一种具有间隙结构的磁性材料及制备方法与流程

文档序号:17409889发布日期:2019-04-16 22:27阅读:134来源:国知局

本发明涉及一种具有间隙结构的磁性材料及制备方法,属于磁性材料领域。



背景技术:

磁性材料,通常所说的磁性材料是指强磁性物质,是古老而用途十分广泛的功能材料,而物质的磁性早在3000 年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。

锰锌铁氧体属于亚铁磁性软磁材料,与金属、合金强磁性材料相比,具有电阻率高、涡流损耗小、抗氧化性强等优点,适合在高频领域应用。锰锌铁氧体分为高磁导型和功率型两种,其中高磁导率铁氧体材料除了起始磁导率不断提升外,其频率特性和温度特性也得到了很大的改善。

高磁导率MnZn铁氧体材料的三大发展趋势: 一是继续追求更高的起始磁导率iµ的同时,还要求材料的居里温度Tc要高,损耗因子tanδ/iµ及温度系数µα要低;另外,也要求材料要有好的频率特性,即随着使用频率的增高,磁导率的衰减要慢,使iµ~f曲线在较宽的频带内保持平直,并具有高的截止频率,即所谓宽频高磁导率。 二是要求高磁导率MnZn铁氧体材料磁芯有低的总谐波失真。三是要求高磁导率MnZn铁氧体材料有更好的直流叠加特性。

由此可见高磁导率MnZn铁氧体材料的发展方向是向更高磁导率、高工作频率、高阻抗、低温度系数和宽频带方向发展,同时要求材料应具有更高的室温及高温Bs、更好的直流叠加特性及低的总谐波失真等。

随着电动汽车、智能机器人以及自动控制的发展,电子设备越来越小型化,高频化,这要求要求作为信息基础材料的MnZn铁氧体材料有更好更完善的性能。同时由于软磁的特殊性,在制作过程以及后加工、使用中受外在应力、温度等影响极易造成磁导率下降、磁感应不灵敏等缺陷。因此开展高性能软磁铁氧体材料的开发研究,对跟踪国际先进水平,为我国相关产业提供优质高性能软磁铁氧体材料,推动信息产业快速发展有着重要意义。



技术实现要素:

针对目前磁性材料存在的缺陷,本发明提供一种具有间隙结构的磁性材料,其突出的特征是由丝状、球状磁性材料与少量热塑性树脂或热固性树脂等有机物组装复合得到具有间隙结构的磁性材料。显著的优势是对外在应力、温度变化的敏感性小,高频条件下具有较高的磁导率和较小的磁损耗。

本发明采用的技术方案如下:

本发明中一种具有间隙结构的磁性材料,其特征是由丝状、球状无机磁性材料和有机材料组装复合而成的具有间隙结构的复合磁性材料,其中无机磁性材料化学组成包括:三氧化二铁、氧化锰、氧化锌、氧化铜、硼砂以及稀土金属选自钕( Nd )、镧( La )、铈( Ce )、镝( Dy )、镨( pr )、钐(Sm )、钷( Pm )、钇( Y )、钪( Sc )、钆( Gd )、钬( Ho ) 和铒( Er)中的至少一种,有机组分优选聚乙烯、聚酰亚胺、聚四氟乙烯、环氧树脂中的一种。

进一步提供一种具有间隙结构的磁性材料的制备方法,是将上述无机磁性材料组分称量后通过球磨机或者砂磨机混合后喷雾干燥,喷雾干燥过程中控制物料颗粒大小,再通过电弧熔融后被高速气流带出冷淬成丝状和球状非晶。最后将球状、丝状的磁性材料与少量有机物组装复合得到具有间隙结构的磁性材料。由于球、丝组装的磁性材料存在内部均匀的纳米间隙,避免了受外在应力、温度变化对磁性材料晶格的影响。高频条件下具有较高的磁导率和较小的磁损耗。

本发明所述磁性材料的具体制备步骤如下:

A、设计并称量无机组分,其化学构成比例为:Fe2O3,0.95~1.25mol;MnO,0.35~0.75mol;ZnO,0.35~0.75mol;CuO,0.0001~0.01mol;B2O3,0.001~0.1mol;稀土金属选自铷( Nd )、镧( La )、铈( Ce )、镝( Dy )、镨( pr )、钐( Sm )、钷( Pm )、钇( Y )、钪( Sc )、钆( Gd )、钬( Ho ) 和铒( Er)中的至少一种),0.001~0.03mol,所述氧化物的来源为氧化物、碳酸盐或者硝酸盐;

B、将步骤A所述无机组分进行球磨混合或者砂磨混合后进行喷雾干燥,喷雾干燥过程中控制粉体球的粒径,所述球磨和砂磨混料步骤的球料比为4:1~10:1,时间为4~24小时,干燥过程中控制粉体球粒径为50~200微米,含水量 < 0.5 %;

C、预烧,将喷雾干燥后的颗粒直接进行预烧,烧结温度和保温时间与混料过程中的液体介质、原料构成有一定关系,在保证无效的可挥发物质全部挥发完情况下,预烧温度越低越好;预烧后的粉体出现团聚现象需要进行粉体粗破碎至200微米以下;

D、电弧熔融机冷淬,将预烧后的粉体球放入电弧熔融炉,粉体颗粒通过熔融后穿过坩埚漏孔被高速气流的带出,形成丝状和球状的磁性材料,同时实现冷淬的效果;所述球状粉体直径为10~300nm,丝状粉体径向5~20nm,轴向50~2000纳米;所述高速气流是氧气流速为20~100m/s;

E、组装复合,将球状、丝状的磁性材料与少量有机物采用传统的熔融共混法、乳液共混法、乳胶凝胶法进行;配比特征在于,球状磁性材料10~80重量份,丝状的磁性材料10~50重量份,有机物1~40重量份。

优选的,组装复合方法为聚四氟乙烯乳液作为乳液聚合。

优选的,乳胶胶凝胶法是通过其前驱体甲基三乙氧基硅烷和异丙醇铝在聚酰胺酸的N,N-二甲基乙酰胺溶液中进行。

优选的,采用高密度聚乙烯作为熔融共混法进行组装。

与现有技术相比,本发明的技术优势表现在以下4点:

1、由丝状、球状磁性材料与少量有机物组装复合得到具有间隙结构的磁性材料。显著的优势是对外在应力、温度变化的敏感性小,高频条件下具有较高的磁导率和较小的磁损耗高。

2、磁性材料的无机组成采用电弧熔融的方式,有效杜绝了烧结过程中的污染,烧结时间更短、温度更高、减小烧结气氛对最终性能的影响程度,有效减少锌、硼等低熔点组分的挥发。采用高速气流处理熔融的磁性材料液滴,可以获得需要的纳米粉体形貌,并使得晶粒长大得到控制,或者柱状晶、微晶、非晶的磁性材料,并且表面活性高,分散性好。

3、本发明通过控制有机物的比例使得磁导率的定制有较灵活的选择, 同时对于阻抗带来有益提升。

具体实施方式

实施例1

A、无机组分设计,其化学构成比例为:Fe2O3,1.09mol;MnO,0.65mol;ZnO,0.56mol;CuO,0.005mo;B2O3,0.1mol;Nd,0.01mol;Sm,0.01mol。

B、将无机原料进行球磨混合,球料比为8:1,时间为12小时。喷雾干燥过程中控制粉体球粒径为100微米,含水量 < 0.5 %。

C、预烧,预烧温度设定为650℃,预烧保温时间2小时。预烧后的粉体粗破碎至200微米以下。

D、电弧熔融、气流冷淬,气流组分为11wt%氧气,速度设定为20m/s。获得的球状粉体磁性材料为非晶结构,球状粉体直径约为60nm,丝状粉体径向约20nm,轴向约100纳米。

E、组装复合,纳米无机磁性材料和有机材料组装复合采用乳液共混法将球状磁性材料71份,丝状的磁性材料29份,加入聚四氟乙烯乳液,机械搅拌混合30分钟后,加入氨水后,过滤,热压烧结。

F、测试设备采用HP 4284A LCR Meter,25℃,100KHz测试条件下该材料的性能为:μi=3400,tanδ/μi =2.14×10-6;在80℃,100KHz测试条件下该材料的性能为:μi=3400,tanδ/μi =2.22×10-6

实施例2

A、无机组分设计,其化学构成比例为:Fe2O3,1mol;MnO,0.55mol;ZnO,0.45mol;CuO,0.01mol;B2O3,0.1mol;Nd,0.004mol;La0.004mol;Ce,0.004mol; Gd,0.004mol; Ho,0.004mol。

B、将无机原料进行球磨混合,球料比为8:1,时间为12小时。喷雾干燥过程中控制粉体球粒径为100微米,含水量 < 0.5 %。

C、预烧,预烧温度设定为590℃,预烧保温时间2小时。预烧后的粉体粗破碎至200微米以下。

D、电弧熔融、气流冷淬,气流组分为17wt%氧气,速度设定为10m/s。获得的球状粉体磁性材料为非晶结构,球状粉体直径约为90nm,丝状粉体径向约20nm,轴向约500纳米。

E、组装复合,纳米无机磁性材料和有机材料组装复合采用乳液共混法将球状磁性材料71wt,丝状的磁性材料29wt,加入聚四氟乙烯乳液,机械搅拌混合30分钟后,加入氨水后,过滤,热压烧结。

实施例3

A、无机组分设计,其化学构成比例为:Fe2O3,1.25mol;MnO,0.35mol;ZnO,0.35mol;CuO,0.01mol; B2O3,0.1mol; Dy,0.004mol、Pm 0.004mol;Sc,0.004mol;钆,0.004mol;Ho0.004mol; Er,0.004mol。

B、将无机原料进行球磨混合,球料比为8:1,时间为12小时。喷雾干燥过程中控制粉体球粒径为100微米,含水量 < 0.5 %。

C、预烧,预烧温度设定为590℃,预烧保温时间2小时。预烧后的粉体粗破碎至200微米以下。

D、电弧熔融、气流冷淬,气流组分为3wt%氧气,速度设定为10m/s。获得的球状粉体磁性材料为非晶结构,球状粉体直径约为90nm,丝状粉体径向约20nm,轴向约500纳米。

E、组装复合,纳米无机磁性材料和有机材料组装复合采用传统的熔融共混法,将前步骤所制纳米颗粒和设定重量的聚乙烯倒入真空双螺杆挤出机进行造粒,在温度为290℃~320℃下挤出。

实施例4

A、无机组分设计,其化学构成比例为:Fe2O3,0.95mol;MnO,0.75mol;ZnO,0.75mol;CuO,0.001mol;B2O3,0.1mol; La,0.01mol;Ce,0.005mol、Y,0.01mol。

B、将无机原料进行球磨混合,球料比为5:1,时间为24小时。喷雾干燥过程中控制粉体球粒径为100微米,含水量 < 0.5 %。

C、预烧,预烧温度设定为550℃,预烧保温时间2小时。预烧后的粉体粗破碎至200微米以下。

D、电弧熔融、气流冷淬,气流组分为3wt%氧气,速度设定为10m/s。获得的球状粉体磁性材料为非晶结构,球状粉体直径约为80nm,丝状粉体径向约17nm,轴向约1000纳米。

E、组装复合,选取聚酰亚胺作为有机树脂基体,将66wt球状磁性材料和34wt丝状的磁性材料作为无机组分,通过其前驱体甲基三乙氧基硅烷和异丙醇铝在聚酰胺酸的N,N-二甲基乙酰胺溶液中进行溶胶-凝胶(Sol-gel)反应获得组装复合磁性材料。

实施例5

A、无机组分设计,其化学构成比例为:Fe2O3,1.04mol;MnO,0.53mol;ZnO,0.41mol;CuO,0.01mol;B2O3,0.001mol; Nd,0.01mol;Sm,0.02mol。

B、将无机原料进行球磨混合,球料比为10:1,时间为24小时。喷雾干燥过程中控制粉体球粒径为100微米,含水量 < 0.5 %。

C、预烧,预烧温度设定为580℃,预烧保温时间2小时。预烧后的粉体粗破碎至200微米以下。

D、电弧熔融、气流冷淬,气流组分为1wt%氧气和99wt%氧气速度设定为9m/s。获得的球状粉体磁性材料为非晶结构,球状粉体直径为100nm,丝状粉体径向20nm,轴向1000纳米。

E、组装复合,选取聚酰亚胺作为有机树脂基体,将79wt球状磁性材料和21wt丝状的磁性材料作为无机组分,通过其前驱体甲基三乙氧基硅烷和异丙醇铝在聚酰胺酸的N,N-二甲基乙酰胺溶液中进行溶胶-凝胶(Sol-gel)反应获得组装复合磁性材料。

F、电性能测试设备采用HP 4284A LCR Meter,25℃,100KHz测试条件下该材料的性能为:μi=11800,tanδ/μi =4.31×10-6;在25℃,500KHz测试条件下该材料的性能为:μi=11800,tanδ/μi =4.56×10-6

显著的优势是在温度变化以及高频特性时,具有较高的磁导率和较小的磁损耗。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1