电池模块、包括该电池模块的电池组和包括该电池组的车辆的制作方法

文档序号:21009412发布日期:2020-06-05 23:26阅读:181来源:国知局
电池模块、包括该电池模块的电池组和包括该电池组的车辆的制作方法

本公开涉及一种电池模块、一种包括该电池模块的电池组以及一种包括该电池组的车辆。

本申请要求2018年4月25日在韩国提交的韩国专利申请no.10-2018-0047843的优先权,其公开内容通过引用并入本文。



背景技术:

二次电池高度适用于各种产品,并且展示出优异的电气性能,诸如高能量密度等,因此二次电池不仅通常用在便携式装置中,而且还用在由电力源驱动的电动车辆(ev)或混合动力电动车辆(hev)中。二次电池作为用于增强环境友好性和能源效率的新能源正在受到关注,其原因在于:可以大大地减少化石燃料的使用,并且在能源消耗期间不产生副产品。

目前广泛使用的二次电池包括锂离子电池、锂聚合物电池、镍镉电池、镍氢电池、镍锌电池等。单位二次电池单体、即单位电池单体的工作电压是大约2.5v至4.5v。因此,如果需要较高的输出电压,则可以串联连接多个电池单体以构造电池组。此外,根据电池组所需要的充电/放电容量,可以并联连接多个电池单体以构造电池组。因此,可以根据所需要的输出电压或所要求的充电/放电容量而不同地设定包括在电池组中的电池单体的数量。

同时,当多个电池单体被串联或并联连接以构造电池组时,通常首先构造具有至少一个电池单体的电池模块,然后通过使用至少一个电池模块并添加其它部件来构造电池组。

在常规的电池模块中,就整体性能和寿命而言,特别重要的是对电池模块进行冷却。在常规的电池模块中,通常使用边缘冷却法(edgecoolingmethod)来对电池模块的电池单体进行冷却,所述边缘冷却法是通过向电池单体的端部提供传热路径等来执行。

然而,在常规的边缘冷却法中,在任何一个电池单体处或者在多个电池单体之间产生冷却温度偏差。冷却温度偏差是降低整个电池模块的性能或者缩短电池模块的寿命的主要因素。

因此,需要找到一种方法,以在冷却电池模块的同时改善电池单体的冷却温度偏差。



技术实现要素:

技术问题

本公开致力于提供一种电池模块、一种包括该电池模块的电池组以及一种包括该电池组的车辆,所述电池模块可以在冷却所述电池模块的时改善电池单体的冷却温度偏差。

技术方案

在本公开的一个方面中,提供了一种电池模块,包括:多个电池单体;以及模块壳体,所述模块壳体被构造为容纳所述多个电池单体,并且所述模块壳体中被绝缘油填充至预定高度,其中,所述绝缘油以覆盖所述电池单体的整个容积的量填充所述模块壳体的内部,并且被设置成与所述模块壳体的一侧的内壁间隔开预定距离。

所述电池模块还可以包括多个通道引导构件,所述多个通道引导构件被分别布置在所述多个电池单体之间,使得面对的电池单体彼此间隔开预定距离。

所述多个通道引导构件可以在所述面对的电池单体之间形成格子形的冷却通道。

所述多个通道引导构件可以在所述面对的电池单体之间沿着所述模块壳体的高度方向形成具有预定长度的至少一个冷却通道。

所述多个通道引导构件可以沿着所述多个电池单体的堆叠方向以之字形式布置。

所述多个通道引导构件可以由弹性垫制成。

所述多个通道引导构件可以在其表面处具有双面胶带,以便被分别附着到所述面对的电池单体。

所述绝缘油可以被设置成与所述模块壳体的上侧的内壁间隔开预定距离。

另外,本公开提供一种电池组,包括:至少一个根据上述实施例的电池模块;以及电池组壳体,所述电池组壳体被构造成封装所述至少一个电池模块。

此外,本公开提供一种车辆,包括至少一个根据上述实施例的电池组。

有益效果

根据如上的各种实施例,可以提供一种电池模块、一种包括该电池模块的电池组以及一种包括该电池组的车辆,该电池模块可以在冷却电池模块的同时改善电池单体的冷却温度偏差。

附图说明

附图示出本公开的优选实施例,并且与上述公开内容一起用来提供对本公开的技术特征的进一步理解,因此,本公开不被解释为限于附图。

图1是用于示出根据本公开实施例的电池模块的视图。

图2和图3是用于示出图1的电池模块的通道引导构件的视图。

图4是用于示出根据图1的电池模块的另一实施例的通道引导构件的视图。

图5和图6是用于示出图1的电池模块中的绝缘油的流动的视图。

图7是用于示出根据本公开实施例的电池组的视图。

图8是用于示出根据本公开实施例的车辆的视图。

具体实施例

通过参考附图详细地描述本公开的实施例,本公开将变得更显而易见。应该理解的是,本文公开的实施例是仅为了更好地理解本公开而示出,并且可以以各种方式修改本公开。另外,为了易于理解本公开,附图未按实际比例绘制,而是放大了一些部件的尺寸。

图1是用于示出根据本公开实施例的电池模块的视图,图2和图3是用于示出图1的电池模块的通道引导构件的视图,图4是用于示出根据图1的电池模块的另一实施例的通道引导构件的视图,并且图5和图6是用于示出图1的电池模块中的绝缘油的流动的视图。

参考图1至图6,电池模块10可以包括电池单体100、模块壳体200、绝缘油300、汇流条单元400和通道引导构件500。

电池单体100可以是二次电池,特别是袋型二次电池。此外,电池单体100也可以是圆柱形二次电池或矩形二次电池。

在下文中,在此实施例中,将电池单体100描述为袋型二次电池。

所述电池单体100可以被设置为多个。所述多个电池单体100可以被堆叠成彼此电连接。具体地,所述多个电池单体100可以通过稍后说明的汇流条单元400彼此电连接。

所述多个电池单体100中的每个电池单体均可以包括电极组件、电池壳体以及电极引线150,所述电池壳体用于容纳电极组件,所述电极引线150从电池壳体突出并连接到电极组件。

模块壳体200容纳所述多个电池单体100,并且可以封装所述多个电池单体100。为此,模块壳体200可以具有能够容纳所述多个电池单体100的容纳空间。

模块壳体200可以由具有高导热率的金属材料制成,以便于有效散热。作为示例,模块壳体200可以由铝制成。

此外,模块壳体200的内部可以利用稍后说明的、用于冷却所述多个电池单体100的绝缘油300填充至预定高度。

模块壳体200可以包括壳体主体220和壳体盖260。

壳体主体220可以容纳所述多个电池单体100和电池模块10的各种部件。壳体主体220可以由稍后说明的绝缘油300来填充。

壳体盖260可以被联接到壳体主体220,以封装所述多个电池单体100。在这里,壳体盖260可以通过激光焊接等被联接到壳体主体220。

绝缘油300用于冷却所述多个电池单体100,并且可以以覆盖所述多个电池单体100的整个容积的量来填充在模块壳体200的壳体主体220中。

绝缘油300可以是具有高热容的液体材料。例如,绝缘油300可以是合成绝缘油(诸如石油基绝缘油、硅油和氯化油)或植物绝缘油。

由于绝缘油300被填充以覆盖所述多个电池单体100的整个区域,所以绝缘油300可以与所述多个电池单体100的几乎所有侧相接触。在此实施例中,可以借助于接触所述多个电池单体100的几乎所有侧的绝缘油300来有效抑制电池单体100的特定区域中的温度上升。

绝缘油300可以被设置成与模块壳体200的一侧的内壁间隔开预定距离,特别是与模块壳体200的壳体盖260的上侧的内壁间隔开预定距离。在这种情况下,当由于所述多个电池单体100的发热而使得温度增加从而导致绝缘油300发生膨胀时,可以防止模块壳体200的结构稳定性发生劣化。

汇流条单元400用于测量所述多个电池单体100的电压等,并且覆盖所述多个电池单体100的至少一侧。汇流条单元400可以电连接到所述多个电池单体100的电极引线150。

通道引导构件500用于引导绝缘油300的流动,并且可以设置为多个。所述多个通道引导构件500被分别设置在所述多个电池单体100之间,并且可以允许面对的电池单体100间隔开预定距离。

所述多个通道引导构件500可以由具有预定弹性的弹性垫制成,并且通过粘合剂等被附着到所述多个电池单体100的电池壳体。例如,所述多个通道引导构件500可以由具有预定弹性的硅垫制成。本公开不限于此,并且所述多个通道引导构件500也可以由具有预定弹性的其它材料的弹性垫制成,所述弹性垫已经市售或者将要市售。

同时,所述多个通道引导构件500的两侧表面上可以具有双面胶带,以便被分别附着到面对的电池单体100的电池壳体。而且,所述多个通道引导构件500本身可以由具有预定厚度的双面胶带制成,以便被分别附着到面对的电池单体100的电池壳体。

所述多个通道引导构件500可以在面对的电池单体100之间形成格子形的冷却通道550。所述多个通道引导构件500可以沿着所述多个电池单体100的堆叠方向(x轴方向)以之字形式布置。

借助于所述多个通道引导构件500,冷却通道550可以以规则间隔形成在所述多个电池单体100之间的空间中。因此,在所述多个电池单体100发热的同时被加热的绝缘油300可以通过对流而平稳地向上移动,并且可以在所有电池单体100之间更均匀地执行热交换。

因此,当所述多个电池单体100发热时,在被设置于最外侧的电池单体100与被设置在中央附近的电池单体100之间,可以基本上不产生冷却温度偏差。

所述多个通道引导构件500的形状和布置不限于此。如图4中所示,所述多个通道引导构件505还可以在面对的电池单体100之间沿着模块壳体200的高度方向(z轴方向)形成具有预定长度的至少一个冷却通道555。

也就是说,所述多个通道引导构件可以具有能够形成其它类型的冷却通道的形状和布置,只要通过对流来引导绝缘油300的平稳流动并且减小所有电池单体100的冷却温度偏差。

如上所述,在此实施例中,所述多个电池单体100被布置为围绕所有的所述多个电池单体100,使得可以借助于绝缘油300以及引导绝缘油300的流动的所述多个通道引导构件500,从而在冷却所述多个电池单体100的同时,显著地减小所述多个电池单体100的冷却温度偏差。

因此,在此实施例中,由于改善了所述多个电池单体100的冷却温度偏差,因此可以提高电池模块10的整体性能和寿命。

图7是用于示出根据本公开实施例的电池组的视图,并且图8是用于示出根据本公开实施例的车辆的视图。

参考图7和图8,电池组1可以包括至少一个根据前述实施例的电池模块10和用于封装该至少一个电池模块10的电池组壳体50。

电池组1可以被提供给车辆v作为车辆v的燃料源。作为示例,电池组1可以被提供给能够使用电池组1作为燃料源的电动车辆、混合动力车辆以及各种其它类型车辆v。

此外,除了车辆v之外,还可以在诸如使用二次电池的能量存储系统这样的其它设备、仪器或设施中提供电池组1。

如上所述,此实施例的电池组1以及具有电池组1的诸如车辆v这样的设备、仪器或设施包括如上所述的电池模块10,因此可以实现具有上述电池模块10的所有优点的电池组1或具有电池组1的诸如车辆v这样的设备、仪器、设施等。

根据如上的各种实施例,可以提供电池模块10、包括电池模块10的电池组1以及包括电池组1的车辆v,所述电池模块10可以在冷却电池模块10的同时改善电池单体100的温度偏差。

虽然已示出并描述了本公开的实施例,但是应该理解的是,本公开不限于所描述的具体实施例,本领域技术人员可在本公开的范围内做出各种变化和修改,并且不应该从本公开的技术思想和观点单独地理解这些修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1