一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法与流程

文档序号:12614171阅读:436来源:国知局
一种基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法与流程

本发明涉及一种径向异质结太阳能电池及其制备方法,具体地说是基于硫属亚铜化合物的核壳结构异质结太阳能电池及其制备方法。



背景技术:

随着集成电路小型化、微型化发展,高性能、低功耗微纳器件的制备已成为研究热点。结晶良好的准一维纳米结构由于显著低于体相材料的制备成本和优于薄膜材料的电输运特性,在新型微纳器件领域受到了极大的关注。以纳米线太阳能电池为例,与体相太阳能电池及薄膜太阳能电池相比,纳米线太阳能电池有望在缩小器件尺寸的同时,显著减小材料成本与制造成本,获得相当的器件性能。

硫属亚铜化合物由于具有较大的少子扩散长度和较大的可见光区域吸收系数(103-105cm-1),是薄膜太阳能电池领域研究最早的吸收层材料之一。近年来,随着纳米制备技术的发展,基于其的纳米线太阳能电池也有了显著的进展。

印度理工学院德里分校的Varandani等将CuCl真空蒸镀到单根CdS纳米线上,通过其扩散与反应,实现了具有显著光伏特性的上下异质结结构CdS-CuxS纳米线的制备(Nanotechnology,2011,22,135701),首次制备了基于硫属亚铜化合物的纳米线太阳能电池。

此后,加州大学伯克利分校杨培东教授也以单根CdS纳米线为基础,以原子层沉积(ALD)的Al2O3为掩膜,通过CuCl溶液中的液相阳离子置换反应及氢氟酸缓冲液刻蚀去除Al2O3掩膜后,实现了CdS-Cu2S核壳结构径向异质结太阳能的制备,利用单晶的Cu2S壳层、良好的异质结界面接触以及核壳结构径向异质结较大的异质结界面、较短的载流子传输路径等特点,实现了转化效率达5.4%的单根CdS-Cu2S核壳结构纳米线太阳能电池的制备(Nature nanotechnology,2011,6,568)。

为避免重金属元素Cd的使用,本发明的发明人所在课题组尝试以液相合成的硫属亚铜化合物纳米线为基础,构建了CuS-ITO肖特基结太阳能电池(发明专利号:ZL201210053645.2)和以脉冲激光沉积(PLD)的In2S3薄膜为缓冲层的纳米线太阳能电池(发明专利申请号ZL 201610035612.3)。

以上纳米线太阳能电池的制备过程中,高运行成本、工艺复杂的高真空蒸镀设备如原子层沉积、脉冲激光沉积的使用,提升了纳米线太阳能电池的制备成本和工艺复杂度,阻碍了其进一步推广。



技术实现要素:

在现有技术存在的基础之上,本发明旨在构建基于硫属亚铜化合物的核壳结构异质结太阳能电池,在纳米太阳能电池领域有着重要的意义,所要解决的技术问题是通过简单的液相阳离子置换反应,将核壳结构异质结的形成过程与太阳能电池制备工艺相结合,实现核壳结构异质结太阳能电池的制备。

本发明解决技术问题,采用如下技术方案:

本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池,其特点在于:是以上表面覆有绝缘层的硅基衬底为基底,在所述绝缘层上分散硫属亚铜化合物准一维纳米结构,在所述硫属亚铜化合物准一维纳米结构的一端沉积第一金属薄膜电极,形成欧姆接触;通过紫外曝光技术,在第一金属薄膜电极上覆盖一层光刻胶阻挡层;通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物,形成以硫属亚铜化合物为核、以铟的硫属化合物为壳的核壳结构异质结;去除光刻胶阻挡层,通过紫外曝光和热蒸发技术,在铟的硫属化合物上方沉积第二金属薄膜电极,形成欧姆接触,第一金属薄膜电极与第二金属薄膜电极之间通过硫属亚铜化合物准一维纳米结构-核壳结构连通,即构成基于硫属亚铜化合物的核壳结构异质结太阳能电池。

其中:

所述硫属亚铜化合物准一维纳米结构的化学结构式为Cu2-xA,其中A为硫元素或硒元素,0≤x≤0.25;所述硫属亚铜化合物准一维纳米结构为纳米线、纳米棒、纳米管或纳米带;所述硫属亚铜化合物准一维纳米结构的轴向长度不小于10μm,径向长度为100-1000nm。

所述绝缘层为SiO2、Si3N4或HfO2;所述绝缘层的电阻率大于1×103Ω·cm、厚度为100-500nm。

所述第一金属薄膜电极为Au电极、Ti/Au复合电极、Cr/Au复合电极或Ni/Au复合电极;所述Au电极的厚度为30-100nm;所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极分别是在厚度3-10nm的Ti、Cr、Ni上沉积有30-100nm厚的Au。

所述光刻胶阻挡层为正性光刻胶或负性光刻胶,其覆盖在第一金属薄膜电极上方,尺寸大于第一金属薄膜电极,两者外边缘间距为2-5μm。

所述铟的硫属化合物通过液相阳离子置换反应,在硫属亚铜化合物准一维纳米结构表面置换形成,厚度为硫属亚铜化合物准一维纳米结构径向长度的1/6-1/4。

所述第二金属薄膜电极为In电极、In/Au复合电极、Ag电极或Al电极;所述In电极、Ag电极或者Al电极的厚度为30-100nm;所述In/Au复合电极是在厚度为30-100nm的In上沉积有3-10nm厚的Au。

所述第二金属薄膜电极与所述第一金属薄膜电极之间的距离不小于8μm。

上述核壳结构异质结太阳能电池的制备方法,包括如下步骤:

(1)取上表面覆有绝缘层的硅基衬底作为基底,将硫属亚铜化合物准一维纳米结构分散在所述绝缘层上;

(2)通过一次紫外曝光光刻和薄膜沉积技术,在硫属亚铜化合物准一维纳米结构的一端沉积第一金属薄膜电极,硫属亚铜化合物准一维纳米结构与第一金属薄膜电极形成欧姆接触;

(3)通过二次定位紫外曝光光刻,在第一金属薄膜电极上覆盖一层光刻胶阻挡层;

(4)通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物,然后去除光刻胶阻挡层;

(5)通过三次定位紫外曝光光刻和薄膜沉积技术,在铟的硫属化合物上方沉积第二金属薄膜电极,铟的硫属化合物与第二金属薄膜电极形成欧姆接触,即获得基于硫属亚铜化合物的径向异质结太阳能电池。

其中:步骤(4)液相阳离子置换在浓度为1.5mmol/L的In(NO3)3溶液中进行,用醋酸调节溶液pH至1.5-3.0,反应温度50℃,反应时间1-3h。

步骤(2)第一金属薄膜电极的沉积方式为电子束蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.01-0.05nm/s;

若步骤(5)中的第二金属薄膜电极为In电极或In/Au复合电极,则:In的沉积方式为热蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.1-0.5nm/s;Au的沉积方式为电子束蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.01-0.05nm/s;

若步骤(5)中的第二金属薄膜电极为Ag电极或Al电极,则沉积方式为电子束蒸发,真空室气压不高于6×10-3Pa,蒸发速率为0.05-0.3nm/s。

与已有技术相比,本发明的有益效果体现在:

1、本发明异质结的形成过程通过光刻胶掩膜和液相阳离子置换反应来实现,避免了ALD、PLD等高真空设备的使用,并且可以通过液相置换条件的调节,实现壳层厚度、结晶性等的可控;

2、本发明将核壳结构异质结的形成过程与太阳能电池制备工艺相结合,与现有集成电路的硅工艺兼容性良好,可实现核壳结构异质结太阳能电池的简易制备,且有望应用于其它材料体系,具有显著的普适性。

附图说明

图1是本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池的结构示意图;

图2是本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池制备过程示意图;

图3是本发明实施例1中液相阳离子置换得到的单根Cu2-xSe-In2Se3核壳结构异质结的透射电子显微镜照片和元素分布图;

图4是本发明实施例1中Cu2-xSe-In2Se3核壳结构异质结太阳能电池的扫描电子显微镜照片;

图5是本发明实施例1中Cu2-xSe-In2Se3核壳结构异质结太阳能电池的光伏特性曲线,图中可以看出器件开路电压为0.22V,短路电流为1.07nA,填充因子为27%,转化效率约为2.8%;

图6是本发明实施例2中Cu2S-In2S3核壳结构异质结太阳能电池的光伏特性曲线,图中可以看出器件开路电压为0.12V,短路电流为1.29nA,填充因子为28.9%,转化效率约为2.0%;

图中标号:1为硅基衬底,2为绝缘层,3为硫属亚铜化合物准一维纳米结构,4为第一金属薄膜电极,5为光刻胶阻挡层,6为铟的硫属化合物,7为第二金属薄膜电极。

具体实施方式

下面结合附图详细描述本发明基于硫属亚铜化合物的核壳结构异质结太阳能电池的制备方法,非限定实施例如下。

实施例1:

本实施例的异质结太阳能电池是以上表面覆有绝缘层2的硅基衬底1为基底,在绝缘层2上分散硫属亚铜化合物准一维纳米结构3,在硫属亚铜化合物准一维纳米结构3的一端沉积第一金属薄膜电极4,形成欧姆接触;通过紫外曝光技术,在第一金属薄膜电极4上覆盖一层光刻胶阻挡层5;通过液相阳离子置换,将未被光刻胶阻挡层覆盖的硫属亚铜化合物准一维纳米结构表面置换成铟的硫属化合物6,形成以硫属亚铜化合物为核、以铟的硫属化合物为壳的核壳结构异质结;去除光刻胶阻挡层5,通过紫外曝光和热蒸发技术,在铟的硫属化合物上方沉积第二金属薄膜电极7,形成欧姆接触,第一金属薄膜电极与第二金属薄膜电极之间不直接接触,而是通过硫属亚铜化合物准一维纳米结构-核壳结构连通,即构成基于硫属亚铜化合物的核壳结构异质结太阳能电池,其结构如图1所示。

具体的,如图2所示,本实施例核壳结构异质结太阳能电池的制备方法如下:

如图2(a),将溶液法合成的Cu2-xSe纳米线超声分散在酒精溶液中,用滴管取少量溶液滴在清洁的带有300nm SiO2绝缘层的P型Si片上,使Cu2-xSe纳米线均匀分布在SiO2绝缘层上;待酒精挥发后,使用一次紫外曝光光刻技术和电子束蒸发技术在Cu2-xSe纳米线的一端制备厚度为50nm金电极,蒸镀时真空室气压为6×10-3Pa,蒸发速率为0.02nm/s;

然后,如图2(b),使用二次定位紫外曝光光刻技术,在第一金属薄膜电极上覆盖一层负性光刻胶阻挡层,尺寸略大于Au电极,两者外边缘间距离为5μm;

如图2(c),将上述器件浸泡在100mL In(NO3)3溶液中进行液相阳离子置换反应,溶液浓度为1.5mmol/L,用醋酸调节溶液pH至1.5,反应温度50℃,反应时间3h,将未被光刻胶阻挡层覆盖的Cu2-xSe纳米线外层置换为In2Se3薄膜,之后去除正性光刻胶阻挡层;

最后,如图2(d),通过三次定位紫外曝光光刻技术和热蒸发在In2Se3薄膜上制备厚度为50nm的In电极,蒸镀时真空室的气压为6×10-3Pa,蒸镀的速率为0.2nm/s。In电极边缘距离金电极边缘的最小间距为10μm。

本实施例液相阳离子置换条件下所得到的单根Cu2-xSe-In2Se3核壳结构径向异质结的透射电子显微镜照片和元素分布图如图3所示,可见置换前Cu2-xSe纳米线直径500nm左右,置换后所得In2Se3壳层厚度约120nm。

本实施例所制备的核壳结构异质结太阳能电池的扫描电子显微镜照片如图4所示。

本实施例所制备的核壳结构异质结太阳能电池在光强为30mW cm-2、波长532nm单色光照射下,呈现显著的光伏特性,如图5所示,其开路电压为0.22V,短路电流为1.07nA,填充因子为27%,转化效率约为2.8%。

实施例2

本实施例核壳结构异质结太阳能电池的制备方法与实施例1相同,区别仅在于本实施例中所用硫属亚铜化合物为Cu2S纳米线,通过液相阳离子置换法,构筑了Cu2S-In2S3核壳结构异质结太阳能电池。

本实施例所制备的核壳结构异质结太阳能电池在光强为30mW cm-2、波长532nm单色光照射下,呈现显著的光伏特性,如图5所示,其开路电压为0.12V,短路电流为1.29nA,填充因子为28.9%,转化效率约为2.0%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1