一种LTPS制程中的TFT器件的分布结构的制作方法

文档序号:12725213阅读:809来源:国知局
一种LTPS制程中的TFT器件的分布结构的制作方法与工艺

本发明涉及液晶显示领域里的一种TFT的结构,具体是关于一种在LTPS制成中的TFT的结构。



背景技术:

在显示面板的制造中,开口率是每一个产品设计团队在设计每一款的产品时必须考虑的事情,开口率指除去每一个次像素的配线部、晶体管部(通常采用黑色矩阵隐藏)后的光线通过部分的面积和每一个次像素整体的面积之间的比例。开口率越高,光线通过的效率越高。当光线经由背光板发射出来时,并不是所有的光线都能穿过面板,比如给LCD source驱动芯片及gate驱动芯片用的信号走线,以及TFT本身,还有储存电压用的储存电容等。这些地方除了不完全透光外,也由于经过这些地方的光线不受电压控制,而无法显示正确的灰阶,所以都需利用黑矩阵(black matrix)加以遮蔽,以免干扰其它透光区域。而有效的透光区域与全部面积的比例就称之为开口率。像素(Pixel)Pixel显示器或电视机图象的)象素的图案设计、各类金属线的放置等各类因素都会极大的影响最终产品的开口率。

如图1所示,为传统LTPS工艺中TFT的形状及布局,相邻两列像素之间设有两个相互平行的数据线,所述数据线包括第一数据线21和第二数据线22,每列相邻两像素分别通过U字型TFT1与第一数据相连21,TFT2与第一数据线21相连,与上述两像素相对应的相邻列的两像素的TFT,分别与第二数据线22连接,所述第一数据线与第二数据线电压可以为正,这种现实模式为面反转或帧反转;所述第一数据线和第二数据线的电压可以相反,一个为正一个未负,这样相邻两列的像素一列为正电,一列为负电,这种显示模式叫做列反转。

此外,在显示面板的制造中,由于在画面切换时使用点反转的方式画面闪烁的现象表现最为轻微,因此在图像显示方式上人们更倾向于这种方式,但是为实现点反转的效果面板的功耗非常高,从而降低了产品在市场中的竞争性,因此一般产品中使用功耗较小的列反转的反转模式进行显示。



技术实现要素:

本发明的目的在于:克服现有技术中实现点反转的效果面板的功耗高,产品在市场中的竞争性低的缺点,设计一种低功耗,增加开口率的TFT分布方式,在列反转的显示模式下实现点反转的显示效果。

本发明的目的及解决其技术问题是采用以下技术方案实现的:

一种LTPS制程中的TFT器件的分布结构,第i行像素和第i+1行像素之间设有一对相互平行的数据线;

所述每对数据线包括第一数据线和第二数据线;

第i行相邻两像素分别通过相应的U字型的TFT结构连接第一数据线和第二数据线;

第i+1行与上述两相邻像素对应的两像素分别通过相应的U字形结构的TFT分别与第二数据线和第一数据线连接;

所述第i行像素的U字型TFT和与之对应的第i+1行像素的U字型TFT开口相对,交错设置;

所述TFT器件由栅极线导通。

所述的LTPS制程中的TFT器件的分布结构,其中:所述U字型TFT器件的源极和与之对应的数据线相连。

所述的LTPS制程中的TFT器件的分布结构,其中:所述第一数据线电压为正,第二数据线电压为负。

所述的LTPS制程中的TFT器件的分布结构,其中:与第一数据线连接的U字型TFT器件所在像素电极为负,与第二数据线连接的U字型TFT所在的像素电极为正。

所述的LTPS制程中的TFT器件的分布结构,其中:所述的每根栅极线呈S型环绕每列每相邻两对数据线之间的两个像素。

所述的LTPS制程中的TFT器件的分布结构,其中:所述每个像素四周设置有黑色矩阵,所述栅极线在水平方向上与设置在每对数据线之间的黑色矩阵重合,所述栅极线在垂直方向上与设置在两对相邻数据线之间且垂直于两对数据线的黑色矩阵重合。

所述的LTPS制程中的TFT器件的分布结构,其中:所述栅极线设置在双数据线层与TFT器件所在的半导体层之间。

所述的LTPS制程中的TFT器件的分布结构,其中:所述每个像素分别对应一个U字型TFT器件。

本发明具有以下优点:通过U字型TFT相互交叉设置,可以有效增加了产品的开口率;

第一帧给予第一数据线的信号为负值,第二帧给予第一数据线的信号为正值,采用了列反转的显示模式,但相邻的两个像素之间的极性均相反,即得到了点反转的显示效果,从而提升了产品的显示品质,使用这种方式可以在列反转的情况下实现点反转,节省产品的功耗。

附图说明

在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:

图1是传统LTPS制程中的TFT的分布方式示意图。

图2是本发明LTPS制程中的TFT的分布示意图。

图3是本发明LTPS制程中的TFT的分布剖面图。

在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。

具体实施方式

下面将结合附图对本发明作进一步说明。

图2是本发明LTPS制程中的TFT的分布示意图,包括多行像素,其中第i行像素和第i+1行像素之间设有一对相互平行的数据线;所述数据线包括第一数据线21和第二数据线22;第i行与第i+1行间相邻两像素10和20分别通过U字型TFT器件1’与2’分别连接第一数据线21和第二数据线22;第i+1行与上述两相邻像素10和20对应的两像素30和40分别通过U字形TFT器件1与2分别与第二数据线22和第一数据线21连接;所述第i行像素的U字型TFT器件1与与之对应的第i+1行像素的U字型TFT器件1开口相对,交错设置。

所述U字型TFT器件1包括漏极11和源极12,所述源极12与数据线相连。所述漏极11用于把信号传递至像素内部。

由于U字型结构的TFT在开口内侧的部分无法透光,在传统的TFT设置中,并没有有效的利用起这个部分,导致显示面板开口率不佳,本发明将两个U字型TFT器件的开口相对交错设置,将U字型TFT器件的源极一端设置在U型TFT器件的开口内,可有效利用U字型TFT器件开口内侧部分的面积,减少U字型TFT器件占有像素其他透光部分的面积,以增加产品的开口率。

所述TFT器件由栅极线3导通,栅极线用于导通TFT器件,使TFT发挥导电性能,其中,每列每个TFT器件由一根栅极线导通,每个TFT器件与一根栅极线连接。

所述第一数据线21电压为正,第二数据线22电压为负。

与第一数据线21连接的U字型TFT器件1所在像素10电极为正,与第二数据线22连接的U字型TFT器件1’所在的像素30电极为负。

与像素10相邻的像素20,其与第一数据线21连接的U字型TFT器件2,像素20的电极为负,与第二数据线22连接的U字型TFT器件2’所在的像素40电极为正。

以此类推,像素50的电极为正,像素60的电极为负。

其中,像素10是由U字型TFT器件1’控制,像素20是由U字型TFT器件2’控制;像素30由U字型TFT器件1控制,像素40由U字型TFT器件2控制,即第i行的像素是由位于第i+1行像素内的U字型TFT器件控制的,第i+1行像素则是由位于第i行像素内的U字型TFT器件控制的。

即第一帧给予第一数据线的信号为负值,第二帧给予第一数据线的信号为正值,即采用了列反转的显示模式,但每个第一数据线上相邻的两个像素之间的极性均相反,即得到了点反转的显示效果,从而提升了产品的显示品质。

所述的第一数据线21电压也可设置为负,第二数据线的电压设置为正22,那么与第一数据线连接的U字型TFT器件所在的像素电极则为正,与第二数据线连接的U字型TFT器件所在的像素电极则为负,即任意一个像素的电压极性与其相邻的上、下、左、右像素电压极性都相反。这样的设计,得到了点反转的显示效果,从而提升了产品的显示品质。

在每个像素的四周,还设置有条形的黑色矩阵(BM;black Matrix)用于遮挡光线,因此在LTPS制程中的TFT设计过程中,将栅极线3布置在于所述黑色矩阵相重合的部位,能够减少栅极线在布置过程中占用像素透光面积,影响开口率。

所述栅极线3呈S型环绕每列像素。栅极线3呈水平方向和竖直方向设置,其中,栅极线3在水平方向上与设置在两数据线之间的黑色矩阵重合,栅极线3在竖直方向上与设置在相邻两对数据线之间的两个像素的垂直边上的黑色矩阵重合。即所述每根栅极线3分别环绕每列每个像素的两个相邻边。这样设置有效减少栅极线占用像素的透光面积,增加产品的开口率。

如图3所示,为本发明LTPS制程中的TFT的分布的剖面图,包括由上至下依次设置的玻璃板121上的第一ITO111、钝化层112、第二ITO113、平坦层114、数据线层115、介电层116、栅极线119、绝缘层117、TFT半导体层120以及缓冲层118。其中,数据线层115、绝缘层117和介电层116可根据不同产品的需要进行设置,数据线层115分别与多晶硅层120、平坦层114和第一ITO层111和第二ITO层113相接触。

所述栅极线119层设置在数据线层115与半导体层120之间。且不与数据线115和半导体层120相接触。

围绕每相邻两对数据线之间的像素的栅极线开口相反。

所述每个像素分别由一个TFT器件发挥作用,两个相对的U字型TFT各自占有1个像素。

虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1