压粉磁芯用混合粉末以及压粉磁芯的制作方法

文档序号:13481846阅读:139来源:国知局
本发明涉及将在表面形成有绝缘皮膜的软磁性粉末和润滑剂混合而成的压粉磁芯用混合粉末、以及使用该压粉磁芯用混合粉末进行压缩成形而成的压粉磁芯。
背景技术
:在交流磁场所用的电磁设备(如噪声滤波器、反应器等)的铁芯中,使用电磁钢板、压粉磁芯及软磁铁氧体等。它们均需要抑制在交流磁场中铁芯所产生的涡流,但是,对于电磁钢板而言在板面上形成有绝缘皮膜,对于压粉磁芯而言在粉末表面上形成有绝缘皮膜,因此各自抑制涡流。此外,由于软磁铁氧体是氧化物,因此材料本身的电阻高,不需要形成绝缘皮膜。它们之中,将压粉磁芯作为电磁设备的铁芯使用在近年来变得特别多,所述压粉磁芯通过将软磁性粉末压缩成形而成。压粉磁芯是将在表面形成有绝缘皮膜的软磁性粉末进行压缩成形而成的,其磁性能大多取决于成形体密度,为了获得高磁性能,需要在确保粒子间的电绝缘的同时成形为高密度。在此,磁性能是指磁通密度、磁导率、铁损等,在确保粒子间的电绝缘的情况下,在粒子间产生的粒子间涡流损耗得到抑制。其结果是,涡流损耗仅仅为在粒子内部产生的粒子内涡流损耗,涡流损耗被抑制到最低限度。因此,压粉磁芯的性能中,以磁通密度和磁导率为代表的直流磁性能成为重要的性能,所述压粉磁芯通过将被绝缘皮膜包覆的软磁性粉末进行压缩成形而成。饱和磁通密度与铁的量成比例,因此取决于成形体的密度。此外,磁导率是起始磁化曲线的斜率,是表示磁力线的导通容易性的指标,因此,成为磁阻的空隙较少时,磁导率变高;与饱和磁通密度同样,成形体密度较高时,磁导率也变高。此外,“磁导率高”是指在某励磁磁场中的磁通密度高,不仅将饱和磁通密度提高,而且通过提高成形体密度来将磁通密度也提高。因此,为了提高直流磁性能,将成形体密度提高是最重要的。如上所述,压粉磁芯是将形成有绝缘皮膜的软磁性粉末进行压缩成形而成的,因此通过将软磁性粉末填充于模具内进行加压压缩而得到。在成形时,为了防止与模具的烧粘,可使用润滑剂。制作压粉磁芯时,作为润滑剂的使用方式,大致分为2种。第一种是内部润滑成形(混合润滑成形),其在软磁性粉末中直接混合润滑剂,或者,使用润滑剂来包覆软磁性粉末;另一种是模具润滑成形,其在模具内壁面涂布润滑剂。此外,对于模具润滑成形而言,存在复杂形状的成形困难这样的问题,因此在制作复杂形状的成形体的情况下,也有并用内部润滑的方法,该方法在软磁性粉末中混合润滑剂。对于模具润滑成形而言,由于润滑剂没有包含在成形体内部,因此具有可获得高成形体密度这样的优点,但是由于在模具的内壁面涂布润滑剂,因而对成形体的形状存在限制,不是适于复杂形状的成形的方法。另一方面,对于内部润滑成形而言,存在无法获得高成形体密度这样的问题。鉴于上述的实情,即使采用适于复杂形状的成形的内部润滑成形,仍然期待使成形体密度变高的技术的开发。在制造压粉成形体时,作为使用润滑剂的事例,已知专利文献1和专利文献2中记载的技术,但这些现有技术中所使用的润滑剂仅为有机系润滑剂。另一方面,在制造气门导管等在高温下使用的滑动部件时,并用有机系润滑剂和固体润滑剂的事例在专利文献3~5等中被公开。但是,这些技术中,烧结后也残留固体润滑剂成为要点,并不是提高压缩性以使成形体密度提高的技术。本发明是为了解决上述现有的问题而完成的发明,其课题在于提供一种压粉磁芯用混合粉末、以及使用该压粉磁芯用混合粉末制得的压粉磁芯;对于所述压粉磁芯用混合粉末而言,在压粉磁芯的制造中即使采用内部润滑成形,也可以提高成形体密度,并且可以制造磁性能优异的压粉磁芯。现有技术文献专利文献专利文献1:日本专利公开公报特开2012-111987号专利文献2:日本专利公开公报特开2012-67334号专利文献3:日本专利公开公报特开2003-183701号专利文献4:日本专利公开公报特开2008-202123号专利文献5:日本专利公开公报特开2010-216016号技术实现要素:本发明一个方面涉及的压粉磁芯用混合粉末,是将被绝缘皮膜包覆的软磁性粉末、滑剂以及固体润滑剂进行混合而成的压粉磁芯用混合粉末,其中,所述滑剂的含量为0.1质量%以上且0.8质量%以下,所述固体润滑剂的含量为0.01质量%以上且0.2质量%以下。附图说明图1是示例压粉磁芯的成形体密度与压缩成形时的成形压力的关系的线图。图2是示例压粉磁芯的成形体密度与磁导率及磁通密度的关系的线图。图3是示例将粒径各种各样的固体润滑剂混合而成的压粉磁芯的成形体密度与压缩成形时的成形压力的关系的线图。具体实施方式如上所述,对于压粉磁芯的性能而言,以磁通密度和磁导率为代表的直流磁性能是重要的性能。为了提高压粉磁芯的直流磁性能,需要增加每单位体积的的磁性体的量并且减少成为磁阻的空隙或非磁性的物质,将压粉磁芯成形为高密度是关键。润滑剂对于成形来说是必要的物质,其不是磁性体,因此为了得到高磁性能,极力减少润滑剂的量是有用的,润滑剂的减少与成形体的高密度化(即,高磁性能)相关联。应予说明,也可以考虑不减少润滑剂,提高成形压力来减少空隙这样的方法,但是该方法产生模具所承受的负担变大等工艺上的问题,因此不能够采用。这样,润滑剂是为了防止成形时与模具的烧粘而必需的材料,因此能够减少的量是有限的,需要兼顾成形性及润滑剂量的减少。本发明人鉴于这样的背景,进行了深入的研究、实验等探讨,关注于润滑剂的体积。结果发现:为了减少润滑剂的体积,使用高密度的润滑剂是有效的;通过将用作润滑剂的滑剂的一部分置换为密度高的固体润滑剂,从而能够兼顾成形性及润滑剂量的减少,由此成功地完成了本发明。此外,对于包覆软磁性粉末表面的绝缘皮膜也进行了探讨,结果发现:无机系绝缘皮膜(尤其是,磷酸系皮膜)具有润滑性。于是,同时还发现:通过在压粉磁芯的材料中采用由磷酸系皮膜包覆的软磁性粉末,从而可以更有效地实现润滑剂量的减少。本发明的压粉磁芯用混合粉末,是将被绝缘皮膜包覆的软磁性粉末、以及作为润滑剂的滑剂和固体润滑剂进行混合而成的。以下,按照软磁性粉末、绝缘皮膜、滑剂、固体润滑剂的顺序对于本发明的实施方式进行详细说明。但是,本发明并不限于这些实施方式。(软磁性粉末)作为软磁性粉末,可以示例铁基软磁性粉末。该铁基软磁性粉末是强磁性体的金属粉末,具体而言,纯铁粉、铁基合金粉末(fe-al合金、fe-si合金、森达斯特(sendust)、坡莫合金等)、无定形粉末等。这些软磁性粉末例如可以通过如下方式得到:利用雾化法成为微粒后进行还原,然后进行粉碎等等。本实施方式中,原理上只要是通常的粉末冶金中所用的粒度,就能够不依赖于粒度分布而发挥其作用效果。但是,本实施方式的意图在于:控制为所规定的铁损;并且,使成形为成形体时的压缩性提高。因此,对于所用的铁基软磁性粉末而言,优选的是,与通常相比,稍微更多地含有粒度较大的成分(例如,粒度为250μm以上且600μm以下)的铁基软磁性粉末。例如,可以举出如表1所示的粒度分布的铁基软磁性粉末。应予说明,对于表1所示的铁基软磁性粉末的粒度分布而言,其根据日本粉末冶金工业会规定的“金属粉的筛分析试验方法”(jpmapo2-1992)实施筛分而可以获得。具体而言,首先使用网眼600μm的筛进行筛分。然后,进而依次使用对应于表1所示粒度的网眼250μm至45μm的筛来实施筛分,由此可以获得所期望的粒度分布。表1粒度频数(%)250μm以上21.8180~250μm19.7150~180μm14.1106~150μm20.875~106μm14.163~75μm2.845~63μm5.045μm以下1.7(绝缘皮膜)软磁性粉末的表面上为了抑制涡流而形成有绝缘皮膜。该绝缘皮膜优选为无机系绝缘皮膜。作为代表性的无机系绝缘皮膜,可以示例磷酸系皮膜(磷酸系化学转化皮膜)、铬系化学转化皮膜等。尤其,对于磷酸系皮膜而言,其对于软磁性粉末的润湿性良好,又能够将软磁性粉末表面均匀地包覆,而且具有润滑性,故此在本实施方式中更适合作为绝缘皮膜使用。应予说明,绝缘皮膜也可以是利用有机硅等有机材料的有机系绝缘皮膜,并且还可以是利用有机硅等有机材料的有机系绝缘皮膜和磷酸系皮膜等无机系绝缘皮膜的双重皮膜。对于磷酸系皮膜而言,例如,通过将水:1000质量份、h3po4:193质量份、mgo:31质量份、h3bo3:30质量份混合,进而用水稀释至20倍而成为磷酸系皮膜用处理液,相对于软磁性粉末100质量份,混合该处理液5质量份,在大气中于200℃使其干燥,从而形成于软磁性粉末的表面。应予说明,该磷酸系皮膜的厚度为10~100nm。(滑剂)作为在压粉成形时混合的润滑剂中的滑剂,可以列举例如由具有碳数12以上(-ch2-)的直链结构的有机化合物形成的有机系润滑剂。除了如硬脂酸锌等的硬脂酸金属盐之外,还可以示例烃系、脂肪酸系、高级醇系、脂肪族酰胺系、金属皂系、酯系等有机系润滑剂等等,具体地可以列举以下的有机系润滑剂。作为烃系的润滑剂,可以列举液体石蜡、石蜡(paraffinwax)、合成聚乙烯蜡等;作为脂肪酸系以及高级醇系的润滑剂,可以列举较为廉价且低毒的、硬脂酸以及硬脂醇等。此外,作为脂肪族酰胺系的润滑剂,可以列举:如硬脂酰胺、油酰胺、芥酸酰胺的脂肪酸酰胺;以及,如亚甲基双硬脂酰胺、亚乙基双硬脂酰胺的亚烷基脂肪酸酰胺等等。此外,作为金属皂系的润滑剂,在金属皂中主要使用硬脂酸金属盐,可以列举硬脂酸锌、硬脂酸钙、硬脂酸锂等。此外,作为酯系的润滑剂,可以列举如硬脂酸单甘油酯等的醇的脂肪酸酯。本实施方式中,作为滑剂可以使用选自如上述的有机系润滑剂中的1种以上。这些滑剂在本实施方式的压粉磁芯用混合粉末中所占的含量为0.1质量%以上且0.8质量%以下。如果含量低于0.1质量%,则在压粉成形时产生与模具的烧粘。另一方面,如果超过0.8质量%,则成形体密度变低,无法获得磁性能优异的压粉磁芯。(固体润滑剂)作为在压粉成形时与滑剂一起混合的固体润滑剂,可以列举例如由密度为4.0g/cm3以上的无机化合物形成的无机系润滑剂。作为具体例子,可以举出二硫化钼(mos2)、氧化锌(zno)等。本实施方式中,作为固体润滑剂可以使用选自如上述的无机系润滑剂中的1种以上。润滑剂中滑剂的密度为2.0g/cm3以下,如果固体润滑剂的密度不是滑剂的2倍以上的密度,则不能够有效地实现滑剂量的减少。基于该理由,将固体润滑剂的密度设为4.0g/cm3以上。此外,固体润滑剂的粒径优选为20nm以上且20μm以下。如果固体润滑剂的粒径小于20nm,则固体润滑剂进入软磁性粉末表面的凹凸或软磁性粉末间的缝隙,变得不能够发挥润滑功能。另一方面,如果固体润滑剂的粒径超过20μm,则固体润滑剂的粒子数变少,变得不能够帮助减少软磁性粉末间的摩擦和减少软磁性粉末与模具的摩擦。这些固体润滑剂在本实施方式的压粉磁芯用混合粉末中所占的含量为0.01质量%以上且0.2质量%以下。如果含量低于0.01质量%,则由滑剂向固体润滑剂的置换变得不充分,无法实现直流磁性能的提高。另一方面,如果超过0.2质量%,则为了维持抽出性而添加的润滑剂总量变多,导致成形体密度降低,饱和磁通密度降低。(压粉磁芯)此外,本实施方式的压粉磁芯可以如下制作:使用将被绝缘皮膜包覆的软磁性粉末、滑剂以及固体润滑剂进行混合而成的压粉磁芯用混合粉末,在模具内进行压缩成形后,进行加热退火。本说明书公开了如上所述的各种实施方式,其主要内容总结如下。本发明一个方面涉及的压粉磁芯用混合粉末,是将被绝缘皮膜包覆的软磁性粉末、滑剂以及固体润滑剂进行混合而成的压粉磁芯用混合粉末,其中,所述滑剂的含量为0.1质量%以上且0.8质量%以下,所述固体润滑剂的含量为0.01质量%以上且0.2质量%以下。根据该构成,即使在压粉磁芯的制造过程中采用内部润滑成形,也能够提高成形体密度,获得磁气特性优异的压粉磁芯。此外,优选:所述绝缘皮膜是磷酸系皮膜。据此,对于软磁性粉末的润湿性良好,能够将软磁性粉末表面均匀地包覆。并且,因为具有润滑性,因此能够获得良好的绝缘皮膜。此外,优选:所述滑剂是由具有碳数12以上的直链结构的有机化合物形成的有机系润滑剂,所述固体润滑剂是由密度为4.0g/cm3以上的无机化合物形成的无机系润滑剂。据此,能够有效地实现滑剂量的减少,能够可靠地获得上述效果。此外,优选:所述固体润滑剂是粒径为20nm以上且20μm以下的粉末状。据此,能够有效地发挥润滑功能,可以有效地减少软磁性粉末间的摩擦且减少软磁性粉末与模具的摩擦。此外,本发明另一个方面涉及的压粉磁芯,是通过将所述的压粉磁芯用混合粉末进行压缩成形后,进行加热退火而制得。实施例以下列举实施例更具体地说明本发明,但本发明当然不受下述实施例的限制,还可以在能适于本发明主旨的范围内加入适当变更而实施,这些都包含在本发明的技术范围内。作为软磁性粉末,使用纯铁粉(神户制钢所制:magmel(注册商标)ml35n),在其表面形成了作为绝缘皮膜的磷酸系皮膜。该磷酸系皮膜的形成中,作为磷酸系皮膜用处理液,使用了如下的处理液,即,将水:1000质量份、h3po4:193质量份、mgo:31质量份、h3bo3:30质量份混合作为原液,为了改变电阻而用水适当稀释至20倍并改变了浓度的处理液。相对于纯铁粉100质量份,混合上述处理液5质量份,在大气中于200℃使其干燥,由此在纯铁粉的表面形成了磷酸系皮膜。然后,如表2所示那样,将如上述得到的在表面形成了磷酸系皮膜的纯铁粉、以及滑剂(硬脂酰胺(碳数18)或月桂酰胺(碳数12))、而且仅用于发明例的固体润滑剂(粒径为0.5μm的zno(密度5.6g/cm3)或mos2(密度5.06g/cm3))分别改变含量进行混合,进行利用内部润滑成形的压粉成形,由此制作了压粉磁芯。通过测定来求出了所制作的各种压粉磁芯的成形体密度、抽出压力、磁导率、磁通密度。对于成形体密度而言,测定了成形状态(热处理前)的长方体试片的质量和尺寸,由体积和质量进行了计算。长方体试片的大小为12.7mm×31.75mm×厚度约5mm,填充的粉末质量(单个重量)为15g。长方体试片的厚度用“约”修饰的原因是由于成形压力会使厚度发生变化,但表2所示的成形体密度是将成形压力设为900mpa时的成形体密度。应予说明,基于同样的理由,后续说明的圆柱状成形体的高度以及环状试片的厚度也用“约”修饰了。抽出压力是指,在成形压力:588mpa下制作3个圆柱状成形体(直径25mm×高度约25mm,单个重量:83g),对进行抽出时的压力进行测定而获得的平均值。该抽出压力必须为30mpa以下。磁导率和磁通密度如下进行了测定,即,制作外径45mm×内径33mm×厚度约5mm且单个重量31g的环状试片,在大气下保持350℃×20分钟后,进行空气冷却后,使用metron技研制磁气测定器进行了测定。此处所示磁导率是最大磁导率,在初级线圈匝数200、次级线圈匝数50、最大励磁磁场10000a/m的条件下进行了测定。此外,磁通密度是指励磁磁场为10000a/m时的磁通密度。通过测定而求出的这些成形体密度、抽出压力、磁导率、磁通密度示于表2和图1~3。应予说明,表2所示的成形体密度是指将成形压力设为900mpa时的成形体密度。此外,对于表2所示的试验数据和图1~3所示的试验数据而言,由于试验的批次不同,因此稍微有些偏差。(成形体密度与磁导率及磁通密度的关系)根据表2和图1,将润滑剂的总质量均为0.3质量%的比较例4与发明例1进行比较,将润滑剂的一部分由滑剂置换为密度高的固体润滑剂的发明例1呈示了较高的成形体密度。此外,根据表2和图2,将比较例4与发明例1进行比较,将润滑剂的一部分由滑剂置换为密度高的固体润滑剂的发明例1呈示了较高的磁导率及磁通密度。由该试验结果可知:如果提高成形体密度,则可以提高磁导率及磁通密度。(固体润滑剂的粒径的影响)图3表示了发明例1中的固体润滑剂(氧化锌)的粒径对成形体密度产生的影响。根据图3,与润滑剂全部为滑剂的比较例4进行对比,可知:发明例1中氧化锌的粒径无论为哪种尺寸,成形体密度均高于比较例4。尤其是氧化锌的粒径为20nm(0.02μm)、0.5μm、11μm的发明例,在所有的成形压力下,与比较例4相比呈示了均较高的成形体密度,其中可以说最优选氧化锌的粒径为0.5μm左右的发明例。应予说明,氧化锌的粒径可以由使用激光衍射的测定器(例如microtrac)进行测定。上述粒径表示生产频数下50%的粒径d50。(由磷酸系皮膜带来的抽出压力减少效果)将软磁性粉末和作为润滑剂的硬脂酰胺0.3质量%进行混合,在600mpa的成形压力下进行压缩成形来制作了直径25mm×高度约25mm的圆柱状成形体,并且测定了成形体的抽出时的压力和成形体密度。试验中所用的软磁性粉末是,在表面没有形成皮膜的no.1、进行水处理而在表面形成了氧化皮膜的no.2、以及在表面形成了磷酸系皮膜的no.3这3种类。试验结果示于表3。表3如表3所示,在软磁性粉末的表面没有形成皮膜的no.1的抽出压力为30mpa,相对于此,在软磁性粉末的表面通过水处理而形成了氧化皮膜的no.2,即使将抽出压力设为50mpa也无法抽出成形体。另一方面,在表面形成了磷酸系皮膜的no.3的抽出压力为21mpa,由此可知:在软磁性粉末的表面形成磷酸系皮膜,是对于抽出压力的减少有效的。通常,在进行烧结部件等的成形时,在软磁性粉末中混合通常为0.5质量%以上、优选为0.75质量%以上的润滑剂,但是,确认到如下效果:由于磷酸系皮膜等无机系绝缘皮膜具有润滑性,因此即使将润滑剂减少至0.3质量%以下,也能够降低抽出压力且能够提高成形体密度。与作为滑剂而使用的有机系润滑剂相比,固体润滑剂具有较高的熔点,其在压缩成形时不会熔融,因此被认为润滑性差,但是磷酸系皮膜等的无机系绝缘皮膜具有润滑性,因此如表2的发明例4那样,即使添加润滑性差的固体润滑剂0.2质量%,也呈示了与抽出压力的增加没有关联。(固体润滑剂的含量的影响)根据表2,将润滑剂的总质量均为0.28质量%的比较例5与发明例5~9进行比较,可知:即使将滑剂中的0.01质量%置换为固体润滑剂,成形体密度、磁导率及磁通密度也得到了提高。此外,可知:即使在将0.1质量%置换为固体润滑剂的情况下,抽出压力也在容许范围的30mpa以下,成形体密度、磁导率及磁通密度也得到了提高。即使添加0.2质量%固体润滑剂,也对于成形体密度、磁导率及磁通密度的提高是有效的。氧化锌的密度为5.6g/cm3,是硬脂酰胺、月桂酰胺等滑剂的密度(即,约1.2g/cm3)的4~5倍,因此认为相对于滑剂0.1质量%至少添加至0.4质量%的固体润滑剂是有效的,但是如上文中已经说明的那样,润滑剂的总质量较少是优选的,故期望添加0.2质量%以下。本申请以2015年6月4日申请的日本国专利申请特愿2015-113915为基础,其内容全部包含在本申请中。为了表现本发明,上文中一边参见附图等一边通过实施方式对本发明进行了适当且充分的说明,但是对于本领域技术人员来说,应当认识到能够容易地对前述的实施方式进行变更和/或改良。因此,本领域技术人员所实施的变更方式或改良方式只要是没有脱离权利要求书记载的权利要求的权利范围的程度的方式,该变更方式和改良方式可解释为包括在该权利要求的权利范围内。产业上的可利用性本发明在压粉磁芯用混合粉末以及压粉磁芯的
技术领域
中具有广泛的工业上的可利用性。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1