屏下摄像组件及相应的有机发光二极管显示屏和终端设备的制作方法

文档序号:22746107发布日期:2020-10-31 09:35阅读:129来源:国知局
屏下摄像组件及相应的有机发光二极管显示屏和终端设备的制作方法

本申请涉及光学成像技术和显示技术,特别地,本申请涉及屏下摄像组件及相应的有机发光二极管显示屏和终端设备。



背景技术:

为满足客户的摄像需求,包括手机在内的电子终端通常具备摄像功能。为此,现有手机终端中一般具有前后摄像模组,前置摄像模组通常设置在显示屏的同侧,用于满足使用者的自拍等功能。然而,随着屏占比越来越大,对前置摄像头的布置也提出了越来越高的要求。

为减少摄像头对屏占比的影响,实现全面屏,不同厂家从不同的角度开发多种解决方案。一种技术方向是:将前置摄像模组布置在手机顶框,形成接近全面屏的刘海屏或水滴屏。另一种技术方向是:采用伸缩式的摄像模组以便隐藏和使用摄像头。当需要摄像时,可控制摄像头伸出手机(或其它电子设备)壳体之外进行拍摄;拍摄完毕后,摄像头缩回至手机(或其它电子设备)壳体中。然而,摄像头在不断的伸缩过程以及摄像头相对于手机(或其它电子设备)伸出时,容易受外力撞击而导致前置摄像损坏,并且更换困难。

近几个月,有厂家推出了屏下摄像方案,俗称“打孔屏”或“挖孔屏”。该项技术是:在显示屏打通孔或盲孔,将前置摄像模组置于通孔处或置于盲孔后方。这种技术可以省去用于带动摄像头伸缩的马达,有助于提升产品的可靠性。然而,在现有的技术条件下,显示屏的“打孔”或“挖孔”部分面积较大(例如圆形挖孔的孔径通常会大于4mm),这种挖孔会对用户体验造成负面影响。

显示技术领域,有机发光二极管显示屏(即oled屏幕,其中oled是organiclight-emittingdiode的缩写,有机发光二极管显示屏有时也被称为有机电致发光显示屏)不需要背光源即可发光,并且oled屏幕在一定程度上是透明的。然而,与玻璃、树脂等镜片材料不同,oled屏幕内部具有复杂的微结构,这些微结构包括例如基于半导体工艺制作于基板上的大量发光结构及相应的用于对发光结构进行控制的微电路结构。屏幕内部的复杂微结构导致oled屏幕的透光率远远小于玻璃、树脂等镜片材料。如果将前置摄像模组设置于现有的oled屏幕的后端,oled屏幕(尽管其具有一定的透光性)仍然会对前置摄像模组形成遮挡,无法进行成像。

现有的“打孔屏”技术中,oled屏幕的打孔方案通常是打通孔,以免oled屏幕的遮挡导致屏下摄像模组的进光量不足。然而,在oled屏幕上打通孔需要对oled屏幕的制作工艺做出较多的改动,增加了oled屏幕的工艺难度,这对于大规模量产条件下的良率和成本都有不利影响。另一方面,现有技术中还存在一种对lcd屏幕的背光源板进行打孔的方案,即盲孔屏方案。该方案中,可以仅打穿lcd屏幕的背光源板。然而,lcd屏幕本身的厚度通常明显大于oled屏幕,这使得搭载屏下摄像模组的终端设备(例如手机)难以做薄。因此人们可能会更加期待基于oled屏幕的屏下摄像模组解决方案。然而,oled屏幕的结构与lcd屏幕完全不同,例如oled屏幕中根本没有背光源板,因此lcd屏幕的打孔方案无法直接套用到oled屏幕中。

综上所述,消费者渴求全面屏的解决方案,然而现有技术中,无论是刘海屏、水滴屏、“打孔屏”,还是伸缩式前摄方案都存在各自的缺陷。因此,当前市场上迫切需要一种工艺难度较低、可缩小挖孔尺寸甚至无挖孔的屏下摄像解决方案。



技术实现要素:

本发明旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。

根据本发明的一个方面,提供了一种有机发光二极管显示屏,包括:基板、缓冲层、第一电极层、像素层、第二电极层、封装层、偏光层和盖板;其中所述像素层包括主显示区域和透光区域,所述偏光层具有偏光层通孔,所述像素层的位于所述偏光层通孔位正下方的部分形成所述透光区域,并且所述主显示区域和所述透光区域之间不使用封装材料隔开,所述封装层通过覆盖所述主显示区域和所述透光区域的上表面来封装所述像素层。

其中,所述偏光层通孔的孔径为1mm~2.5mm。

其中,所述主显示区域包括阵列式排布的多个像素发光结构和填充在所述多个像素发光结构之间间隙的像素限定结构,所述透光区域通过填充透光材料或透光结构形成,以使所述透光区域的透光率大于所述主显示区域。

其中,所述偏光层通过光学胶与所述封装层粘合。

其中,所述偏光层通孔中填充光学胶。

其中,所述主显示区域和所述透光区域共同构成连续的上表面,所述封装层通过覆盖所述连续的上表面来封装所述像素层。

其中,所述主显示区包括阵列式排布的多个像素发光结构和填充在所述多个像素发光结构之间间隙的像素限定结构。

其中,每个所述的像素发光结构均包括空穴层、电子层和位于所述空穴层和所述电子层之间的发光材料层,其中所述空穴层包括空穴注入层和空穴传输层,所述电子层包括电子传输层和电子注入层。

其中,所述基板具有对应于所述透光区域的基板通孔。

其中,所述基板设置定位标记,所述定位标记用于在组装过程将所述摄像模组对准所述通孔。

其中,所述透光区域由光学胶填充而形成。

其中,所述透光区域的制作材料与所述像素限定结构的填充材料一致,并且所述制作材料为透光材料。

其中,所述透光区域具有像素发光结构,并且所述透光区域的像素间距大于所述主显示区域的像素间距,以使所述透光区域的透光率大于所述主显示区域。

根据本申请的另一方面,还提供了一种屏下摄像组件,其包括:前文所述的任一有机发光二极管显示屏;以及摄像模组,该摄像模组的光轴垂直于所述有机发光二极管显示屏的表面,并且所述摄像模组位于所述屏下摄像区域的后端。

其中,所述第一电极层和所述第二电极层分别位于所述像素层下方和上方,其中所述第一电极层构成所述摄像模组的光阑。

其中,所述封装层覆盖于所述第二电极层的上表面。

其中,所述基板具有对应于所述透光区域的基板通孔,所述摄像模组的顶端伸入所述基板通孔并承靠于所述缓冲层的底面。

其中,所述第一电极层为阴极层,所述阴极层具有阴极层通孔以形成所述光阑的光圈,所述阴极层的厚度达到适于遮光的厚度,以形成所述光阑的遮光部。

其中,所述第一电极层具有第一通孔以形成所述光阑的光圈,所述第一通孔中填充光学胶。

根据本申请的又一方面,还提供了一种终端设备,其包括前文所述的任一屏下摄像组件。

其中,所述摄像模组作为所述终端设备的前置摄像模组,所述有机发光二极管显示屏作为所述终端设备正面的显示面板。

与现有技术相比,本申请具有下列至少一个技术效果:

1、本申请可以降低“挖孔屏”的工艺难度,从而使得基于“挖孔屏”的屏下摄像组件的生产效率提高、生产成本降低。

2、本申请可以在保证屏下摄像模组进光量的同时,帮助缩小“挖孔屏”的孔的尺寸,从而提升用户体验。这里孔的尺寸是指:显示设备亮屏时,用户可从正面观察到的显示屏中的孔的大小。

3、本申请的一些实施例中,可以在显示设备的一个或多个功能层的挖孔处填充光学胶,这样可以在保证透光率的前提下使各功能层的表面平整,提高“挖孔屏”的结构强度和可靠性。

4、本申请的一些实施例中,可以通过将显示设备中的第一电极层制作成光阑,来减小屏下摄像模组的高度(指光轴方向上的尺寸),从而帮助减小终端设备(例如手机)的厚度。

5、本申请的一些实施例中,可以将屏下摄像模组紧贴于显示设备的底面,从而帮助提高屏下摄像模组的进光量。

6、本申请的一些实施例中,可以将屏下摄像模组紧贴于显示设备的底面,可以使得屏下摄像模组和“挖孔”屏组装在一起的对准难度降低。

7、本申请的一些实施例中,可以将显示设备的基板(或者称为基层)挖孔,从而帮助提高屏下摄像模组的进光量。

8、本申请的一些实施例中,可以将显示设备的基板(或者称为基层)挖孔,并使屏下摄像模组的顶端直接承靠于显示设备的缓冲层,从而减少外界光传输到摄像模组的传输距离,进而进一步地提高屏下摄像模组的进光量。

9、本申请的一些实施例中,可以通过降低屏下摄像区域的像素密度来提高屏下摄像区域的光透过率,从而屏幕可以不必通过开孔来避让摄像模组的成像光路,以保持显示屏的完整。

10、本申请的屏下摄像组件特别适合用于智能手机,该屏下摄像组件中的摄像模组特别适于作为智能手机的前置摄像模组。

附图说明

在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。

图1示出了本申请的一个实施例的屏下摄像组件的剖面示意图;

图2示出了图1中的有机发光二极管显示屏的俯视示意图;

图3示出了一种典型的有机发光二极管显示屏的剖面示意图;

图4示出了图3中的像素层、缓冲层及周边其它功能层的细节结构;

图5示出了本申请的一个实施例的屏下摄像组件的剖面示意图;

图6示出了本申请的另一个实施例的屏下摄像组件的剖面示意图;

图7示出了本申请又一个实施例的屏下摄像组件的剖面示意图;

图8示出了本申请一个透光区域和主显示区域采用相同结构的实施例的屏下摄像组件的剖面示意图;

图9示出了本申请另一个透光区域和主显示区域采用相同结构的实施例的屏下摄像组件的剖面示意图;

图10示出了一个采用通孔屏方案的有机发光二极管显示屏的比较例的剖面示意图;

图11示出了一个具有定位标记的oled屏幕的基板的示意图。

具体实施方式

为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。

应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。

在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。

还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。

如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。

除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

图1示出了本申请的一个实施例的屏下摄像组件的剖面示意图。参考图1,所述屏下摄像组件包括有机发光二极管显示屏100(即oled屏幕)和位于该有机发光二极管显示屏100后端的摄像模组200。摄像模组200的光轴ax大致垂直于所述有机发光二极管显示屏100的表面101。这里“后端”是指摄像模组200的成像光路中靠近像方的一端。所述摄像模组200位于有机发光二极管显示屏100的屏下摄像区域120的后端。其中,屏下摄像区域120是有机发光二极管显示屏100中与摄像模组200适配的一个区域。进一步地,图2示出了图1中的有机发光二极管显示屏的俯视示意图。参考图2,有机发光二极管显示屏的显示区域包括屏下摄像区域120和非屏下摄像区域110。屏下摄像区域120可以是圆形的,其尺寸可以与摄像模组200的尺寸适配。屏下摄像区域120可以被非屏下摄像区域110包围。

本申请中,有机发光二极管显示屏100采用了特殊的结构设计,以便构造所述屏下摄像区域120。为便于理解,下面先对有机发光二极管显示屏的结构做简要描述。

图3示出了一种典型的有机发光二极管显示屏的剖面示意图,参考图3,该有机发光二极管显示屏100包括:基板131、缓冲层132、位于缓冲层132上方的显示层133、覆盖所述显示层133的封装层134、位于所述封装层134上方的偏光层135以及覆盖在所述偏光层135上方的盖板136。其中显示层133可以进一步划分为第一电极层、像素层和第二电极层。

具体来说,有机发光二极管显示屏(即oled屏幕)中,基板可以是玻璃盖板,也可以由玻璃或者透明塑料制成。透明塑料可以是:聚醚砜(pes)、聚丙烯酸酯(par)、聚醚酰亚胺(pei)、聚萘二甲酸乙二醇酯(pen)、聚对苯二甲酸乙二醇酯(pet)、聚苯硫醚(pps)、聚烯丙基化物(polyallylate)、聚酰亚胺、聚碳酸酯(pc)、三乙酸纤维素(tac)和/或乙酸丙酸纤维素(cap)组成的组中选择的有机材料。

进一步地,图4示出了图3中的像素层、缓冲层及周边其它功能层的细节结构。参考图4,在一例子中,显示层133包括第一电极133b、像素层133a与第二电极133c,像素层133a可以包括多个像素发光结构138和填充在所述多个像素发光结构138之间间隙的像素限定结构137。进一步地,像素发光结构138可以包括电子注入层、电子传输层、发光材料层和空穴传输层、空穴注入层。第一电极133b与第二电极133c可以分别覆盖电子注入层与空穴注入层。本实施例中,第一电极133b为金属阴极,第二电极133c为阳极,阳极可以采用氧化铟锡(ito)、氧化铟锌(izo)、氧化锌(zno)、氧化铟(in2o3)、氧化铟镓(igo)和氧化铝锌(azo)组成的组中选择的至少一种材料。像素电极均需覆盖发光材料表面,阳极具有透光性,而第一电极133b可以为银或银合金等,使得阴极不具有透光性(也可以通过镀反射膜使得阴极不具有透光性),进而使得发光层材料发出的光全部从阳极透出,薄膜晶体管的漏电极与第一电极133b连接从而与像素发光结构导通,将驱动发光的信号传输到oled屏幕的显示层。

进一步地,仍然参考图4,缓冲层132可以用作阻挡层,用于减少或防止杂质离子扩散到显示层133中、减少或防止外部的空气或湿气穿过其进行渗透。缓冲层132还可以使基底的表面平坦化。另外,缓冲层通常还包括tft驱动层,tft驱动层具有多个对应于像素发光结构的tft单元(即薄膜晶体管132a)以便驱动所述像素发光结构发光或关闭(有时还可以驱动像素发光结构改变亮度)。薄膜晶体管132a可以形成在缓冲层的主体材料上,其源电极或漏电极与显示层的第一电极133b相连接。

进一步地,在本申请的一个实施例中,封装层(tfe)为薄膜封装层,其位于显示层之上。薄膜封装层可以由一有机薄膜和一无机薄膜组成,或者多个有机膜与无机膜交替堆叠而成。薄膜封装层作用是避免显示层受外部湿气或氧气的影响,其中无机膜稳定的阻挡外部湿气和氧气,而有机膜可以吸收无机膜上的应力以给予无机膜柔性。

进一步地,在本申请的一个实施例中,偏光层(pol)包括一偏光片和1/4波片,用于减少自然光的反射,提高显示屏对比度,通常偏光层还包括一触控层(或称为触摸层)。

以上结合图3和图4对一种典型的有机发光二极管显示屏做了简要描述。下面结合实施例,继续描述可用于屏下摄像组件的、构造了所述屏下摄像区域120的有机发光二极管显示屏。

图5示出了本申请的一个实施例的屏下摄像组件的剖面示意图。参考图5,所述屏下摄像组件包括有机发光二极管显示屏100和位于该有机发光二极管显示屏100后端的摄像模组200。其中,有机发光二极管显示屏100由下至上包括基板131、缓冲层132、第一电极层133b、像素层133a、第二电极层133c、封装层134、偏光层135和盖板136。其中第一电极层133b、像素层133a和第二电极层133c可以构成显示层133。其中,所述像素层133a可以包括主显示区域140和透光区域139。在俯视角度下,主显示区域140和透光区域139的形状和位置关系可以参考图2,其中主显示区域140对应于图2中的非屏下摄像区域110,透光区域139对应于图2中的屏下摄像区域120。本实施例中,所述偏光层135具有偏光层通孔135a且所述偏光层通孔135a位于所述透光区域139的正上方。基于所述偏光层通孔135a和所述透光区域139的通光通道即可构成所述屏下摄像区域120。本实施例中,所述偏光层通孔135a的孔径可以为1mm~2.5mm。所述封装层134覆盖所述主显示区域140和所述透光区域139。所述偏光层135可以通过光学胶与所述封装层134粘合(图5中未示出偏光层135与封装层之间的光学胶)。盖板136与偏光层135之间也可以使用光学胶进行粘接(图5中未示出盖板136与偏光层135之间的光学胶)。所述主显示区域140包括阵列式排布的多个像素发光结构138(需注意图5中的主显示区域中140并未示出像素发光结构138,像素发光结构138的形状和位置可参考图4)和填充在所述多个像素发光结构138之间间隙的像素限定结构137(可参考图4)。本实施例中,每个所述的像素发光结构138均包括空穴注入层、空穴传输层、电子传输层、电子注入层和位于所述空穴传输层和所述电子传输层之间的发光材料层。其中,空穴注入层和空穴传输层可以称为空穴层,电子传输层和电子注入层可以称为电子层。本实施例中,所述透光区域139可以不设置像素发光结构138,而是用光学胶填充形成。光学胶的透光率可以达到99%,具有优异的透光性能。而在另一个实施例中,所述透光区域139同样不设置像素发光结构,但与前一实施例不同,本实施例中所述透光区域139使用像素限定结构137的填充材料制作,或者说,可以将本实施例中的透光区域139视为一个超大的像素限定结构,这样可以最大程度地与现有的oled制作工艺兼容,便于实现大规模量产,有助于提升良率和降低成本。并且,由于像素限定结构可以采用透光率较大的填充材料,因此所述透光区域139可以满足屏下摄像模组的进光量要求。像素限定结构137的侧壁可以增加阻光层以更好地隔离各个像素发光结构138,这里说的填充材料是构成像素限定结构137主体部分的填充材料。

进一步地,本申请的透光区域139的构造方式并不限于上述两个实施例。理论上说,采用不同于所述主显示区域140的材料(通常是透光材料)或透光结构(例如像素密度降低的像素发光/限定结构)制作透光区域139,使所述透光区域139的透光率大于所述主显示区域140的透光率,即可构造出一个便于屏下摄像模组接收外界光线的透光区域。在本申请的一些实施例中,像素层133a的透光区域139也可以不做特殊处理。由于偏光层135具有偏光层通孔135a,且oled屏幕的像素层133a本身具有一定的透光性,在一些情形下(例如对前置摄像模组的成像品质不做极高要求的情形),屏下摄像区域已经可以满足屏下摄像模组的进光量要求,此时像素层133a的透光区域139可以不做特殊处理。这样,所述透光区域139可以具有像素发光结构138,且其像素尺寸和间距可以与主显示区140完全一致,以提供真正的全视屏显示效果。仍然参考图5,本申请的上述实施例中,所述封装层134通过覆盖所述主显示区域140和所述透光区域139的上表面来封装所述像素层133a(需注意,这里的“覆盖”并不限于直接覆盖,封装层134与像素层133a之间可以增加其它功能层,例如第二电极层133b,封装层134可以通过覆盖第二电极层133b来实现对所述主显示区域140和所述透光区域139的上表面的覆盖)。这种封装方式使得显示层133(或像素层133a)不需要打穿通孔,且显示层133(或像素层133a)通孔的内壁可以不使用侧壁封装层134(或者称为封装材料层)进行封装。即透光区域139与主显示区域140之间的分界面141可以不设置封装材料层。换句话说,当透光区域139采用不同于主显示区域140的材料制作时,像素层133a的所述主显示区域140的侧面和所述透光区域139的侧面是直接接触的,二者具有共同的分界面141。而当透光区域139的结构与主显示区域140的结构相同时,透光区域139与主显示区域140之间可以没有明显的分界面141(即透光区域139与主显示区域140之间可以不加入用于封装的材料,尤其是,透光区域139与主显示区域140之间不加入用于对含有机材料的功能层进行封装的封装材料)。综上所述,本文中,透光区域139与主显示区域140之间不设置封装材料层(或者说不使用封装材料隔开)的含义可以理解为:所述透光区域139与所述主显示区域140之间具有共同的分界面141或者所述透光区域139与所述主显示区域140之间没有分界面141。所述透光区域139与所述主显示区域140之间没有分界面141可以理解为:所述透光区域139与所述主显示区域140之间自然过渡,或者所述透光区域139与所述主显示区域140之间连续。此处封装材料可以理解为:用于将功能层与外界隔离以避免功能层中的有机材料氧化变质的密封材料。例如覆盖所述透光区域139与所述主显示区域140的上表面的封装层134就是采用封装材料形成的。

基于上述分析可以看出,由于透光区域139与主显示区域140之间可以不加入用于封装的材料,显示层133的像素发光结构138可以制作在更加靠近通孔中轴(或光轴)的位置,从而缩小用户(例如手机用户)可见的留白区(即无像素区)。相反地,图10示出了一个采用通孔屏方案的有机发光二极管显示屏的比较例的剖面示意图,在该比较例中,显示层打穿通孔,该通孔的侧壁需要覆盖封装层134b以避免有机材料氧化而造成产品不良。这样,由于需要为覆盖通孔侧壁的封装层134b预留空间,像素发光结构不得不布置到更加外侧(即离光轴ax更远的一侧)的位置。进一步地,附着在通孔侧壁的封装层134b是竖直走向的且位于通孔内,在通孔中制作封装层134b的工艺复杂度高于传统的在显示层(或第二电极层)表面制作封装层134的工艺复杂度,这将导致通孔内的封装层134b的厚度不易控制(例如通孔内的封装层134b可能会存在厚度不均匀的问题,位于表面的封装层134的靠近通孔的边缘区域134c也有可能存在凹凸不平的问题)。另外,采用该比较例的方案,在大规模量产的工程实践中,为确保封装成功,可能还需要在通孔内为封装层预留较大的径向尺寸(这里径向可以认为是垂直于光轴的方向),这将导致显示层的留白区(即无像素区)进一步增大。而本申请的前述实施例中,虽然显示层133中构造了透光区域139,但透光区域139和主显示区140域仍然构成一个完整的整体,它们可以具有连续的表面以便在该表面制作第二电极层133c和封装层134。换句话说,透光区域139和主显示区域140可以构成可被封装层134附着的连续表面,这样封装层134仍然采用传统的工艺制作(即封装层直接制作在oled半成品的上表面),即可达到防止有机材料氧化的效果。这样一方面降低了“挖孔屏”的工艺难度,从而使得基于“挖孔屏”的屏下摄像组件的生产效率提高、生产成本降低;另一方面,可以在保证屏下摄像模组进光量的同时,帮助缩小“挖孔屏”的孔的尺寸,从而提升用户体验。

在本申请的上述实施例中,有机发光二极管显示屏均未打穿通孔,下面结合一些具体数据对这种未打穿通孔的显示屏的透光通道进行分析。在透光通道经过的各个功能层中,玻璃盖板136透过率通常超过90%,光学胶透过率高达99%,薄膜封装层134的透过率亦超过90%,第二电极133c透过率可达80%。这样,通过避开不透光的第一电极133b和透过率较低的偏光片135,并对基材(基板131)挖孔,并选择透过率较高的缓冲层材料(如氧化硅、氧化铝、氮化铝、氮化硅、氮氧化硅等无机材料,以及聚酰亚胺、聚酯、丙烯酰基等有机材料,缓冲层132的主体部分可以由无机材料和有机材料任意堆叠可构成),可以使得显示屏的透光通道整体透过率可超过67%,达到清晰成像的要求,从而使前置屏下摄像模组成为可能。

进一步地,在本申请的一个实施例中,盖板136可以不打通孔,以便起到更好的保护和防尘作用。由于盖板透过率可以超过90%,因此盖板不打通孔仍然可以满足屏下模组的成像要求。

进一步地,图6示出了本申请的另一个实施例的屏下摄像组件的剖面示意图。参考图6,本实施例中,所述有机发光二极管显示屏100中,所述偏光层通孔135a中填充光学胶135b。本实施例的区域结构与材料可以与图5的实施例完全一致,不再赘述。

进一步地,仍然参考图6,在本申请的一个实施例中,所述有机发光二极管显示屏中,所述基板131具有对应于所述透光区域139的基板通孔131a。将显示设备的基板(或者称为基层或基材)挖孔,可以帮助提高屏下摄像模组的进光量。

进一步地,仍然参考图6,在本申请的一个实施例中,所述有机发光二极管显示屏中,所述像素层的所述主显示区域140和所述透光区域139共同构成连续的平坦的上表面。所述封装层通过覆盖所述连续的上表面来封装所述像素层。这样,本实施例中不需要在主显示区域和所述透光区域之间设置封装材料,即可实现显示层的封装,降低了工艺难度,还有助于减小显示留白区的孔径。

进一步地,图7示出了本申请又一个实施例的屏下摄像组件的剖面示意图。参考图7,本实施例中,所述有机发光二极管显示屏100中,所述显示层133包括像素层133a和分别位于像素层133a下方和上方的第一电极层133b和第二电极层133c,所述封装层134覆盖于所述第二电极层133c的上表面。本实施例与图6所示实施例的区别在于,位于下方的所述第一电极层133b构成所述摄像模组的光阑(孔径光阑)。图7中的虚线示出了本实施例的用于成像的通光通道。从图7中可以看出,第一电极层133b的通孔133d起到了光阑的作用。

进一步地,仍然参考图7,在本申请的一个实施例中,所述基板131具有对应于所述透光区域139的基板通孔131a,所述摄像模组200的顶端伸入所述基板通孔131a并承靠于所述缓冲层132的底面。屏下摄像模组的顶端直接承靠于显示设备的缓冲层132,可以减少外界光传输到摄像模组的传输距离,进而进一步地提高屏下摄像模组的进光量。这是由于透光通道实际上是呈锥形的,因此在显示屏表面(指正面表面)的通光孔尺寸不变的前提下,摄像模组的顶端越接近显示屏表面(指正面表面),所获得的进光量就越大。反过来说,在进光量相同的前提下,摄像模组的顶端越接近显示屏表面(指正面表面),就越有利于降低显示屏表面(指正面表面)的通光孔的尺寸(或者称为孔径),从而提升用户的视觉体验。

进一步地,在本申请的一个实施例中,所述第一电极层为阴极层,所述阴极层具有阴极层通孔以形成所述光阑的通光孔,所述阴极层的厚度达到适于遮光的厚度,以形成所述光阑的遮光部。具体实现上,可以通过加大第一电极厚度,使其足以限制穿过透光通道的成像光束的大小,即可使第一电极成为光阑。当然,在另一实施例中,也可以通过在透光通道的第一电极内侧设置不透光材料来形成光阑。

进一步地,在本申请的一个实施例中,所述第一电极层具有第一通孔以形成所述光阑的光圈,所述第一通孔中填充光学胶。通过将显示设备中的第一电极层制作成光阑,可以减小屏下摄像模组的高度(指光轴方向上的尺寸),从而帮助减小终端设备(例如手机)的厚度。

进一步地,图8示出了本申请一个透光区域和主显示区域采用相同结构的实施例的屏下摄像组件的剖面示意图。参考图8,本实施例中,有机发光二极管显示屏100包括:基板、缓冲层、第一电极层、像素层、第二电极层、封装层、偏光层135和盖板。其中所述像素层包括主显示区域和透光区域,所述偏光层135具有偏光层通孔135a,所述像素层133a的位于所述偏光层通孔135a位正下方的部分形成所述透光区域,并且所述封装层通过覆盖所述主显示区域和所述透光区域的上表面来封装所述像素层。所述主显示区域和所述透光区域之间不使用封装材料隔开。本实施例中,所述透光区域与所述主显示区域之间没有分界面。所述透光区域与所述主显示区域之间没有分界面可以理解为:所述透光区域与所述主显示区域之间自然过渡,或者所述透光区域与所述主显示区域之间连续。所述摄像模组200安装于所述透光区域的后端(即偏光层通孔135a的后端)。

进一步地,图9示出了本申请另一个透光区域和主显示区域采用相同结构的实施例的屏下摄像组件的剖面示意图。本实施例与图8实施例的区别在于基板131具有基板通孔131a,所述缓冲层132的一部分底面暴露在基板131外,所述摄像模组200的顶面承靠于所述缓冲层132的底面(指缓冲层132的底面中暴露在基板131外的那一部分)。

进一步地,在本申请的一个实施例中,所述有机发光二极管显示屏中,所述透光区域可以具有像素发光结构,并且所述透光区域的像素间距大于所述主显示区域的像素间距,以使所述透光区域的透光率大于所述主显示区域。本实施例中,通过将透光区域的像素密度(业界有时会称之为ppi,其全称为pixelsperinch)设置成小于所述非屏下摄像区域110的像素密度,来提高透光区域(对应于如图1和2所示的屏下摄像区域120)的光透过率。这样,屏幕可以不必通过开孔来避让摄像模组的成像光路,从而显示屏得以保持完整。并且,由于可以保留发光结构及相应的微电路,在不使用摄像模组时,屏下摄像区域120可以进行图像显示。屏下摄像区域120和非屏下摄像区域110可以共同构成完整的画面,真正实现全面屏的显示效果。本实施例的屏下摄像组件特别适合用于智能手机,该屏下摄像组件中的摄像模组特别适于作为智能手机的前置摄像模组。

进一步地,在所述透光区域具有像素发光结构的实施例的基础上,所述屏下摄像组件还可以包括:第一控制单元,其用于在所述摄像模组不工作状态下控制所述屏下摄像区域和所述非屏下摄像区域均显示图像;并且在所述摄像模组工作状态下控制所述屏下摄像区域的显示功能关闭。关闭显示功能的区域(例如屏下摄像区域)中,各个像素的发光层不发光,这样在模组进行拍摄时不会有来自显示屏的杂光影响图像的拍摄。在拍摄时,非屏下摄像区域可以全部显示图像;也可以在围绕屏下摄像区域的周围区域不显示图像(即该周围区域的像素的发光层不发光),其余部分显示图像。例如,当所述屏下摄像组件应用于智能手机中时,当智能手机调用前置摄像头时,第一控制单元可以使屏幕中的屏下摄像区域的显示功能关闭(即屏下摄像区域不被点亮),这样外界光线可以透过屏下摄像区域并被前置摄像头所接收。由于屏下摄像区域的诸多改进可以提升其光透过率,前置摄像头的进光量可以达到有效成像的标准。与此同时,屏幕的非屏下摄像区域可以仍然工作,以便显示前置摄像头所摄取的画面,以便更好地进行拍照(例如自拍时由非屏下摄像区域显示人脸图像)或拍摄视频(例如进行视频会议时由非屏下摄像区域显示对应的图像)。本实施例中,第一控制单元可以设置在手机(或其它终端设备)的操作系统或应用中,也可以作为显示驱动电路的一部分来实现。

进一步地,在所述透光区域具有像素发光结构的实施例的基础上,所述屏下摄像组件还可以包括:第二控制单元,其用于在所述屏下摄像区域和所述非屏下摄像区域均显示图像时,对所述屏下摄像区域的亮度进行补偿。本实施例中,为了提升摄像模组的进光量,将屏下摄像区域的像素密度(业界有时会称之为ppi,其全称为pixelsperinch)设置成小于所述非屏下摄像区域的像素密度。需注意,本申请中,屏下摄像区域设置相对较低的像素密度,是为了使像素间距增大,因此屏下摄像区域中,单位面积下的发光面可能会缩小,这可能会造成屏下摄像区域的亮度下降(指与非屏下摄像区域相比,屏下摄像区域的亮度较低)。如果不对屏下摄像区域的亮度进行补偿,那么在全面屏显示时,前置摄像模组位置虽然可显示图像,但其亮度可能会明显较低,那么在与周围的非屏下摄像区域的对比下,该位置(前置摄像模组位置)可能会形成暗斑(即形成亮度明显低于周围的区块)。这种暗斑在视觉上可能容易被用户所关注到,从而影响用户体验。基于上述分析,可以看出,本实施例中利用第二控制单元对屏下摄像区域的亮度进行补偿,可以消除或抑制前述的因屏下摄像区域的像素间距增大而导致的暗斑。这里,对亮度进行补偿可以是软件层面的补偿,例如在手机(或其它终端设备)的操作系统层面或者应用层面进行自适应地调节。例如通过软件调节的方式使屏下摄像区域的亮度增加,从而与周围的非屏下摄像区域一致,进而消除或抑制位于屏下摄像区域的暗斑。这样用户可以看到一块完整的屏幕以及在该屏幕上显示的完整而连续的图像,获得极为震撼的视觉享受。当然,也可以在显示驱动电路对所述屏下摄像区域的亮度进行补偿。需注意,在本申请的另一实施例中,还可以通过屏下摄像区域内的tft(即每个像素的发光层下方的薄膜晶体管开关)来实现屏下摄像区域的单位面积亮度等同于其他区域(即非屏下摄像区域)的单位面积亮度,从而实现屏下摄像区域亮度的补偿。即第二控制单元可以在显示屏的硬件层面实现。

进一步地,需要注意,由于屏下摄像区域做出了诸多增加透过率的改进,除了亮度外,其显示效果与非屏下摄像区域相比还可能存在其它区别。例如因屏下摄像区域做出了诸多增加透过率的改进,屏下摄像区域的对比度等其它显示参数可能发生改变,导致屏下摄像区域与非屏下摄像区域之间可能因这种改变而形成某种边界。如果这种边界容易被人眼所关注,那么也可能会使人感到屏幕所显示的图像不完整不连续,全面屏的视觉效果可能会打折扣。基于上述分析,在本申请的一个实施例中,所述屏下摄像组件还包括第二控制单元,其用于在所述屏下摄像区域和所述非屏下摄像区域均显示图像时,对所述屏下摄像区域的显示参数进行补偿,以使所显示的图像在所述屏下摄像区域和所述非屏下摄像区域之间平缓过渡,以使屏下摄像区域和非屏下摄像区域能够组成一个完整而连续的画面,且该画面中屏下摄像区域和非屏下摄像区域之间没有容易被肉眼关注到的边界。对所述屏下摄像区域的显示参数进行补偿可以是软件层面的补偿,例如在手机(或其它终端设备)的操作系统层面或者应用层面进行自适应地调节。当然,也可以在显示驱动电路对所述屏下摄像区域的显示参数进行补偿。显示参数可以包括亮度、对比度。

进一步地,在所述透光区域具有像素发光结构的实施例的基础上,所述屏下摄像区域的像素尺寸与所述非屏下摄像区域的像素尺寸可以相同。这里的像素尺寸指发光结构的尺寸。这种设计下,屏下摄像区域和非屏下摄像区域可以共用许多制作工艺和制作设备,有助于提高生产效率和提升良率。需注意,本申请的其它实施例中,所述屏下摄像区域的像素尺寸与所述非屏下摄像区域的像素尺寸也可以是不相同的。降低屏下摄像区域的像素密度,即可帮助提升像素之间的间距,从而提升屏下摄像区域的透过率。

进一步地,图11示出了一个具有定位标记的oled屏幕的基板的示意图。参考图11,在本申请的一个实施例中,为便于组装屏下摄像组件,可以在oled屏幕的基板设置至少两个定位标记150,该定位标记150用于oled屏幕与摄像模组组装过程中的位置识别,以提高组装精度(例如提高通光孔的对准精度)。该定位标记与摄像模组在显示屏的投影不重叠,以便摄像模组和显示屏在组装时能实时校正位置。摄像模组与oled屏幕可以在接触面设置胶材进行粘接固定,也可以摄像模组紧贴oled屏幕,通过侧边粘胶来粘结,或者两处(接触面和侧面)同时粘接。定位标记可以为一油墨图案,或者可以激光打标实现,也可以为oled屏幕的基材挖槽而成,或者是与基材一体成型的特殊结构。

进一步地,在本申请的一个实施例中,还提供了一种终端设备,其包括前文任意实施例所述的屏下摄像组件。其中,所述摄像模组可以作为所述终端设备的前置摄像模组,所述有机发光二极管显示屏可以作为所述终端设备正面的显示面板。

需注意,本文中的像素密度(ppi)有时也被称为显示密度。

以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1