一种掺氮改性的相变薄膜材料及其制备方法与流程

文档序号:12474367阅读:198来源:国知局
一种掺氮改性的相变薄膜材料及其制备方法与流程

技术领域

本发明涉及微电子技术领域的相变存储材料及其制备方法,具体涉及一种用于相变存储器的掺氮改性的相变薄膜材料及其制备方法。



背景技术:

相变存储器(PCRAM)是利用硫系材料在晶态和非晶态之间的可逆转换从而实现信息存储的一种新型非挥发性存储器。当相变材料处于非晶态时具有高电阻,晶态时具有低电阻,利用电脉冲产生的焦耳热实现高阻态与低阻态之间的重复转换,达到信息存储的目的。它具有功耗低、读取速度快、稳定性强、存储密度高、与传统的CMOS工艺兼容等优点,因而受到越来越多的研究者的关注(Zhou Xilin等,Applied Physics Letter, 103(7), 072114, 2013)。

与传统的Ge2Sb2Te5相变材料相比,Zn-Sb合金具有更快的相变速度,尤其是Sb富余的Zn-Sb合金具有超高的相变速度,使其具有成为超高速PCRAM用相变材料的巨大潜力(Park, Tae Jin等Japanese Journal Of Applied Physics, 46(23), L543, 2007)。然而Zn-Sb合金也存在自身的一些缺点,那就是稳定性不高。例如纯的Zn15Sb85合金的晶化温度为160℃左右,利用其制造的相变存储器只能在91℃将数据保持10年,在更高的温度下数据保持能力会急剧下降,因而无法满足实际应用的需要。

提高相变存储材料的数据保持力的方法较为常见的有:1、改变材料中各元素组分;2、掺杂其他元素进行改性;3、研究开发新材料。

例如中国专利文献CN 103247757 A 公开了一种用于相变存储器的Zn-Sb-Te相变存储薄膜材料及其制备方法,该材料是一种由锌、锑、碲三种元素组成的混合物。所述的Zn-Sb-Te相变存储薄膜材料采用Sb2Te3合金靶和Zn单质靶共溅射形成。相比于Zn-Sb合金,该文献公开的存储薄膜材料中增加了碲元素,存储性能得到提升。但是碲元素属于环境不友好的化学元素,容易造成一定的环境污染。而且,碲元素在半导体工艺中容易发生挥发,从而污染整个半导体生产设备。另外,含碲的相变材料经过多次循环以后容易发生分相,从而影响器件的疲劳特性。



技术实现要素:

本发明所要解决的技术问题是提供一种掺氮改性的相变薄膜材料及其制备方法。

实现本发明目的的技术方案是一种掺氮改性的相变薄膜材料,由Zn、Sb、N三种元素组成,其化学组成通式为Nx(Zn15Sb851-x,其中0.40≤x≤0.41。

一种如上所述的掺氮改性的相变薄膜材料的制备方法,包括以下步骤:

①基片的准备,将基片洗净烘干待用。

②磁控溅射的准备,在磁控溅射镀膜系统中,将步骤①准备的待溅射的基片放置在基托上,将Zn15Sb85合金靶材安装在磁控射频溅射靶中,并将磁控溅射镀膜系统的溅射腔室进行抽真空;然后向溅射腔室通入高纯氩气和高纯氮气至溅射腔室内气压达到0.15Pa~0.25Pa。

③Nx(Zn15Sb851-x薄膜的制备,调节向溅射腔室通入的高纯氩气的流量为24 sccm ~26sccm,高纯氮气流量为4sccm~6sccm,溅射气压为0.15 Pa~0.25 Pa;设定溅射功率15W~25W;首先清洁Zn15Sb85靶材表面,待Zn15Sb85靶材表面清洁完成后,关闭Zn15Sb85靶上所施加的射频电源,将待溅射基片旋转到Zn15Sb85靶位,开启Zn15Sb85靶位射频电源,于室温下溅射20s~40s后得到掺氮改性的相变薄膜材料。

上述步骤①中进行基片清洗烘干操作时,先在超声清洗机中将基片在丙酮中超声清洗3~5分钟,洗毕取出用去离子水冲洗;接着在超声清洗机中将基片在乙醇中超声清洗3~5分钟,洗毕取出用去离子水冲洗,冲洗干净后用高纯N2吹干表面和背面;吹干后的基片送入烘箱中烘干水汽,完成基片的准备。

上述步骤③中清洁Zn15Sb85靶材表面时,将空基托旋转到Zn15Sb85靶位,打开Zn15Sb85靶上所施加的射频电源,开始对Zn15Sb85靶材进行溅射以清洁Zn15Sb85靶材表面,溅射时间为80s~120s。

本发明具有积极的效果:(1)本发明通过在射频溅射沉积Zn15Sb85薄膜的过程中同时通入氩气和氮气,得到的相变薄膜材料中掺杂氮元素,N与Zn形成稳定性较高的氮化物非晶颗粒,分布在相变材料周围,一方面阻止相变材料的晶化,提高相变材料整体的热稳定性;另一方面,Zn能减小晶粒尺寸,增加晶界数量,从而增加晶态电阻,降低器件在RESET过程中的功率消耗。(2)本发明的掺氮改性相变薄膜材料与纯的Zn15Sb85薄膜相比,掺入氮原子后,改性后的薄膜具有较快的晶化速度,能够大大提高相变存储器的存储速度;而且改性后的薄膜的晶化温度和激活能较高,数据保持能力得到加强,提高了用其制作的相变存储器的稳定性;相比于未掺氮的Zn15Sb85薄膜材料,掺氮改性相变薄膜材料的晶态电阻和非晶态电阻更高,使得RESET功耗降低,有限降低用其制作的相变存储器的操作功耗。

掺氮改性Zn15Sb85得到的相变薄膜材料是一种高速、高稳定性、低功耗的相变材料,制备方法成本低,工艺可控性强,易于工业化大规模生产,具有较好的市场应用前景。

附图说明

图1为本发明的实施例1至实施例4制备的的相变薄膜材料及对比例1的Zn15Sb85薄膜相变材料的原位电阻与温度的关系曲线。

图2为本发明的实施例1至实施例4制备的的相变薄膜材料及对比例1的Zn15Sb85薄膜相变材料失效时间与温度倒数的对应关系曲线。

具体实施方式

(实施例1)

本实施例的相变薄膜材料是由N掺杂改性Zn15Sb85得到的相变薄膜材料,其化学组成通式为Nx(Zn15Sb851-x,其中0.29≤x≤0.49(本实施例中为0.2913)。

本实施例的掺氮改性的相变薄膜材料的制备方法包括以下步骤:

①基片的准备。选取尺寸为5mm×5mm的SiO2/Si(100)基片,先在超声清洗机中将基片在丙酮(纯度为99%以上)中超声清洗3~5分钟,洗毕取出用去离子水冲洗;接着在超声清洗机中将基片在乙醇(纯度在99%以上)中超声清洗3~5分钟,洗毕取出用去离子水冲洗,冲洗干净后用高纯N2吹干表面和背面;吹干后的基片送入烘箱中烘干水汽,烘干后的基片待用,其中烘箱温度设置为120℃,烘干时间20分钟。

②磁控溅射的准备。在磁控溅射镀膜系统(JGP-450型)中,将步骤①准备的待溅射的基片放置在基托上,将Zn15Sb85合金(纯度均达到99.999%)靶材安装在磁控射频(RF)溅射靶中,并将磁控溅射镀膜系统的溅射腔室进行抽真空直至腔室内真空度达到1×10-4 Pa;然后向溅射腔室通入高纯氩气和高纯氮气至溅射腔室内气压达到0.2Pa。

高纯氩气中氩气体积百分比均达到99.999%;高纯氮气中氮气体积百分比均达到99.999%。

③Nx(Zn15Sb851-x薄膜的制备。

调节向溅射腔室通入的高纯氩气的流量为27sccm,高纯氮气流量为3sccm,溅射气压为0.15 Pa~0.25 Pa(本实施例中为0.2Pa);设定溅射功率15W~25W(本实施例中为20W)。

将空基托旋转到Zn15Sb85靶位,打开Zn15Sb85靶上所施加的射频电源,开始对Zn15Sb85靶材进行溅射以清洁Zn15Sb85靶材表面,溅射时间为100s。

待Zn15Sb85靶材表面清洁完成后,关闭Zn15Sb85靶上所施加的射频电源,将待溅射基片旋转到Zn15Sb85靶位,开启Zn15Sb85靶位射频电源,于室温下溅射20s后得到N掺杂Zn15Sb85的相变薄膜材料,溅射速率为2.5s/nm,Nx(Zn15Sb851-x薄膜的厚度为50nm。如果要增加薄膜的厚度,增加溅射时间,例如将溅射时间延长至40s,所制得的薄膜的厚度为100nm。

经能谱(EDS)定量分析,本实施例的薄膜材料的化学组成式Nx(Zn15Sb851-x中x=0.2913。

(实施例2)

本实施例的掺氮改性的相变薄膜材料的制备方法其余与实施例1相同,不同之处在于:

步骤③中调节向溅射腔室通入的高纯氩气的流量为26sccm,高纯氮气流量为4sccm。所制得的掺氮改性的相变薄膜材料的化学组成式Nx(Zn15Sb851-x中x=0.3252。

(实施例3)

本实施例的掺氮改性的相变薄膜材料的制备方法其余与实施例1相同,不同之处在于:

步骤③中调节向溅射腔室通入的高纯氩气的流量为25sccm,高纯氮气流量为5sccm。所制得的掺氮改性的相变薄膜材料的化学组成式Nx(Zn15Sb851-x中x=0.4086。

(实施例4)

本实施例的掺氮改性的相变薄膜材料的制备方法其余与实施例1相同,不同之处在于:

步骤③中调节向溅射腔室通入的高纯氩气的流量为24sccm,高纯氮气流量为6sccm。所制得的掺氮改性的相变薄膜材料的化学组成式Nx(Zn15Sb851-x中x=0.4812。

(对比例1)

本对比例制备的是未掺氮的Zn15Sb85相变薄膜材料,其制备方法其余与实施例1相同,不同之处在于:

步骤②磁控溅射的准备时,溅射腔室抽真空后向溅射腔室通入高纯氩气至溅射腔室内气压达到0.2Pa。

步骤③中,调节向溅射腔室通入的高纯氩气的流量为30sccm,溅射气压为0.2Pa。

Zn15Sb85靶材表面清洁完毕后,关闭Zn15Sb85靶上所施加的射频电源,将待溅射基片旋转到Zn15Sb85靶位,开启Zn15Sb85靶位射频电源,于室温下溅射20s后得到Zn15Sb85相变薄膜材料,薄膜厚度为50nm。

(实验例1)

为了了解实施例1至实施例4所制备的掺氮改性的相变薄膜材料的性能,对实施例1至实施例4以及对比例1所制备的相变薄膜材料进行原位电阻性能测试,得到各相变薄膜材料的原位电阻与温度的关系曲线图和各相变薄膜材料的失效时间与温度倒数的对应关系曲线图。

各相变薄膜材料的原位电阻与温度的关系曲线图见图1,各相变薄膜材料的失效时间与温度倒数的对应关系曲线图见图2;图1和图2中ZS代表对比例1所制备的未掺氮的Zn15Sb85相变薄膜材料,ZSN1代表实施例1所制备的掺氮改性的相变薄膜材料,ZSN2代表实施例2所制备的掺氮改性的相变薄膜材料,ZSN3代表实施例3所制备的掺氮改性的相变薄膜材料,ZSN4代表实施例4所制备的掺氮改性的相变薄膜材料。

各相变薄膜材料的原位电阻与温度的关系测试方法如下:通过一个加热平台外接一个Keithley 6517 高阻表搭建了一个原位测量电阻-温度以及电阻-时间关系的测试系统。加热平台的温度由英国 Linkam 科学仪器有限责任公司 TP 94 型温度控制系统调节,降温通过 LNP94/2 型冷却系统利用液氮进行控制,升降温速率最高可到 90

℃/min,控温非常精确。本测试过程中所采用的升温速率为10℃/min。在升降温过程中,固定加在薄膜探针上的电压为2.5V,利用高阻表测出随温度变化的电流,再换算成相应的电阻。

由图1可知,在低温下,所有薄膜处于高电阻的非晶态。随着温度的不断升高,薄膜电阻缓慢降低,当达到其相变温度时,薄膜电阻迅速降低,到达某一值后基本保持该电阻不变,表明薄膜发生了由非晶态到晶态的转变。测试结果表明,随着薄膜中掺氮量的增加,薄膜的晶化温度由未掺氮时的160℃增加到了ZSN4的230℃,表明相变薄膜材料的热稳定性有了较大的提高。同时,相变薄膜材料的晶态电阻由未掺氮时的205Ω增加到了ZSN4的2.1×103Ω,扩大到原来的10倍,从而有效降低了RESET过程的功耗。

各相变薄膜材料的失效时间与温度倒数的对应关系测试方法如下:在不同的恒定退火温度下测量相变薄膜电阻随退火时间的变化曲线,当薄膜电阻降低至原来值的50%时,我们即认为电阻已经失效。将不同温度下的失效时间和对应温度的倒数作图,并将曲线延长至10年(约315360000s),得到对应的温度。

根据业内的统一评判标准之一,将利用相变材料将数据保持10年时对应的温度来评判材料的数据保持能力。

由图2可以看到,未掺氮的对比例1的ZS相变薄膜材料将数据保持10年的温度只有91 oC,而本发明的ZSNx ( x = 1, 2, 3)相变薄膜将数据保持10年的温度均得到了提高,其中ZSN3纳米薄膜材料将数据保持10年的温度提高到了134 oC。传统的Ge2Sb2Te5薄膜材料将数据保持10年的温度为85 oC。可见本发明的ZSNx ( x = 1, 2, 3)相比传统Ge2Sb2Te5薄膜材料数据保持能力显著提高。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1