形成金属硅化物层的方法和由此形成的金属硅化物层与流程

文档序号:18904844发布日期:2019-10-18 22:32阅读:197来源:国知局
形成金属硅化物层的方法和由此形成的金属硅化物层与流程

本文所述实施方式大体上涉及半导体器件制造设备和工艺的领域,并且更特定地涉及使用物理气相沉积(pvd)和高压退火工艺形成金属硅化物互连的方法。



背景技术:

随着下一代器件的电路密度增加并且晶体管尺寸继续缩小,用于导线互连(wireinterconnect)的材料的特性开始在主要性能指标(包含功耗、电阻-电容(rc)延迟和可靠性)方面主导器件性能。在过去的二十年中,铜已用于先进的usli和vsli技术中的导线互连,因为铜大体表现出相对低的电阻率,并且因此具有高导电性。然而,当器件的互连布线的宽度缩小到互连布线材料的电子平均自由程(emfp)的尺寸或更小的尺寸时,材料的有效电阻率由于在互连布线的表面处和互连布线的晶界界面处不希望的侧壁电子散射而增加。因此,对于具有铜的39nm的emfp以下的宽度的铜互连,铜(通常用于互连的材料)的有效电阻率开始增加,并且对于具有20nm或更小的宽度的互连而言铜的有效电阻率显著增加。另外,与铜互连一起使用的阻挡层(以防止铜材料不希望地扩散到周围的电介质材料中)进一步促使增加导线互连的总电阻率。铜作为导线互连材料的一种有希望的替代品是硅化镍,硅化镍具有相对低的电阻率和小于10nm的emfp(取决于镍与硅的材料组成),使硅化镍成为用于具有20nm或更小并且甚至为10nm或更小的沟槽临界尺寸(cd)的导线互连的合适材料。

金属硅化物(诸如硅化镍)广泛用于需要低电阻率和热稳定导体材料的前端(feol)半导体器件制造工艺中。例如,金属硅化物通常用于形成与源极、漏极和栅极器件特征的欧姆接触。不幸的是,形成金属硅化物的传统方法(诸如退火金属和硅的交替层以引起金属和硅的交替层的相互扩散和金属与硅原子之间的固态反应)一般与后端(beol)半导体器件制造工艺(包含形成导线互连的工艺)的较低热预算要求不相容。

因此,本领域需要在较低温度下形成金属硅化物和金属硅化物导线互连的改进的方法。



技术实现要素:

本文中的实施方式涉及半导体器件制造,并且更特定地涉及使用物理气相沉积(pvd)和高压退火的工艺程序形成金属硅化物互连的方法。

在一个实施方式中,一种在基板上形成金属和硅层的方法包含使气体流入处理腔室的处理空间中,向设置在所述处理空间中的靶施加功率,在靠近所述靶的溅射表面的区域中形成等离子体,和在基板的表面上沉积金属和硅层。本文中,所述靶包括金属硅合金,并且所述靶的溅射表面相对于基板的表面成在约10°与约50°之间的角度。

在另一实施方式中,一种使多个互连特征退火的方法包含使用输送到第一处理空间中的气体将第一处理空间加压到大于大气压力的约1倍的压力,将设置在第一处理空间中的基板加热到不大于约400℃的退火温度,和将所述基板维持在所述退火温度约30秒或更长时间。在这个实施方式中,第一处理空间是第一处理腔室的处理空间,并且基板包括电介质层,所述电介质层具有形成在所述电介质层中的多个互连特征。所述多个互连特征是使用包含以下步骤的方法形成的:使气体流入第二处理空间中,向设置在第二处理空间中的靶施加功率,在靠近第一靶的溅射表面的区域中形成等离子体,和在基板的表面上和在形成于电介质层中的多个开口中沉积金属和硅层。在这个实施方式中,第二处理空间是第二处理腔室的处理空间,靶包括金属-硅合金,并且靶的溅射表面相对于基板的表面成在约10°与约50°之间的角度。

在另一实施方式中,一种器件的特征在于图案化基板,所述图案化基板具有形成在设置于所述图案化基板上的电介质层中的多个开口;和金属硅化物,所述金属硅化物设置在所述多个开口中以形成对应的多个互连。

在另一实施方式中,图案化基板的特征在于基板;设置在基板上的电介质层,所述电介质层具有形成于所述电介质层中的多个开口;和沉积在多个开口中和沉积在电介质层的场表面上的金属和硅层,其中如所沉积的金属和硅层包括金属和硅的混合物,所述混合物具有mxsi(1-x)的原子组成,其中x在约0.4与约0.6之间。

在另一实施方式中,提供一种图案化基板。所述图案化基板包含基板;设置在基板上的电介质层,所述电介质层包含形成在电介质层中的多个开口;和沉积在多个开口中和沉积在电介质层的场表面上的镍和硅层。本文中,如所沉积的镍和硅层包括金属和硅的混合物,所述混合物具有nixsi(1-x)的原子组成,其中x在约0.4与约0.6之间。

附图说明

因此,可以详细地理解本公开内容的上述特征的方式,可以通过参考实施方式获得以上简要概述的本公开内容的更具体描述,实施方式中的一些在附图中进行图示。然而,应注意,附图仅仅图示本公开内容的典型实施方式,并且因此不应被视为对本公开内容的范围的限制,因为本公开内容可以允许其他同等有效的实施方式。

图1a是根据一个实施方式的用于实践本文所述方法的示例性多阴极物理气相沉积(pvd)腔室的示意性横截面图。

图1b图示根据一个实施方式的在基板处理期间设置在图1a的pvd腔室中的靶和基板的相对位置。

图2是根据一个实施方式的用于实践本文所述方法的示例性高压退火腔室的示意性横截面图。

图3a是根据一个实施方式的在基板上形成金属和硅层的方法的流程图。

图3b是根据一个实施方式的退火多个互连特征的方法的流程图。

图4a至图4d图示根据一个实施方式的使用图3a至图3b中所述的组合方法来形成金属硅化物互连。

具体实施方式

本文中的实施方式涉及半导体器件制造,并且更特定地涉及使用物理气相沉积(pvd)和高压退火的工艺程序形成金属硅化物互连的方法。在一些实施方式中,所述工艺程序包含在基板(所述基板上形成有多个开口)上沉积金属和硅的混合物的层,在金属和硅层上沉积诸如金属氮化物层的钝化层,和在高压气氛中使基板退火。通常,多阴极pvd腔室用于沉积金属和硅层与钝化层两者,并且高压退火腔室用于使金属和硅层退火以形成低电阻率金属硅化物互连。

使用多阴极(即,多溅射靶)pvd腔室来实践本文所述的方法允许比通常用于传统单靶pvd腔室的靶直径小的靶直径。一些靶材料(诸如,氮化物、氧化物、金属和硅合金,和金属硅化物)的较小靶直径有益地减少由这些靶材料形成的靶由于在靶的寿命期间来自靶表面的材料的不均匀侵蚀而破裂的机会。靶材料的不均匀磨损引起靶内机械应力,所述靶内机械应力在沉积工艺期间引起靶材料弯曲和挠曲。靶的这种弯曲和挠曲导致不希望的破裂。然而,因为与较小直径的靶相关联的弯曲小于与较大直径的靶相关联的弯曲,所以本文中使用的较小直径的靶理想地较不易破裂。另外,使用多靶pvd腔室允许沉积钝化层而不使基板和沉积在基板上的金属和硅层暴露于大气条件或者需要到第二处理腔室的耗时的传送程序。使用高压(例如,高于大气压力)处理腔室来使金属和硅层退火使得能够通过金属和硅层的低温高压退火在与beol热预算要求相容的退火温度下(本文中是在400℃或更低的退火温度下)形成结晶相金属硅化物层。如本文中所使用,大气压力为约1巴。

图1a是根据一个实施方式的用于实践本文所述方法的示例性多阴极物理气相沉积(pvd)腔室的示意性横截面图。pvd腔室100的特征在于一个或多个侧壁101、腔室盖102和腔室底座103,它们一起限定处理空间104。处理空间104流体地耦接到真空,诸如一个或多个专用真空泵,所述真空泵将处理空间104维持在低于大气压力的条件下并从处理空间104中排出处理气体和其他气体。

设置在处理空间104中的基板支撑件105设置在可移动的支撑轴106上,所述可移动的支撑轴106密封地延伸穿过腔室底座103,诸如,在腔室底座103下方的区域中被波纹管(未示出)环绕。本文中,pvd腔室100通常被配置为便于通过一个或多个侧壁101中的一个侧壁中的开口108将基板400传送到基板支撑件105和从基板支撑件105传送基板400,所述开口108通常在基板处理期间由门或阀(未示出)密封。在一些实施方式中,支撑轴106进一步耦接到致动器(未示出),所述致动器在基板处理期间围绕轴线a旋转支撑轴106并且因此旋转设置在基板支撑件105上的基板400,这在某些处理条件下改善基板400的表面上的沉积层的厚度均匀性。

本文中,pvd腔室100的特征在于多个阴极109。阴极109中的一个或多个阴极的特征在于设置在处理空间104中的靶组件110、耦接靶组件110的阴极壳111(其中阴极壳111和靶组件限定壳空间112)和设置在壳空间112中的磁体组件113。在一些实施方式中,靶组件110包含设置在靶背板115上并与靶背板115接合的溅射靶114。在其他实施方式中,靶组件110包括由待溅射的靶材料形成的单块主体。在一些实施方式中,磁体组件113耦接到可旋转轴116,可旋转轴116使磁体组件113围绕轴线b在靶组件110的后非溅射侧之上旋转。本文中阴极109中的每一个均耦接到电源117,诸如,rf频率电源、dc电源或脉冲dc电源。在一些实施方式中,通过与壳空间112流体连通的冷却流体源(未示出)将具有相对高电阻率的冷却流体提供到壳空间112,以冷却磁体组件113和相邻的靶组件110。

通常,pvd腔室100包含设置在处理空间104中并在相邻的靶组件110之间延伸的屏蔽组件(未示出),所述屏蔽组件定位成防止串扰(在共同溅射工艺期间一个阴极电源对另一个阴极电源的不希望的电干扰))和交叉靶污染(在共同溅射、顺序溅射或单溅射工艺期间材料从一个阴极的靶到另一个阴极的靶上的不希望的沉积)。

本文中,阴极109中的每一个均包含波纹管120和耦接到腔室盖102外部和耦接到阴极壳111的角度调整机构(未示出)。波纹管120用于通过防止大气气体进入处理空间104和处理气体从处理空间104泄漏到周围环境来维持处理空间104的真空条件,同时允许阴极壳111相对于腔室主体的角度调整。角度调整机构用于改变和接着固定阴极壳111的位置并且因此改变和接着固定耦接至阴极壳111的靶114的溅射表面,所述溅射表面相对于基板400的表面成某个角度,这将参考图1b进一步详细描述。

图1b图示根据一个实施方式的当基板400处于升高的基板处理位置时阴极109中的任何一个阴极的靶114与基板400的相对位置。靶114以从靶114的最靠近基板的表面的平面的一部分测量的垂直距离z与基板400的表面的平面间隔开。本文中,垂直距离z在约100mm与约400mm之间,诸如在约150mm与约250mm之间,诸如在约200mm与约300mm之间,例如在约225mm与约275mm之间。靶114的溅射表面相对于基板400的表面成角度θ,角度θ在约10度与约50度之间,诸如在约20度与约40度之间,例如在约20度与约30度之间或者在约30度与约40度之间。

通常,基板400具有300mm或更大的直径,并且靶114具有小于基板400的直径的直径,诸如小于300mm,诸如为200mm或更小,或者150mm或更小,例如,在约50mm与约200mm之间,诸如在约50mm与约150mm之间,或者为约100mm。在一些实施方式中,靶的厚度(例如形成靶的金属-硅合金的厚度)在约2mm与约5mm之间。

图2是根据一个实施方式的用于实践本文所述方法的示例性高压退火腔室的示意性横截面图。退火腔室200的特征在于限定处理空间202的腔室主体201和设置在处理空间202中的基板支撑件203。本文中,退火腔室为单个基板处理腔室,单个基板处理腔室被配置为使用嵌入基板支撑件203中的热源(诸如电阻式加热器204)将设置在基板支撑件203上的基板400加热到所需温度。在一些实施方式中,基板支撑件为热板。在一些其他实施方式中,热源是辐射热源,诸如位于基板400上方、下方或者在基板400上方和基板400下方的多个灯,以向基板400辐射热量。在一些其他实施方式中,退火腔室是批处理腔室,批处理腔室被配置为在单个退火工艺程序中加热多个基板。

本文中,处理空间202流体地耦接到高压气源205和真空源(诸如一个或多个专用真空泵)或者耦接到共同的制造排放装置。本文中,高压气源205包含一个或多个高压气瓶(未示出),所述高压气瓶具有大于处理空间中的所需处理压力的压力。在其他实施方式中,高压气源205包含一个或多个泵(未示出),所述一个或多个泵对输送到所述泵中的一种或多种退火气体加压。在基板处理期间,通过分别操作流体地耦接到高压气体源205和真空源的阀206a和206b,处理空间202理想地被维持在高于大气压力的压力下,诸如,在大气压力的约1倍与约100倍之间。本文中,退火腔室200能够将基板加热到并维持在高至800℃的温度,通常在200℃与800℃之间。本文中,退火腔室200是独立的腔室或者是多个连接的腔室中的一个,退火腔室200不耦接到图1a中所描述的多阴极pvd腔室100。在其他实施方式(未示出)中,退火腔室200和pvd腔室100是多腔室(即,群集工具)处理系统的部分并且通过传送腔室耦接,传送腔室允许将基板从pvd腔室100传送到退火腔室200而不使基板暴露于大气条件。

图3a是根据一个实施方式的在基板上形成金属和硅层的方法的流程图。图3b是根据一个实施方式的使金属和硅层退火以形成低电阻率的金属硅化物导线互连的方法的流程图。图4a至4d图示根据一个实施方式使用图3a至图3b中所述的组合方法形成金属硅化物互连。

在活动301处,方法300包含使溅射气体流入处理空间,此处是第一处理空间,所述第一处理空间是第一处理腔室的处理空间,诸如图1a中所述的多阴极pvd腔室的处理空间。通常,溅射气体包括惰性气体,例如ar、he、ne、kr、xe或上述项的组合。在一些实施方式中,在沉积工艺期间,第一处理空间理想地被维持在小于约10毫托的压力下,诸如小于约5毫托,诸如小于约1毫托,例如在约0.5毫托与约1毫托之间。

在活动302处,方法300包含向设置在第一处理空间中的第一靶施加功率。在此,第一靶包括金属-硅合金,例如tisi、nisi、ptsi或cosi。在一些实施方式中,第一靶包括具有nixsi(1-x)原子组成的非晶镍硅合金,其中x在约0.4与约0.6之间,例如约0.5。此处,第一靶接合到背板,例如,铜背板。在一些实施方式中,在沉积工艺期间,第一靶理想地被维持在约15℃与约30℃之间的温度。

在一些实施方式中,第一靶进一步包括碳,例如tisic。在其他实施方式中,第一靶包括金属-金属-硅合金或者金属-金属-碳合金,例如tialsi或tialc。在本文中的实施方式中,第一靶的溅射表面相对于基板的表面成在约10°与约50°之间的角度,诸如,在约20°与约40°之间。在一些实施方式中,第一靶的直径小于基板的直径,诸如在基板的直径为300mm或更大的实施方式中。在一些实施方式中,第一靶的直径在约50mm与约200mm之间,或者例如为约200mm或更小,诸如约150mm或更小。通常,取决于腔室配置,从第一靶溅射的材料可覆盖基板表面的约60%与约80%之间。因此,在一些实施方式中,所述方法进一步包含在沉积工艺期间旋转基板。

通常,施加到第一靶的功率是从rf频率(或其他交流频率)电源、dc电源或者脉冲dc电源输送的。本文中,电源耦接到第一靶,耦接到背板,所述背板使第一靶接合到背板并因此电耦接到背板。通常,当使用时,施加到靶的rf功率在约100瓦特与约1000瓦特之间,或者施加到靶的dc功率在约600瓦特与约1200瓦特之间。在一些实施方式中,施加到靶的脉冲dc功率具有在约25khz与约250khz之间的脉冲频率和在约10%与约90%之间的导通时间占空比(on-timedutycycle)。

在活动303处,方法300包含在靠近第一靶的溅射表面的区域中形成第一等离子体。

在活动304处,方法300包含将金属和硅层沉积在基板的表面上,诸如图4a中所图示的图案化基板400。在一些实施方式中,方法300进一步包含在将金属和硅层沉积在基板的表面上的同时旋转基板。

在一些实施方式中,方法300进一步包含在金属和硅层上沉积钝化层,诸如图4c中所示的钝化层405。钝化层的示例包含金属-氮化物层或者金属-氧化物层(其中金属为al、cr、zn、ti中的一种或上述项的组合)或者氧化硅或氮化硅层。在一些实施方式中,钝化层405在用于沉积金属和硅层404a的相同多阴极pvd腔室中沉积,并且因此在基板不破坏真空的情况下沉积。在一些实施方式中,钝化层405包括在与金属和硅层相同的处理腔室中沉积的tin,并且因此基板不破坏真空。在一些实施方式中,靶包括tin,并且溅射气体包括惰性气体,例如ar、he、ne、kr、xe或上述项的组合。使用tin靶和沉积tin钝化层的惰性溅射气体理想地避免将基板(基板上沉积有金属和硅层)暴露于由通常用于形成tin层的氮源气体形成的等离子体,所述等离子体可能潜在地损坏先前沉积的镍和硅层,例如,通过在所述镍和硅层中形成不希望的氮化硅。因此,在一些实施方式中,用于沉积tin层的溅射气体是无氮的,这意味着用于形成溅射气体的气体不具有氮部分。

在其他实施方式中,通过以下操作来沉积tin层:使包括惰性气体和含氮气体(诸如n2、nh3或这两者的组合)的溅射气体流入处理腔室,将rf功率施加到第二靶(本文中是钛靶),在第二靶的溅射表面前面形成溅射气体的等离子体,和将tin层沉积在金属和硅层上。在一些实施方式中,钝化层具有约5nm或更大的厚度t,诸如约10nm或更大,或者约15nm或更大。通常,第二靶相对于基板支撑件的表面并且因此相对于定位在基板支撑件上的基板的活性表面(activesurface)成在约10°与约50°之间的角度,诸如在约20°与约40°之间。

图3b是根据一个实施方式的使金属和硅层退火以形成低电阻率的金属硅化物导线互连的方法的流程图。在活动311处,方法310包含将第一处理空间加压至大于大气压力的1倍的所需压力,例如在大气压力的约1倍与约10倍之间的压力,诸如大于大气压力的约2倍,大于大气压力的约3倍、大于大气压力的约4倍或者大于大气压力的约5倍。在此,第一处理空间是第一处理腔室的处理空间,诸如图2中所描述的高压退火腔室200。通常,通过向第一空间输送高压气体来对第一空间加压。本文所使用的高压气体(例如,退火气体)的示例包含ar、he、形成气体(h2和n2的混合物)、n2、o2、co、co2和上述项的组合。在一些实施方式中,退火气体为ar、he或n2中的一种或组合。本文中,在活动312和313的持续时间内或者至少在活动313的持续时间内第一处理空间被维持在所需压力下。

在活动312处,方法310包含将基板加热到不大于约400℃的退火温度。在一些实施方式中,退火温度不高于约350℃,或者在约300℃与约400℃之间,例如在约300℃与约350℃之间。在其他实施方式中,在于活动311处对第一处理空间加压之前,将基板加热至退火温度。

在活动313处,方法310包含将基板维持在退火温度约30秒或更长时间,诸如在约30秒与约3小时之间,诸如在约30秒与约60分钟之间、在约30秒与约10分钟之间,例如在约30秒与约5分钟之间,以形成金属硅化物层404b。

在一些实施方式中,基板是图案化基板,诸如图4d中所示的图案化基板400b,基板400b包括电介质层402(电介质层402中形成有多个开口(诸如图4a中所示的开口403)),和设置在开口中以形成多个互连特征(例如,导线互连)的金属和硅层404a。

本文中,使用包含以下步骤的方法形成多个互连特征:使第一溅射气体流入第二处理空间(诸如,图1a中所描述的多阴极pvd腔室100的处理空间),向设置在第二处理空间中的第一靶施加功率,在靠近第一靶的溅射表面的区域中形成第一等离子体,和在基板的表面上并且在形成于电介质层中的多个开口中沉积金属和硅层。

方法310的另外的实施方式包含图3a中所描述的方法300中所述的实施方式中的任一个。在一些实施方式中,使用方法300和310中的一个或两个形成多个镍单硅化物互连,所述互连具有小于约20nm的宽度、2倍于宽度或更大的高度和小于约30ω·cm的电阻率,诸如在约10ω·cm与约30ω·cm之间。

上述方法300和310有益地允许使用与后端(boel)热预算要求相容的处理温度来形成低电阻率的结晶金属硅化物互连,诸如适用于低于20nm范围的镍单硅化物互连。

图4a图示根据一个实施方式的示例性图案化基板400a。本文中,图案化基板400a包含由诸如硅的半导体材料形成的基板401,基板401上设置有电介质层402。通常,电介质层402由氮化物、碳化物或低k聚合物材料形成,诸如sio2、sin、sioc、sic、聚酰胺或上述项的组合,并且具有形成在电介质层402中的多个开口403。在一些实施方式中,开口403中每一个开口的宽度w小于约20nm,诸如小于约15nm,小于约10nm,小于约8nm,小于约7nm,例如小于约5nm。通常,开口403中的每一个开口的高度h等于或大于宽度w的约2倍。

在此,图案化基板400a不包含阻挡层(防止一些互连材料(例如铜)不希望地扩散到电介质层402中的材料层)。在其他实施方式中,图案化基板400a进一步包含设置在电介质层402上并充当开口403中的衬垫的阻挡层(未示出),诸如,ta、tan、it、w、wn或上述项的组合的层。在一些实施方式中,在与随后沉积的金属和硅层相同的处理腔室中沉积阻挡层,并且因此基板不破坏阻挡层与待沉积的金属和硅层的沉积之间的真空。

图4b图示使用方法300沉积在图4a中所示的图案化基板400a上的金属和硅层404a,诸如,镍和硅层。通常,如所沉积的金属和硅层404a包括具有大体上均匀的化学计量成分的金属和硅的混合物,例如均质混合物。本文中大体上均匀的化学计量成分至少意味着当在跨金属和硅层404a的表面的位置处或者在金属和硅层404a内的位置处这两处(诸如,靠近电介质层402的表面的位置、远离电介质层402的表面的位置和位于这两个位置之间的位置)测量时,混合物中金属与硅的原子比变化小于5%。在一些实施方式中,金属和硅的混合物的化学计量成分变化小于约4%,诸如小于3%,小于2%,例如小于1%。

在一些实施方式中,如所沉积的金属和硅层404a包括具有nixsi(1-x)的大体上均匀的化学计量成分的非晶镍硅合金,其中x在约0.4与约0.6之间,例如为约0.5。在一些实施方式中,如所沉积的金属和硅层404a包括非晶镍硅合金与结晶硅化镍的组合,所述组合具有nixsi(1-x)的大体上均匀的化学计量成分,其中x在约0.4与约0.6之间,例如为约0.5。在一些实施方式中,如所沉积的金属和硅层404a包括金属和硅的不饱和并且热不稳定的混合物。因此,本文的实施方式提供如所沉积的金属和硅层404a的低温高压退火,以通过固态反应形成结晶相金属硅化物。如所沉积的金属和硅层404a的低温高压退火确保否则会悬挂的硅键的完全饱和,以提供适合于用作半导体器件中的低电阻率导线互连的热稳定的结晶相金属硅化物,诸如,结晶镍单硅化物(nisi)。本文中,低电阻率至少意味着金属硅化物层的薄层电阻小于约60μω·cm,诸如小于约50μω·cm,小于约40μω·cm,例如小于约30μω·cm。

虽然前文针对本公开内容的实施方式,但是可以在不脱离本公开内容的基本范畴的情况下设计本公开内容的其他和另外的实施方式,并且本公开内容的范围额由随附的权利要求书确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1