用于前级固体形成量化的石英晶体微量天平的利用的制作方法

文档序号:18456925发布日期:2019-08-17 01:41阅读:130来源:国知局
用于前级固体形成量化的石英晶体微量天平的利用的制作方法

本公开内容的实施方式一般相关于用于半导体处理设施的消除(abatement)。更特定地,本公开内容的实施方式相关于用于前级固体形成量化的技术。



背景技术:

半导体制造处理期间所产生的流出物包含许多化合物,这些化合物在废弃前被消除或处置,这是出于法规要求及环境与安全考虑的原因。这些化合物为pfc及含卤素化合物,例如使用于蚀刻或清理处理。

pfc(例如cf4、c2f6、nf3、及sf6)常使用于半导体及平板显示器制造工业中,例如,用于介电层蚀刻及腔室清洁中。伴随着制造或清洁处理,从处理腔室所抽吸出的流出物气体流中典型地存有剩余pfc含量。pfc难以从流出物流移除,且不希望pfc释放进入环境,因为pfc公知为具有相对高的温室活动。已使用远程等离子体源(remoteplasmasource,rps)或直列式等离子体源(in-lineplasmasource,ips)以消除pfc及其他全球暖化气体。

用于消除pfc的现今消除技术的设计使用试剂与pfc反应。然而,固体颗粒可产生于rps、排放线、及rps下游的泵中,这是由于处理腔室中的等离子体消除或处理化学物质的原因。若忽视这些物质,这些固体可造成泵失效及前级阻塞。在一些情况中,这些固体为高度反应性而可带来安全问题。传统上,这些固体形成的检测是通过阻断真空且暂停泵来对前级或任何安装的收集器进行物理检查来完成的。此检测处理包含计划维护,在该计划维护期间,处理腔室为非操作性的且仅可每几周提供固体的种类及数量上的反馈。此外,若这些固体为反应性的,在事先不知道前级中聚积的固体数量的情况下开启前级可能是危险的。

因此,需要改良的设备。



技术实现要素:

本公开内容的实施方式一般相关于用于半导体处理设施的消除。在一个实施方式中,前级组件包含:一等离子体源;一第一管道,该第一管道耦合至该等离子体源,其中该第一管道为该等离子体源的上游;一第二管道,该第二管道位于该等离子体源的下游;及一石英晶体微量天平传感器,该石英晶体微量天平传感器设置于该第二管道中。

在另一实施方式中,真空处理系统包含:一真空处理腔室,该真空处理腔室具有一排放端口;一真空泵;及一前级组件,该前级组件耦合至该真空处理腔室及该真空泵,其中该前级组件包含:一第一管道,该第一管道耦合至该真空处理腔室的该排放端口;一等离子体源,该等离子体源耦合至该第一管道;一第二管道,该第二管道耦合至该真空泵,其中该第二管道位于该等离子体源的下游;及一第一石英晶体微量天平传感器,该第一石英晶体微量天平传感器设置于该第二管道中。

在另一实施方式中,方法包含以下步骤:自一处理腔室流动一流出物进入一等离子体源;流动一个或多个消除试剂进入一前级组件;使用一第一石英晶体微量天平传感器来监控该等离子体源下游累积的一固体量;及基于该第一石英晶体微量天平传感器所提供的信息,调整该一个或多个消除试剂的流动率。

附图说明

以便可以详细理解本公开内容上述特征的方式,可通过参考实施方式来获得本公开内容的简要概述于上文的更特定描述,其中一些实施方式图示于附图中。然而,应注意,附图仅图示本公开内容的典型的实施方式,因此不应被视为对其范围的限制,因为本公开内容可允许其他等效的实施方式。

图1a为根据文本描述的一个实施方式的真空处理系统的示意图。

图1b为根据文本描述的一个实施方式的真空处理系统的包含两个石英晶体微量天平传感器的部分的示意图。

图2为根据文本描述的一个实施方式的图示用于消除来自处理腔室的流出物的方法的流程图。

为了便于理解,尽可能使用相同附图标记,以标示附图中共同的相同元件。此外,一个实施方式的元件可有利地适用于文本描述的其它实施方式中。

具体实施方式

本公开内容的实施方式一般相关于用于半导体处理设施的消除。更特定地,本公开内容的实施方式相关于用于前级固体形成量化的技术。在一个实施方式中,系统包含位于处理腔室及设施排放之间的一个或多个石英晶体微量天平(quartzcrystalmicrobalance,qcm)传感器。该一个或多个qcm传感器提供系统中产生的固体量的实时测量,而不必关闭位于处理腔室及设施排放之间的泵。此外,可使用qcm传感器提供的信息以控制用于消除离开处理腔室的流出物中的化合物的试剂的流动,以便减低固体形成。

图1a为真空处理系统170的示意侧视图。真空处理系统170至少包含真空处理腔室190、真空泵194、及耦合至真空处理腔室190及真空泵194的前级组件193。真空处理腔室190一般经构造以执行至少一个集成电路制造处理,例如沉积处理、蚀刻处理、等离子体处置处理、预清洁处理、离子植入处理、或其他集成电路制造处理。在真空处理腔室190中执行的处理可为等离子体辅助的。例如,在真空处理腔室190中执行的处理可为用于沉积硅基材料的等离子体沉积处理。前级组件193至少包含耦合至真空处理腔室190的腔室排放端口191的第一管道192a、耦合至第一管道192a的等离子体源100、耦合至真空泵194的第二管道192b、及设置于第二管道192b中的qcm传感器102。第一管道192a及第二管道192b可称为前级。第二管道192b位于等离子体源100的下游,且qcm传感器102位于等离子体源100下游的一位置处。

一个或多个消除试剂源114耦合至前级组件193。在一些实施方式中,一个或多个消除试剂源114耦合至第一管道192a。在一些实施方式中,一个或多个消除试剂源114耦合至等离子体源100。消除试剂源114提供一个或多个消除试剂进入第一管道192a或等离子体源100,该一个或多个消除试剂可被激励以与离开真空处理腔室190的材料反应或辅助将这些材料转换成更环保及/或对处理设施友善的成分。在一些实施方式中,一个或多个消除试剂包含水蒸气、含氧气体(例如氧气)、及其组合。可选地,净化气体源115可耦合至等离子体源100以减低等离子体源100内部部件上的沉积。

前级组件193可进一步包含排放冷却设备117。排放冷却设备117可耦合至等离子体源100下游的等离子体源100,以用于减低离开等离子体源100的排放温度。

qcm传感器102可设置于第二管道192b中,于第二管道192b位于等离子体源100下游。qcm传感器102可与等离子体源100相隔一距离,使得来自热及等离子体效应的噪声被最小化。真空处理系统170可进一步包含耦合至真空泵194的管道106至设施排放196。设施排放196一般包含洗涤器或其他排放清洁设备,以用于准备真空处理腔室190的流出物进入大气。在一些实施方式中,第二qcm传感器104设置于位于真空泵194下游的管道106中。qcm传感器102、104提供真空处理系统170中产生及等离子体源100下游累积的固体量的实时测量,而不必关闭真空泵194。此外,可使用qcm传感器102、104提供的真空处理系统170中形成的及等离子体源100下游累积的固体数量来控制消除试剂的流动,以便减低固体形成及清除真空处理系统170中的固体。

图1b为根据文本描述的一个实施方式的真空处理系统170的包含qcm传感器102、104的部分的示意图。如图1b中所示,第二管道192b包含壁108及在壁108中形成的凸缘109。qcm传感器102耦合至凸缘109。qcm传感器102包含传感器元件112及封闭一区域122的主体110。传感器元件112为具有金属涂层的石英晶体。电子传感器部件位于区域122中。为了防止第二管道192b中的腐蚀性化合物进入qcm传感器102的区域122,净化气体从净化气体源116经由在主体110中形成的净化气体注射端口120而流动进入区域122。净化气体可为任何合适的净化气体,例如氮气。在操作期间,传感器元件112以非常高的频率被电流激发,且该频率随着固体沉积于传感器元件112的表面上而改变。可通过测量频率中的改变来测量沉积于表面上的固体量。传感器元件112的金属涂层可促进沉积于传感器元件112上的固体的附着性。在一个实施方式中,金属涂层为铝。在另一实施方式中,金属涂层为金。具有金属涂层的传感器元件112从离开等离子体源100的化合物的流动路径凹陷,以便减低金属迁移返回真空处理腔室190的风险。

在一些实施方式中,除了qcm传感器102外,使用第二qcm传感器104。如图1b中所示,管道106包含壁140及在壁140中形成的凸缘142。第二qcm传感器104耦合至凸缘142。第二qcm传感器104包含传感器元件132及封闭一区域134的主体130。传感器元件132为具有金属涂层的石英晶体。电子传感器部件位于区域134中。为了防止管道106中的腐蚀性化合物进入第二qcm传感器104的区域134,净化气体从净化气体源116经由在主体130中形成的净化气体注射端口136而流动进入区域134。在一些实施方式中,净化气体在分开的净化气体源中产生。净化气体可为任何合适的净化气体,例如氮气。第二qcm传感器104可在与qcm传感器102相同的原理下操作。第二qcm传感器104的传感器元件132的金属涂层可与qcm传感器102的传感器元件112的金属涂层相同。具有金属涂层的传感器元件132从离开等离子体源100的化合物的流动路径凹陷,以便减低金属迁移返回真空处理腔室190的风险。

图2为根据文本描述的一个实施方式的图示用于消除来自处理腔室的流出物的方法200的流程图。方法200开始于框202,从处理腔室(例如,图1a中所示的真空处理腔室190)流动流出物进入等离子体源(例如,图1a中所示的等离子体源100)。流出物可包含pfc或含卤素化合物,例如sif4。在框204,通过流动一个或多个消除试剂进入前级组件(例如,图1a中所示的第一管道192a或前级组件193的等离子体源100)来继续该方法。消除试剂可为水蒸气或水蒸气及氧气。在框206,在等离子体源执行消除处理时产生固体,且使用一个或多个qcm传感器(例如,图1a中所示的qcm传感器102、104)来监控等离子体源下游累积的固体量。在一个实施方式中,使用一个qcm传感器以监控等离子体源下游累积的固体量,且该qcm传感器为图1a中所示的qcm传感器102。在另一实施方式中,使用两个qcm传感器以监控等离子体源下游累积的固体量,且该两个qcm传感器为图1a中所示的qcm传感器102、104。qcm传感器提供真空处理系统中产生的及等离子体源下游累积的固体量的实时测量,而不必关闭真空泵194。此外,操作员可使用一个或多个qcm传感器提供的信息以决定前级是否可安全开启以执行对真空处理系统部件的维护。

接着,在框208,基于一个或多个qcm传感器提供的等离子体源下游累积的固体量,来调整一个或多个消除试剂的流动率。例如,在一个或多个qcm传感器检测到小的固体量时,水蒸气的流动率远大于氧气的流动率。在一些实施方式中,仅流动水蒸气进入前级组件(第一管道192a或等离子体源100)。在使用水蒸气为消除试剂时,pfc的解构及移除效率(destructionandremovalefficiency,dre)是高的,但形成固体。在一个或多个qcm传感器检测到等离子体源下游的前级组件中累积更多固体时,减低水蒸气的流动率,同时增加氧气的流动率。在流动氧气进入前级组件(第一管道192a或等离子体源100)时,固体被清除,但pfc的dre是低的。此外,流动进入等离子体源的氧气的增加量可腐蚀等离子体源的核心。在一个实施方式中,水蒸气及氧气的流动率被调整,使得水蒸气流动率对氧气流动率的比例为三。

换句话说,在一个或多个qcm传感器检测到等离子体源下游累积固体量增加时,增加氧气流动率,且在一个或多个qcm传感器检测到等离子体源下游累积固体量减少时,减少氧气流动率。然而,水蒸气流动率对氧气流动率的比例应为三或更低,以防止dre落到不可接受的等级。可随着氧气流动率的调整来一并调整水蒸气流动率。在一个实施方式中,氧气流动率增加且水蒸气流动率成比例地减少。在另一实施方式中,氧气流动率增加减少且水蒸气流动率成比例地增加。在一些实施方式中,水蒸气流动率保持恒定,同时基于等离子体源下游累积的固体量来调整氧气流动率。

通过在等离子体源下游的真空处理系统使用一个或多个qcm传感器,可实现系统中产生固体量的实时测量。系统中产生固体量的实时测量帮助决定开启前级是否是安全的。此外,可使用固体量的实时测量以控制一个或多个消除试剂的流动率,以消除离开处理腔室的流出物中的化合物,以便减低固体形成。

虽然上述内容设计所公开的装置、方法及系统的实施方式,可在不脱离本公开内容的基本范围的情况下,设计所公开的装置、方法及系统的其他及进一步的实施方式,且该范围由随附的权利要求书所确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1