔隙202内部形成光学部件204(诸如,衍射性、折射性和/或反射性元件如:透镜、散射器、成形器、截形器(truncator)和/或均化器),以塑形、聚焦或散射能量以实现对基板108加热的均匀性。在一个实施方式中,准直能量源102设置于孔隙202内部。在其他实施方式中,光学部件204可并入基板支撑件107中。

图3为处理腔室100的一部分的截面图。如图3中所示,金属构件302设置于第二拱形结构114和准直能量源102之间。金属构件302可与金属构件150相同,不同之处在于金属构件302为平坦的而非锥形的。金属构件302包括用于冷却剂流动通过的冷却沟道304,以控制第二拱形结构114的温度。金属构件302也包括用于激光束穿过的多个孔隙,且可于各孔隙内部设置一个或更多个光学部件。

图4为根据一个实施方式的处理腔室100的一部分的截面图。如图4中所示,于基板支撑件107和准直能量源102之间设置一实质平坦拱形结构402。为了能够承受处理腔室100内部的真空条件,平坦拱形结构402可由金属制成,诸如铝。可于平坦拱形结构402上设置衬垫(未示出),以保护金属拱形结构402免于化学侵蚀。平坦拱形结构402可具有设置于平坦拱形结构402中的多个孔,以允许激光束通过。可将光学透明材料(诸如,石英)置于这些孔内部,以维持真空条件并允许激光束通过。因此,平坦拱形结构402的至少一部分对准直能量源102的准直能量为光学透明的。准直能量源102可形成实质平行于平坦拱形结构402的平面。

图5a为根据描述于此的一个实施方式的处理腔室100的一部分的示意性截面图。可在准直能量源102之上设置反射器502。反射器502可设置于准直能量源102和金属构件150之间,或设置于金属构件150和第二拱形结构114之间。反射器502可包括多个腔体(cavity)504,且各个腔体504可通过设置于准直能量源102上方的管子143中的反射性表面510来界定。可在各反射性表面510中形成开口506以使准直能量通过。可在腔体504的开口处设置镜(mirror)508以将准直能量反射至反射性表面510,进而将准直能量朝向基板108的背侧104反射。反射性表面510可为一弧、曲线段、或线区段,且在表面510的长度及宽度维度中皆可具有刻面(facet)。镜508可被刻面、扩散性的、或两者的组合。反射器502可为多个同心环或多个同心多边形。

图5b为根据描述于此的一个实施方式的处理腔室100的一部分的示意性截面图。可在准直能量源102之上设置多个反射器环512。反射器环512可设置于准直能量源102和金属构件150之间,或设置于金属构件150和第二拱形结构114之间。各反射器环512具有第一反射性表面514和第二反射性表面516。在操作期间,准直能量(图5b中示为“l5”)从第一反射器环512的第一反射性表面514被反射至邻近于第一反射器环512的第二反射器环512的第二反射性表面516,且第二反射性表面516将准直能量朝向基板108的背侧104反射。各反射器环512可包括用于冷却剂通过的沟道518。

图5c为根据描述于此的一个实施方式的处理腔室100的一部分的示意性截面图。准直能量源519(例如,多个激光二极管)可设置于第二拱形结构114下方的表面521上。表面521可与基板108的背侧104实质垂直。多个反射器环520可设置于第二拱形结构114下方。在一个实施方式中,准直能量源519和环520皆设置于金属构件150下方。各反射器环520可具有反射性表面522以将准直能量(图5c中示为“l6”)从准直能量源519朝向基板108的背侧104反射。各反射器环520可包括用于冷却剂通过的沟道524。可使用支撑件526来支撑各反射器环520,且支撑件526可不在来自准直能量源519的准直能量的路径上。例如,可将支撑件526设置于两个准直能量源519的光学路径之间,所以没有准直能量被支撑件526中断。

图6为根据描述于此的一个实施方式的折射器600的侧视图。折射器600可包括第一表面602、第二表面608、第三表面610及第四表面612。第一表面602可为非线性的,且包括一个或更多个倾斜表面604、606,这些倾斜表面相对于第一表面602的剩余表面603、605、607倾斜,且相对于第三表面610及第四表面612倾斜。剩余表面603、605、607可与第二表面608实质平行,且第三表面610可与第四表面612实质平行。多个折射器600可设置于准直能量源102上方及第二拱形结构114下方,以便控制准直能量的方向。一个或更多个倾斜表面604、606可为平坦(plain)或纹理化的(textured)。在操作期间,准直能量可由表面602和/或612进入,且纹理化和/或平坦的表面604、606使得能量经由表面608和/或610离开。倾斜表面604、606的斜率及纹理可改变以便控制准直能量离开折射器600的方向。可在准直能量源102和第二拱形结构114之间设置其他类型的折射器,诸如全息(衍射)透镜、刻面表面透镜、或曲面透镜,以控制准直能量的方向。

总而言之,在沉积处理中使用产生单色光的准直能量源。准直能量源产生准直光以在基板上产生多个控制区域及空间上较小的控制区域,进而对基板提供更好的温度控制。此外,准直能量为单色的而能实现更精确的温度测量。

前述内容设计本发明的实施方式,可在不背离本发明的基本范围的情况下设计出本发明的其他和进一步的实施方式,且本发明的范围由随后的权利要求来确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1